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Abstract
Deep learning techniques have been applied to medical image segmentation and 
demonstrated expert- level performance. Due to the poor generalization abilities of 
the models in the deployment in different centres, common solutions, such as trans-
fer learning and domain adaptation techniques, have been proposed to mitigate this 
issue. However, these solutions necessitate retraining the models with target domain 
data and annotations, which limits their deployment in clinical settings in unseen do-
mains. We evaluated the performance of domain generalization methods on the task 
of	MRI	segmentation	of	nasopharyngeal	carcinoma	(NPC)	by	collecting	a	new	dataset	
of 321 patients with manually annotated MRIs from two hospitals. We transformed 
the modalities of MRI, including T1WI, T2WI and CE- T1WI, from the spatial domain to 
the frequency domain using Fourier transform. To address the bottleneck of domain 
generalization	 in	MRI	segmentation	of	NPC,	we	propose	a	meta-	learning	approach	
based	on	frequency	domain	feature	mixing.	We	evaluated	the	performance	of	MFNet	
against	existing	techniques	for	generalizing	NPC	segmentation	in	terms	of	Dice	and	
MIoU. Our method evidently outperforms the baseline in handling the generalization 
of	NPC	segmentation.	The	MF-	Net	clearly	demonstrates	 its	effectiveness	 for	gen-
eralizing	NPC	MRI	segmentation	to	unseen	domains	(Dice = 67.59%,	MIoU = 75.74%	
T1W1).	 MFNet	 enhances	 the	 model's	 generalization	 capabilities	 by	 incorporating	
mixed- feature meta- learning. Our approach offers a novel perspective to tackle the 
domain generalization problem in the field of medical imaging by effectively exploit-
ing the unique characteristics of medical images.
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1  |  INTRODUC TION

Nasopharyngeal	 carcinoma	 (NPC)	 is	 a	 highly	 aggressive	malignant	
tumour that originates in the nasopharynx and pathologically clas-
sified into keratinized squamous cell carcinoma and non- keratinized 
carcinoma.1 It is estimated that approximately 130,000 new cases of 
NPC	occurred	worldwide	 in	2018,	with	particularly	high	 incidence	
rates	in	Southern	China,	Southeast	Asia,	and	North	Africa.2 Southern 
China	is	known	to	have	one	of	the	highest	NPC	incidence	rates,	with	
up to 50 cases per 100,000 individuals.3 Radiotherapy is the primary 
treatment	 for	NPC.	Considering	 the	 adjacent	 critical	 structures	 in	
nasopharynx, accurately defining the radiation field is essential to 
achieve optimal therapeutic efficacy while minimizing local compli-
cations.	The	success	of	NPC	radiotherapy	significantly	depends	on	
the accurate characterization of the tumour volume and its precise 
boundaries, which are used to formulate dosimetric parameters 
while sparing uninvolved critical structures. Traditionally, manual 
delineation	of	the	nasopharynx	gross	tumour	volume	(GTVnx)	using	
computed	tomography	(CT)	imaging	by	experienced	radiologists	has	
been	the	standard	procedure	for	NPC	treatment	planning.	However,	
magnetic	 resonance	 imaging	 (MRI)	 provides	 valuable	 information	
for identifying the tumour extent, volume, and invasion of adjacent 
structures. MRI has the advantage of better boundary distinction 
compared to PET- CT and CT imaging modalities.4

In recent years, deep convolutional neural networks have made 
significant strides in medical image segmentation, greatly enhanc-
ing the accuracy of this technique. Ideally, when training datasets 
encompass a large number of high- quality images from various med-
ical centres utilizing different imaging vendors and protocols, highly 
generalizable models can be achieved in the field of medical imaging. 
However,	NPC	presents	unique	challenges	that	make	it	difficult	to	
obtain a large- scale training dataset from diverse hospitals. These 
limitations result in small training datasets lacking the necessary di-
versity, which ultimately hinders the models' ability to perform con-
sistently on data from ‘unseen’ domains. For instance, while a deep 
learning	model	might	achieve	an	error	rate	of	5.5%	for	retinal	image	
analysis using images from the same vendor as those in the training 
dataset,	this	error	rate	could	increase	to	46.6%	when	using	images	
from a different vendor.5 Consequently, this lack of generalizability 
has emerged as a significant obstacle in the practical implementation 
of deep learning models in clinical practice.6

Currently, there are three popular solutions proposed in the 
industry to address the issue of poor generalization of models in 
unseen domains. The first solution is transfer learning, where a pre- 
trained network is fine- tuned using a small amount of labelled data 
from the unseen domain.7 While this approach shows promising per-
formance, it requires retraining the new model before deployment, 
making it impractical for different patient populations (e.g., multiple 
clinical	centres)	or	unpredictable	scenarios	(e.g.,	rural	areas).	The	sec-
ond solution involves domain adaptation using multiple- source data, 
with	one	of	the	datasets	serving	as	the	unseen	domain.	By	utilizing	
multiple datasets with different distributions, meta- learning strate-
gies simulate the training–testing process of domain generalization 

during model optimization.8–10	 However,	 in	 the	 NPC,	 collecting	
multi- source data is challenging due to the regional discrepancy of 
the incidence rate. The third solution is data augmentation in a single 
domain, with various complex techniques being employed to expand 
the coverage of data distribution. Specifically, additional training 
data samples are generated in the image domain,11 semantic space12 
or through adversarial learning.13 Data augmentation has been 
proven to be one of the most important regularization techniques 
related to the generalization performance of deep learning models.14 
It helps prevent overfitting to the training data and enables better 
generalization to the test data. To the best of our knowledge, there 
is currently no comprehensive investigation on single- domain gener-
alization	for	NPC	MRI	images,	and	no	optimization-	related	research	
has been conducted specifically for addressing the domain general-
ization	problem	in	the	context	of	NPC.

MRI technology performs a z- direction selection after receiving 
a signal. Then, it utilizes the Fourier transform to convert the phase 
spectrum and frequency spectrum into a spatial domain. Visual psy-
chophysics research has revealed that the low- level distribution (i.e., 
style)	and	high-	level	semantics	of	an	image	can	be	captured	through	
the amplitude spectrum and phase spectrum in the frequency do-
main.5,15 Hong et al.16 have demonstrated in their style- mixing ap-
proach	 that	 the	 low-	level	 distribution	 (i.e.,	 style)	 can	 enhance	 the	
generalization capability of neural networks. Inspired by this, in our 
work, we believe that mixing the low- level distributions from two 
input images can facilitate the creation of more valuable samples, 
thereby ultimately enhancing the generalization ability of the model. 
Based	on	 the	characteristics	of	MRI,	we	have	designed	a	continu-
ous frequency space interpolation mix mechanism. Furthermore, we 
have adopted meta- learning on the high- level semantics to train the 
network. This mechanism helps the network acquire domain invari-
ance from the feature distribution space, thus enhancing the net-
work's generalization in the unseen domain.

We list the contributions of our work as follows:

1. For the purpose of analysing and evaluating the performance 
of	existing	 single-	domain	generalization	methods	 in	NPC	 image	
segmentation, we collected two new datasets. These datasets 
include	 44	 NPC	 patients	 obtained	 at	 The	 Second	 Affiliated	
Hospital	 of	Anhui	Medical	University	 and	277	NPC	patients	 at	
The First People's Hospital of Foshan, China, along with their 
respective MRI images, which have been manually annotated 
by experienced oncologists.

2. For the task of single- domain segmentation generalization, we 
employ state- of- the- art domain generalization methods for 
medical	image	segmentation	of	NPC	images	to	identify	the	lesion	
areas. We perform a systematic evaluation of these methods on a 
newly collected dataset, establishing a benchmark. Our research 
has the potential to benefit other researchers in the same domain.

3.	 We	present	 a	 novel	MF-	Net	model	 that	 tackles	 the	 formidable	
task	of	domain	generalization	in	MRI	segmentation	for	NPC.	This	
meta- learning approach, based on frequency- space mix, enables 
the model to effortlessly segment images in target domains that 
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have never been encountered before, eliminating the need for 
cost- consuming retraining.

4. Our method exhibits compelling efficacy, as substantiated by 
an extensive array of experiments. On the dataset, we have 
meticulously curated, our approach surpasses the prevailing do-
main generalization methods, setting a new standard in the field. 
Furthermore, we conduct a rigorous analysis, meticulously scruti-
nizing the performance of various methodologies.

2  |  MATERIAL S AND METHODS

In	clinical	practice,	MRI	scans	of	patients	with	NPC	typically	com-
prise of T1- weighted, T2- weighted and contrast- enhanced T1- 
weighted images. These three modalities in MRI exhibit distinct 
signal	intensities	for	tissue.	Among	them,	T1-	weighted	imaging	em-
ploys	a	shortened	repetition	time	(TR)	and	echo	time	(TE)	to	evaluate	
spin lattice relaxation, thereby providing enhanced visualization of 
anatomical structures due to its preference for low water content 
and high fat content signals. In contrast, T2- weighted imaging em-
ploys longer TR and TE to measure spin relaxation, emphasizing high 
water content signals and minimizing fat content signals, which ena-
bles	better	observation	of	lesions.	By	injecting	a	gadolinium	contrast	
agent, contrast- enhanced T1- weighted imaging induces T1 shorten-
ing effect, enhancing signal strength and predominantly reflecting 
the microvessels within the tissue. This technique is often utilized 
for analysing blood vessels generated by lesions. Consequently, T1- 
weighted, T2- weighted and contrast- enhanced T1- weighted imag-
ing contributes to the comprehensive assessment of the anatomical 
structure,	lesions	and	microvessels	in	NPC.	They	mutually	comple-
ment	each	other	in	revealing	the	primary	lesion	of	NPC,	lymph	nodes	
and	 adjacent	 tissues.	 Radiologists	 typically	 diagnose	 NPC	 and	 its	
surrounding tissues by carefully inspecting the three MRI modalities. 
However, current domain generalization methods for MRI tumour 
segmentation fail to account for the specific characteristics of medi-
cal	 images.	To	 address	domain	generalization	 in	NPC	MRI	 tumour	
segmentation,	we	 have	 devised	 a	 network	model	 named	MF-	Net,	
which effectively assimilates the information from the aforemen-
tioned distinct MRI parameters. In the subsequent section, we will 
comprehensively	introduce	the	MF-	Net	approach.

2.1  |  Preliminaries

To	address	the	domain	generalization	issue	in	NPC	MRI	image	seg-
mentation, we aim to blend the feature distributions and learn pa-
rameters that exhibit superior generalization. For this purpose, we 
transform the modalities of nasopharyngeal carcinoma patients' 
MRIs, including T1WI, T2WI and CE- T1WI, from the spatial domain 
to the frequency domain using Fourier transform. Fourier transform 
can effectively separate the frequency components of a signal.17

Frequency- space mixing manipulates data in the frequency do-
main, prioritizing intrinsic patterns rather than pixel values. This 

approach is supported by advancements in deep learning, which 
have shown that neural networks are adept at manipulating and in-
terpreting data in the frequency domain.18 The frequency domain 
consists of the phase spectrum and the magnitude spectrum, where 
the low- level distribution of the image can be captured by the mag-
nitude	 in	 frequency	 space.	By	blending	and	enhancing	 the	magni-
tude spectra of different modalities, we aim to improve the model's 
generalization while preserving the unaltered phase spectra.

We define D =
{

DS ,DU
}

	 to	 represent	 NPC	 data	 from	 two	 dif-
ferent hospitals. DS represents the visible domain used to train the 
model M�, while DU represents the invisible domain consisting of data 
from other hospitals that were not involved in the training. The dif-
ferences between these two domains arise from variations in pa-
tients, geographical factors, equipment and medical practitioners' 
imaging techniques.

In the context of this study, DS =
{

xk
i
, yk

i

}N

i=1
 denotes the en-

semble of source domain images. Here, k ∈ K indicates that each 
patient's images encompass of K modalities. xk

i
∈ ℝ

W×H×C signifies 
the image representing modality k in the MRIs of patient i , where yk

i
 

represents the segmentation label corresponding to xk
i
. W, H and C 

denote the width, height and number of channels of the image, re-
spectively. N corresponds to the total number of available samples.

This investigation aims to train a segmentation model, denoted 
as M�, using the source domain DS to attain robust generalization on 
the unseen domain DU.

2.2  |  Feature mix in frequency space

To	address	the	domain	generalization	issue	in	NPC	MRI	image	seg-
mentation, we aim to blend the feature distributions and learn pa-
rameters that exhibit superior generalization. For this purpose, we 
transform	 the	 modalities	 of	 NPC	 patients'	 MRIs,	 including	 T1WI,	
T2WI and CE- T1WI, from the spatial domain to the frequency do-
main using Fourier transform. The frequency domain consists of the 
phase spectrum and the magnitude spectrum, where the magnitude 
in frequency space can capture the low- level distribution of the 
image.	By	blending	and	enhancing	the	magnitude	spectra	of	differ-
ent modalities, we aim to improve the model's generalization while 
preserving the unaltered phase spectra, which encapsulate the fun-
damental semantics of the image.

For a sample xk
i
, we employ the Fast Fourier Transform19 to con-

vert it into the frequency domain:

where k
i
 corresponds to the amplitude spectrum of sample xk

i
, while 

k
i
	represents	the	phase	spectrum.	Notably,	the	amplitude	spectrum	

captures the intricacies of low- level distributions within an image, 
whereas the phase spectrum conveys rich and meaningful high- level 
semantics.

Thereafter, we will interpolate and mix the amplitude spectrum 
according to a ratio �:


(

xk
i

)

= k
i
+ k

i
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where h ∈ K, k ≠ h. In our approach, the interpolation rate � ranges 
from 0.0 to 1.0. Following the acquisition of m

i
, we employ an inverse 

Fourier transform to procure the amalgamated image xm
i

. The inverse 
Fourier transform formula is outlined as

2.3  |  Meta- learning based on mixed feature

Our objective is to acquire a profound understanding of the fun-
damental	characteristics	inherent	in	NPC	MRI	data,	ultimately	bol-
stering the model's capacity to generalize in uncharted territories. 
The meta- learning algorithm can remarkably adapt and internalize 
the most optimal learning strategy autonomously. Within our frame-
work, we have original images and mixed images. To harness the full 
potential of these two image types and elevate the overall generaliz-
ability of the nasopharyngeal cancer image segmentation model, we 
have devised the meta- learning based on mixed- feature approach. In 
this approach, the generalization across domains is accomplished by 
harnessing data mixtures originating from dissimilar distributions in 
the frequency domain.

To provide a more concise and elucidating description of our 
method, we introduce the notion of the original dataset as DS

init
 and 

the mixed dataset as DS
mix

. Moreover, we define a set of tasks as 
T =

{

T1, T2
}

, where T1 corresponds to the original dataset DS
init

, and 
T2 corresponds to the mixed dataset DS

mix
. We define the model cor-

responding to T1 as f�, with the model's parameters described by �.
Initially, we initialize the parameters � with random values. 

Subsequently, we proceed to train the network on the designated 

training set DS
train

 for the T1 task. Throughout this process, we opti-
mize the network by utilizing the dice loss function:

where N represents the total number of pixels, pi denotes the model's 
prediction for the i- th pixel, and gi represents the true label value of the 
i- th pixel. It reaches its minimum value of 0 when the predicted and true 
results are perfectly aligned and its maximum value of 1 when they are 
entirely discordant. In contrast to the cross- entropy loss function, the 
dice loss function addresses class imbalance issues by incorporating the 
weight of each pixel in its computation rather than relying solely on pixel 
count as the weight. This renders Dice loss particularly well- suited for 
mitigating class imbalance challenges in segmentation tasks.

Subsequently, we employ the gradient descent algorithm to min-
imize the loss and obtain the parameters �̂ that yield a relatively op-
timal solution:

where ̂� represents the optimal parameters for the task, � is a hyperpa-
rameter, and  represents the result of gradient computation.

Before	proceeding	 to	 the	next	batch	of	 tasks,	we	 implement	a	
meta- update optimization strategy to train task T2. First, we obtain a 
relatively optimal parameter �̂ based on the previous step, and in the 
training of tasks in this batch, we train task T2 based on this param-
eter, which can reduce the number of gradient descent steps. The 
mixed loss function is defined as:

where the parameter �̂ represents the initialization parameter ob-
tained through task T1 and used for task T2.

m
i
= (1 − �)k

i
+ �h

i
,

xm
i
= −1

(

m
i
,k

i

)

.

init = 
�

f�
�

xk
i

��

= 1 −
2
∑N

i=1
pigi

∑N

i=1
p2
i
+

∑N

i=1
g2
i

,

�̂ = � − �▽�
(

f�
(

xk
i

))

,

mix = 
(

f�̂
(

xm
i

))

,

F I G U R E  1 The	overall	architecture	of	our	proposed	MF-	Net.	Given	an	MRI	image	of	nasopharyngeal	carcinoma,	we	employ	Fourier	
transform to shift the MRI's morphology from the spatial domain to the frequency domain. We blend and enhancing the magnitude 
spectra of different modalities while preserving the phase spectrum, which encapsulates the image's fundamental semantics. We propose 
a meta- learning method based on mixed features to acquire a comprehensive understanding of the inherent fundamental features within 
nasopharyngeal carcinoma MRI data, ultimately enhancing the model's generalization capability in unexplored territories.
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2.4  |  Learning MFNet

The objective function of our model is composed of two components:

where � and � are trade- off coefficients, modulating the significance 
of their respective terms in the model. The model is trained by op-
timizing the objective function  with stochastic gradient descent 
algorithms.

3  |  RESULTS

We provide a comprehensive review of the experiments and the cor-
responding results. We show the importance of these experiments 
in validating the effectiveness and real- world applicability of the 
MFNet	model	(Figure 1).	This	segment	is	essential	for	demonstrating	
how the model performs under various conditions and its potential 
impact	in	the	field	of	MRI	segmentation	for	NPC.

3.1  |  Dataset

Collecting a well- defined dataset is key to the research on do-
main	 generalization	of	NPC	 segmentation.	To	 this	 end,	 our	 re-
search endeavours have entailed fruitful collaborations with 
two esteemed medical institutions, where we meticulously 
gathered	data	 from	patients	diagnosed	with	NPC	and	who	un-
derwent treatment between the esteemed period of July 2013 
and	January	2022.	The	first	dataset	consists	of	NPC	MRIs	from	
44	patients	obtained	at	The	Second	Affiliated	Hospital	of	Anhui	
Medical University. These data were captured using a Siemens 
MAGNETOM	 Verio	 3T	 device,	 with	 Gadobenate	 Dimeglumine	
Injection as the contrast agent. The second dataset consists of 
NPC	MRIs	 from	277	patients	 at	 The	First	 People's	Hospital	 of	
Foshan, China.20 These data were captured using a GE Discovery 
MR750w	3.0T	and	Philips	Achieva	1.5T	devices,	with	Gadoteric	
Acid	Meglumine	Salt	 Injection	as	the	contrast	agent.	The	num-
ber of slices varies from patient to patient, from 15 to 38. It is 
important to acknowledge that our data collection process rig-
orously adhered to specific criteria, leading to the exclusion of 
certain cases that would compromise the integrity of our data-
set. Specifically, patients who had undergone prior radiation 
therapy or chemotherapy, which could potentially distort the 
internal structure of the tumour and compromise the reliabil-
ity of lesion boundaries, were purposefully excluded. Similarly, 
individuals with histories of other malignancies were excluded 
to ensure the dataset's homogeneity. Finally, images that failed 
to meet predetermined criteria, such as insufficient coverage of 
the lesion areas, inadequate image resolution or the presence of 
artefacts, were diligently filtered out to maintain the dataset's 
quality and reliability.

After	 transferring	 MRI	 images	 into	 the	 radiotherapy	 target	
volume	 delineation	 system	MIM	 Software	 (Beijing	 Co.,	 Ltd.),	 two	
experienced	 radiation	 oncologists	with	more	 than	 10 years	 of	 ex-
perience in head and neck cancer GTV in transverse T1WI, T2WI 
and CE- T1WI, respectively. When disagreements occurred during 
the contouring process, a third researcher stepped in to resolve the 
disagreements by discussions. For better performance and conve-
nience, the format of images was converted from DICOM format 
into JPEG format, and the contours of lesions were transformed 
into	binary	masks	and	coordinates	of	bounding	boxes.	All	the	above	
steps were performed in SimpleITK and OpenCV. The annotated 
data examples are shown in Figure 2.

In our scenario, the data from The First People's Hospital of 
Foshan, China, are used as the training set, which is randomly split 
into	80%	 for	 training	 and	20%	 for	 validation.	Due	 to	 the	 regional	
characteristics and differences in capturing devices and contrast 
agents,	 the	 data	 from	 The	 Second	 Affiliated	 Hospital	 of	 Anhui	
Medical University belong to an unknown domain compared to The 
First People's Hospital of Foshan, China. In this paper, we define it 
as the test set. To evaluate fairness, we selected slices from each 
patient which contained tumour.

3.2  |  Implementation

The experiments described in this paper are all based on the Pytorch 
deep learning framework. Our code is released at https:// github. 
com/	caozh	antao/		MFNet.	git. The GPU used for the experiments is 
Tesla M40, and the operating system is Ubuntu 22.04.3 LTS. For the 
sake	of	fairness,	UNet	is	used	as	the	base	network	for	all	compara-
tive experiments. During the experiment, the SGD optimizer is used 
as the optimizer during the training phase.21 To adapt to the input 
of	the	UNet	network,	the	image	size	is	resized	to	512 × 512. The ex-
periment utilized a polynomial learning rate scheduler. The momen-
tum	value	is	set	to	0.9,	the	weight	decay	value	is	set	to	5e − 4, and 
the batch size is set to 4. In the comparative experiments, all experi-
ments are conducted for 30 iterations to obtain convergent results. 
To ensure the reproducibility of the experiment, we employed five 
independent random number seeds in our study. We conducted ex-
periments for each seed and ultimately obtained the average of the 
results from five experiments.

3.3  |  Evaluation metrics

We adopt three popularly used evaluation metrics, dice coefficient 
(Dice)	and	mean	intersection	over	union	(MIoU),	which	are	defined	as:

min
�,�̂

 = �init + �mix,

Dice=
1

N

N
∑

i=1

2
|

|

|

X
gt

i
∩X

pred

i

|

|

|

|

|

|

X
gt

i

|

|

|

+
|

|

|

X
pred

i

|

|

|

,

MIoU=
1

N

N
∑

i=1

|

|

|

X
gt

i
∩X

pred

i

|

|

|

|

|

|

X
gt

i
∪X

pred

i

|

|

|

,

https://github.com/caozhantao/MFNet.git
https://github.com/caozhantao/MFNet.git
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where N is the number of images, Xgt

i
 is the ground truth lesion region, 

X
pred

i
 is the predicted lesion region, and d is the mean distances between 

the surface voxel of binary objects in Xpred

i
 and their nearest partner sur-

face voxel of a binary object in Xgt

i
. The higher Dice and MIoU show a 

higher overlapped rate between the prediction and the true lesion region.

3.4  |  Experimental

To	demonstrate	the	effectiveness	of	MF-	Net,	we	conduct	extensive	
experiments over the empirical data that we collect. Our method is 
compared with the existing state- of- the- art works on handling do-
main generalization, which are detailed as follows:

1.	 UNet:	 The	 base	 model	 of	 this	 work.
2. Mixup: Train the neural network to perform linear interpolation 

between two random training examples and their labels. Mixup 

encourages the neural network to exhibit simple linear behaviour be-
tween training images, ultimately improving its generalization ability.22

3. StyleMix: Stylemix16 aims to separate the style and content of im-
ages and mix them separately, leading to the generation of higher- 
quality	 mixed	 images.	 This	 is	 achieved	 by	 utilizing	 the	 AdaIN	
model, a popular approach for style transfer, to separate the style 
and content components of the images. The differences between 
the style and content are then fused independently, resulting in 
more effective and sophisticated image mixing.

4.	 MI-	SegNet:	Bi	et	al.	designed	a	segmentation	network	based	on	
mutual information,23	 which	 extracts	 style	 (image	 appearance)	
and	anatomy	 (shape)	 features	from	ultrasound	 images.	The	net-
work generates segmentation masks based on anatomical fea-
tures, effectively excluding domain- related features. This allows 
the segmentation network to understand the statistical shape 
model of the target anatomical structure and generalize it to dif-
ferent unknown scenarios.

F I G U R E  2 An	example	of	MRI	slices	from	a	patient	with	nasopharyngeal	carcinoma,	with	T1WI,	T2WI,	and	CE-	T1WI	images	arranged	
from left to right.
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5.	 Dual-	Norm:	Zhou	et	al.	proposed	a	novel	approach	to	address	the	
challenge of domain generalization in unknown target domains.24 
Firstly, the model applies nonlinear transformations to enhance 
the similarity and dissimilarity between source and target images. 
Then, it employs a dual normalization approach. Finally, a style- 
based selection scheme is employed to automatically select the 
suitable pathway during the testing phase.

6.	 MF-	Net:	Meta-	learning	 based	 on	 frequency-	space	mix	 for	MRI	
segmentation	in	NPC	proposed	in	this	work.

Our	method	utilized	UNet	as	the	backbone	architecture	to	en-
sure	fairness	and	eliminate	bias.	Among	the	comparative	methods,	
MI-	SegNet	employed	its	own	designed	network,	while	the	remaining	
approaches	used	UNet	as	their	basic	model.	This	choice	of	backbone	
architecture ensured a consistent starting point for all methods, al-
lowing for a fair and objective comparison.

We first evaluated the generalization performance of vari-
ous existing medical image segmentation methods (including the 
UNet,	BigAug,	MI-	SegNet	and	Dual-	Norm	methods)	on	NPC	MRIs	
through extensive experiments. The evaluation metrics used in-
clude Dice and MIoU, with cross- validation performed for the 
three signal types: T1WI, T2WI and CE- T1WI. From the results 
in Table 1, we can observe that the first row represents our base 
Net,	the	second	row	represents	BigAug,	which	enhances	the	data	
in 3D and slightly improves efficiency. The third row represents 
MI-	SegNet,	which	performs	poorly	due	to	 its	segmentation	mask	
being generated based on anatomical features, enabling the seg-
mentation network to understand the statistical shape of the tar-
get anatomy. However, this design is specific to ultrasound images, 
and the significant variations in anatomical characteristics across 
different types of images make it difficult to apply this method to 
other medical images. The fourth row represents Mixup, a data 
mixing method that directly combines the data. While it improves 
generalization performance in natural scene classification sce-
narios, applying this method in medical imaging increases tumour 
regions'	 noise	 and	 imprecise	 segmentation.	 Dual-	Norm	 demon-
strates relatively good performance by enhancing the images with 
two sets of augmentations: one set with similar sources and an-
other with dissimilar sources, preserving the style information of 
both domains. It retains the best normalization path by comparing 
and selecting the optimal style, thus exhibiting good generalization 
across different medical images.

Continuing with our comparison, we evaluated our proposed 
method	against	existing	techniques	for	generalizing	NPC	segmenta-
tion. Table 1 presents a comparison of our method's performance in 
terms of Dice and MIoU with existing works. Our method evidently 
outperforms	 the	 baseline	 in	 handling	 the	 generalization	 of	 NPC	
segmentation. To make the algorithm comparisons more intuitive, 
Figure 3 shows the relationship between test dice and the number 
of epochs for the different algorithms. To visually demonstrate the 
effectiveness of different algorithms, we illustrated in Figure 4 the 
outcomes of employing various segmentation methods on different 
cases and modalities. The significant performance superiority of 
MF-	Net	clearly	demonstrates	its	effectiveness	for	generalizing	NPC	
MRIs segmentation to unseen domains. To assess the influence of 
the hypermeters � and �	on	our	MF-	Net	model.	We	adjust	its	value	in	
{0.7,	0.8,	0.9,	1.0,	1.1,	1.2,	1.3}	while	fixing	the	other	hyperparameter	
to	the	value	used	in	the	original	MF-	Net	model.	Figure 5 illustrates 
that the performance of our proposed model remains stable across 
a range of values for these trade- off hypermeters, indicating a low 
sensitivity to these hypermeters.

4  |  DISCUSSION

In	clinical	practice,	the	 identification	of	NPC	boundaries	relies	pri-
marily on the experienced oncologists, particularly in delineating the 
region of interest of tumour. Due to the limitations of MR imaging, 
such as high variability, low contrast and discontinuous edges in soft 
tissue appearance, recognizing tumour boundaries faces a challenge. 
With the advancement of machine learning, many researchers have 
begun exploring automatic segmentation of tumour regions using 
machine	learning	methods,	such	as	U-	Net25 and modified 3D,26 V- 
Net,27	CA-	Net28	 and	MMFNet29 models and showed an excellent 
performance in medical image segmentation. In the segmentation 
of	 NPC	 based	 on	 MRI	 images,	 deep	 3D	 CNN	 model,	 SSL-	based	
deep	learning	model	and	MMFNet	were	successively	proposed	and	
achieved a superior accuracy.30,31	 A	 large-	scale	 and	 multi-	centre	
study from Luo et al. proposed an augmentation- invariant strategy 
to	delineate	the	GTV	for	NPC	MRI	images	and	effectively	reduced	
the performance gap between internal and external testing data.32

In most clinical cases, the task of collecting multi- centre data 
is difficult due to the privacy principle. Therefore, data augmenta-
tion in a single domain is commonly used as a feasible approach to 

Model

T1WI T2WI CE- T1WI

Dice (%) MIoU (%) Dice (%) MIoU (%) Dice (%) MIoU (%)

UNet25 64.96 75.38 47.38 65.74 59.91 72.85

Mixup22 63.26 74.28 47.78 66.93 60.36 74.11

StyleMix16 64.59 75.02 48.09 65.91 60.69 73.95

MI-	SegNet23 35.08 47.88 27.03 45.97 32.02 47.34

Dual-	Norm24 65.09 73.80 46.13 64.30 63.49 73.55

MF-	Net 67.59 75.74 52.28 67.66 65.72 74.76

TA B L E  1 Comparisons	with	the	
existing state- of- the- art works on domain 
generalization in terms of Dice and MIoU 
from our dataset.
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address domain generalization issues. Mixup22 enhances new sam-
ples by interpolating images and labels to combine two samples. 
Instead of using the entire object regions, CutMix33 cuts and pastes 
patches from one image onto the other image, along with the ground 
truth labels being mixed proportionally to the area of patches. To 
improve the generalization of ultrasound image segmentation net-
works,	Bi	et	al.23 designed a segmentation network based on mutual 
information, distinguishing image anatomical and domain features 
and employing a cross- reconstruction method to train the network. 
Zhou et al.24 designed a dual normalization model to simulate ap-
pearance variations that may occur in unknown target domains. It 

first uses nonlinear transformations to enhance the original images 
into source- similar and source- dissimilar images and then trains the 
model based on the dual normalization technique.

The few methods that have addressed domain generalization 
in the field of medical image segmentation are specific to certain 
diseases.	Facing	the	task	of	MRI	segmentation	in	NPC,	these	meth-
ods may suffer from the degradation of performance. Therefore, we 
first evaluated the performance of existing domain generalization 
methods	on	NPC	MRI	images	and	then	designed	more	optimized	al-
gorithms	specifically	tailored	to	the	characteristics	of	NPC	images.

In	our	study,	the	proposed	NPC	segmentation	network	uses	tri-
ple modalities as input. With the advantage of the complementarity 
of	triple	modalities,	the	delineation	of	the	GTV	of	NPC	presents	the	
more precise tumour boundary compared to the single modality. In 
this	study,	we	first	used	MRIs	collected	from	NPC	patients	from	two	
hospitals to evaluate the current state- of- the- art domain general-
ization	methods	in	the	invisible	domain	generalization	of	NPC	image	
segmentation. In response to the problem of low efficiency in current 
methods,	MF-	Net	is	proposed	to	solve	the	problem	of	generalization	
in	the	field	of	NPC	MRI	imaging	tumour	segmentation.	Specifically,	
in the frequency domain, low- level features of different signals are 
mixed, and Fourier inverse transform is performed to the spatial 
domain. Then, model training is conducted based on meta- learning 
and compared with existing state- of- art methods, proving that our 
method can better describe the nasopharyngeal tumour body area. 
From the data in Table 1, it can be seen that our approach's effi-
cacy	elevates	the	Dice	coefficients	of	the	three	modalities	by	3.8%,	
8.7%	and	3.5%	correspondingly.	Moreover,	 the	Mean	 Intersection	
over	Union	(MIoU)	values	witness	an	escalation	of	0.5%,	1.1%	and	F I G U R E  3 The	test	dice	of	T1WI.

F I G U R E  4 Segmentation	using	different	segmentation	methods	with	multiple	medical	imaging	modalities	in	various	medical	cases.	
The green part represents the correct segmentation area, while the red and blue parts represent the over- segmentation and under- 
segmentation, respectively.
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0.9%,	 respectively.	 These	 outcomes	 incontrovertibly	 substantiate	
the potency of our method in augmenting the proficiency of image 
segmentation algorithms.

The clinical advantages of modern radiation therapy techniques 
are closely related to contouring accuracy, dose consistency and 
plan delivery accuracy. Currently, these processes of segmentation 
of	 NPC	 performed	 by	 oncologists	 are	 extremely	 time-	consuming	
and empirical. Suboptimal tumour coverage and low- quality radio-
therapy plans are major factors contributing to disease recurrence 
and low survival rates. In this context, our designed method not only 
improves the effectiveness of tumour contour recognition but also 
reduces the time required for contouring compared to manual delin-
eation by oncologists.

Upon analysing the data presented in Table 1, it becomes ap-
parent that there are variations in the recognition outcomes for 
different signals. This disparity can be ascribed to the inherent 
advantage of the CE- T1WI sequence in discerning neighbouring 
boundaries, encompassing microvasculature, thereby manifesting 
exceptional segmentation efficacy. When delineating the tumour 
region, clinicians tend to incorporate the contouring on the T1WI 
sequence to a certain extent, using the CE- T1WI as a reference 
framework. Consequently, their data annotations amalgamate the 
distinctive	 features	 of	 both	 CE-	T1WI	 and	 T1WI	 images.	 Notably,	
our	 MF-	Net	 algorithm	 has	 demonstrated	 a	 conspicuous	 aptitude	
for identifying anatomical structures of T1WI. Conversely, the 
T2WI sequence exhibits the most lacklustre performance in lesion 

recognition, plausibly as a result of the signal distortions stemming 
from oedematous interference.

In summary, we first propose an effective domain generaliza-
tion	method,	MF-	Net,	 using	 the	 imaging	 characteristics	of	MRI	 to	
perform amplitude mixing on MRI images in the frequency domain 
to	evaluate	 its	performance	 in	MRI	 segmentation.	MF-	Net	can	 in-
crease the diversity of samples without affecting the external ap-
pearance	of	tumours.	Additionally,	we	combine	this	approach	with	
meta- learning of mixed features to enhance the generalization of 
the model. Compared with the existing state- of- the- art works on 
addressing	domain	generalization,	the	MF-	Net	demonstrates	excep-
tional performance.
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