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Abstract

Two different perspectives have informed efforts to explain the link between the brain and 

behavior. One approach seeks to identify neural circuit elements that carry out specific functions, 

emphasizing connectivity between neurons as a substrate for neural computations. Another 

approach centers on neural manifolds — low-dimensional representations of behavioral signals 

in neural population activity — and suggests that neural computations are realized by emergent 

dynamics. While manifolds reveal an interpretable structure in heterogeneous neuronal activity, 

finding the corresponding structure in connectivity remains a challenge. We highlight examples 

in which establishing the correspondence between low-dimensional activity and connectivity 

has been possible, unifying the neural manifold and circuit perspectives. This relationship is 

conspicuous in systems in which the geometry of neural responses mirrors their spatial layout in 

the brain, such as the fly navigational system. Furthermore, we describe evidence that, in systems 

in which neural responses are heterogeneous, the circuit comprises interactions between activity 

patterns on the manifold via low-rank connectivity. We suggest that unifying the manifold and 

circuit approaches is important if we are to be able to causally test theories about the neural 

computations underlying behavior.

Introduction

Behavioral and cognitive functions emerge from the dynamic interactions of many neurons 

wired into circuits. Understanding how circuit connectivity gives rise to neural dynamics 

and behavior is a central goal in systems neuroscience. This problem, however, remains 

unresolved, in part due to the experimental challenge of measuring both the connectivity 

and activity of the same neurons during behavior. While stunning technological advances 

have enabled us to record activity from increasingly large populations of neurons1,2,3, the 

observational data that these experiments generate do not unambiguously point to circuit 

mechanisms. Likewise, reconstructions of anatomical connectivity4,5,6,7 constrain the space 
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of possible neural dynamics but do not uniquely predict the activity patterns that arise from 

the circuit to control specific behaviors. Therefore, theory and computational modeling have 

been instrumental in bridging the gaps between circuit connectivity, neural dynamics and 

behavioral functions.

Traditionally, theoretical models hypothesize possible circuit mechanisms to reproduce the 

neural responses and behavior observed in experiments8,9,10,11,12,13,14. In these circuit 

models, the recurrent connectivity is usually hand-crafted to produce the neural activity 

patterns that are needed to solve a particular behavioral task. For example, clustered 

connectivity (in which there are stronger connections within than between clusters of 

neurons) gives rise to discrete attractors (self-sustained and stables states of the system) in 

neural dynamics, which can support categorical decision-making10,15,16,17. When triggered 

by sensory input the network activity converges to one of the attractors, each of which 

represents a different choice alternative10,18. In a similar manner, circuit models have 

been used to relate connectivity structure to the dynamical-system description of neural 

computation across many cognitive tasks19,20. Such links are powerful because they enable 

us to predict the behavioral effects of circuit perturbations (such as changes in the excitation-

inhibition balance21,22), opening up the possibility that we can experimentally test the 

hypothesized causal mechanisms23,24,25.

However, recently available large-scale recordings have exposed a rich complexity of 

neural responses in the brain26 that cannot be explained by classical circuit models, 

which usually assume a simple hand-crafted connectivity structure and thus produce 

functionally homogeneous neural responses. For example, in the discrete attractor network 

model with clustered connectivity described above, all neurons within a single cluster 

show the same selectivity for one choice and respond with a similar time course10,18. By 

contrast, recordings from cortical neurons during cognitive tasks show that single neurons 

exhibit complex mixed selectivity for multiple task variables and diverse temporal response 

profiles27,28,29,30. Tying this complex and heterogeneous activity to the underlying circuit 

mechanism thus poses a formidable challenge.

Over the last decade, multiple statistical techniques have emerged that can find structure 

in heterogeneous neural responses31,32,33,34 (Box 1). Although diverse, the responses 

of different neurons in a population are usually tightly correlated during behavioral 

tasks, meaning that the population expresses only a restricted set of activity patterns. 

Geometrically, we can picture this set of permissible activity patterns as a surface in a 

neural population state space in which each axis represents the activity of one neuron (Box 

1). This surface — referred to as the neural manifold — is often low-dimensional and 

reveals interpretable structure in the neural population activity related to behavioral task 

execution. Modeling how neural population dynamics unfold along the manifold as the task 

progresses provides a dynamical-system description of neural computation35,36,37,38,39. The 

discovery of interpretable manifolds in multiple brain areas and behavioral tasks suggests 

that computation through dynamics on a manifold may be a general principle for the 

organization of heterogeneous neural responses in the brain40,41.
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While neural manifolds concisely summarize heterogeneous single-cell responses, they only 

provide a descriptive model of neural computation. Without links to causal mechanisms, the 

manifold description lacks the power to generate testable predictions for experiments. It is 

evident that correlations in neural responses arise from constraints posed by the underlying 

network connectivity; however, the relationship between the neural manifold structure and 

the connectivity that gave rise to it remains largely unappreciated.

In this Perspective, we synthesize recent theoretical and experimental work that links 

neural manifolds to their underlying circuit mechanisms, suggesting that the manifold and 

circuit perspectives on neural computation are inseparable. While several recent reviews 

have highlighted insights provided by studies focusing on neural manifolds32,40,41,42 and 

circuits43,44 separately, we here advocate for the integration of neural manifold and 

circuit approaches to cognition. We review the fly’s head direction (HD) system as an 

example of convergence between the manifold and circuit structure that has been confirmed 

experimentally. We then discuss recent theoretical work suggesting that similar convergence 

may exist in systems with distributed mixed selectivity. Experimental validation of this 

correspondence will require the connectivity and activity of the same neurons to be mapped 

or the model predictions to be tested in perturbation experiments. We argue that theorists 

and experimentalists should not satisfy themselves with descriptions of neural computations 

as dynamics on manifolds, but should instead seek understanding that integrates circuit 

connectivity, dynamics and behavior.

Circuit–manifold convergence: HD system

The head direction system is the best-studied example of a convergence between a neural 

manifold and circuit structure that has been confirmed experimentally at the single-cell 

level45,46,47. The function of the HD system is to represent the direction that an animal 

is heading and to update this representation according to information received about the 

animal’s angular velocity input and the position of visual landmarks.

The ring manifold for head direction

The head direction angle is a one-dimensional circular variable (Box 1), which is 

topologically equivalent to a ring (Fig. 1a). Consistent with this topology, neural responses 

in the HD systems of the mouse48 and the fruit fly Drosophila melanogaster49 organize on 

a manifold with ring topology, such that the position of the neural population activity on the 

ring manifold parametrically encodes the head direction (Fig. 1a).

The ring manifold in the fly is beautifully conspicuous due to the simple physical layout 

of the ellipsoid body (EB), the core neuropil in the fly HD system49, within which 

topographically organized neural responses can be directly visualized using calcium imaging 

(Fig. 1b). The EB has a circular structure and the neurons within the EB (called E-PG 

neurons) display a ‘bump’ of activity within this circle, indicating that a small set of 

neighboring neurons are active, at any given time. The location of this activity bump 

within the circle precisely tracks the actual head direction of the fly (Fig. 1b), moving as 

it rotates49,50 and adjusting relative to visual landmarks49. Furthermore, only one activity 

bump is present at any given time and an existing activity bump disappears when another 
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artificial bump is induced by optogenetic stimulation51,52. Together, the uniqueness of the 

bump and its movement with the angular velocity establish the functional significance of the 

ring manifold.

By contrast, the rodent’s HD system is more complex, involving many brain regions in 

which HD cells are scattered, and there is no evidence so far for a topographic ring structure 

organization46,53. Nevertheless, the responses of HD cells in the anterodorsal thalamic 

nucleus48 and postsubiculum54 of mice also form a ring manifold. The ring is non-linearly 

embedded, twisting through various dimensions in the high-dimensional neural population 

space48 (Fig. 1a). The manifold embedding is jointly defined by the tuning curves of all 

neurons in the population34 (Box 1). Some of these neurons have complex, multi-modal 

tuning to the head direction48,54, which can affect the manifold embedding without changing 

the underlying ring topology. Thus, complex tuning can be consistent with a simple topology 

of neural population responses, and manifold analyses can reveal this simple structure in 

heterogeneous single-cell responses.

Ring attractor models

How does the ring manifold for head direction arise from circuit connectivity? Theoretical 

models can suggest an answer to this question. In one type of classical neural circuit 

model (Box 2), called a ring attractor model, the HD cells are arranged on a circle and 

wired with strong local excitatory and uniform inhibitory connections8,55,56 (Fig. 1c). 

Each cell has bell-shaped tuning for its preferred head orientation angle and, due to the 

balance of excitation and inhibition, the network activity localizes into a single bump 

representing the current head orientation angle. In the absence of external inputs (such as 

those representing angular velocity or visual landmarks), the activity bump is persistent 

due to local recurrent excitation and unique due to global inhibition (that is, only a single 

bump exists at all times). This ring attractor model also provides a circuit mechanism 

through which the head direction encoding on the manifold can be updated. Landmark cells 

are hypothesized to carry information about visual cues and to provide direct localized 

input to the corresponding HD cells57 (Fig. 1c), while clockwise and anticlockwise rotation 

cells are hypothesized to update the bump location in response to self-motion8,58. The 

rotation cells are activated by the angular velocity input and update the bump location via 

local asymmetric recurrent connections with the HD cells. Each group of rotation cells 

receives input from its corresponding group of HD cells and projects to the clockwise or 

anticlockwise neighbors of that HD cell (Fig. 1c).

The ring attractor model accounts for all salient features of the ring manifold and dynamics 

in the fly EB, although it does not reproduce the complex tuning curves of some HD 

cells in rodents48,54. It is important to note that the topology of the connectivity can be 

distinct from its spatial layout in the brain tissue. That is, the ring topology in connectivity 

can arise in model networks in which neurons are not spatially arranged on a ring59, 

consistent with the lack of spatial topography in the rodent HD system53. Furthermore, 

very similar dynamics on a ring manifold can arise from different biophysical mechanisms. 

For example, modelling has shown that the ring manifold topology and dynamics can 

emerge from structured inhibition between rotation and HD cells rather than local recurrent 
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excitation46,58, consistent with the lack of strong recurrent connections between HD cells 

that has been observed in rodents46. Thus, it is clear that a neural manifold does not 

uniquely determine the biophysical details of the circuit connectivity, highlighting the 

need for experimental measurements of connectivity to evaluate the candidate biophysical 

mechanisms suggested by theoretical models.

Complete circuit reconstruction

One way to precisely link a neural manifold to its underlying circuit is to directly measure 

the activity and anatomical connectivity of all of the neurons in the relevant circuits. In flies, 

such circuit dissection confirmed — with astonishing precision — the predictions of the ring 

attractor models described above49,51,52,60. Powerful experimental techniques, including 

RNA-profiling and connectivity reconstruction through electron microscopy, enabled the 

identification of many cell types in the Drosophila melanogaster central complex and a 

description of their anatomical connectivity with single-cell resolution47,61. This analysis 

revealed connectivity among many cell types in the fly HD system, allowing for the ring 

attractor model to be tested directly. It was found that local excitation between E-PG 

neurons sustains the activity bump in the EB. The rotation cells predicted by the model 

were identified as P-EN neurons located in another neuropil called the protocerebral bridge 

(PB). The recurrent connectivity pattern between EP-G and P-EN neurons was found to 

be asymmetric, meaning that P-EN neurons in the left and right sides of the PB rotate 

the position of the EP-G activity bump clockwise or anticlockwise, respectively47,50. These 

findings confirm precisely the angular velocity integration mechanism suggested in the 

ring attractor models. Many other cell types were also identified and their connectivity 

and function dissected47, revealing a more complex anatomical structure than had been 

predicted by minimal circuit models. In turn, this led to the development of refined models 

incorporating the discovered anatomy50,57,62,63,64.

The fruit fly HD system is a unique example of a situation in which theoretical predictions 

made more than 20 years ago were confirmed experimentally at the level of single-cell 

connectivity, establishing a perfect correspondence between the circuit structure, dynamics 

on the neural manifold, and behavior. While neural responses in the rodent HD system 

organize on a similar ring manifold, they show more heterogeneity and lack a clear spatial 

topography. The precise circuit mechanism generating dynamics on the ring manifold in the 

rodent HD system is thus yet to be discovered.

Towards convergence in grid cells

Grid cells in the mammalian medial entorhinal cortex (MEC) provide an example of a 

navigational system for which the manifold and circuit perspectives have begun to converge, 

although their correspondence has not yet been established directly. MEC grid cells encode 

an animal’s location in space and update this representation using information about 

the animal’s speed and direction of motion, a computation known as path integration65. 

Spatial location in a flat environment is a two-dimensional variable that does not, per se, 

imply a periodic code. However, grid cells have been shown to represent space with a 

remarkably regular periodic pattern66 (Fig. 2a). Grid cells activate whenever the animal’s 
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position coincides with any vertex of a regular grid of equilateral triangles spanning the 

environment. Grids of neighboring cells share the same orientation and spacing but differ in 

their vertex locations (their phases). Across the MEC, grid cells cluster into a small number 

of anatomically overlapping modules with distinct scales and orientations of grids67. Within 

a grid module, phase relationships between pairs of grid cells are conserved in different 

environments despite extensive deformations of single-cell tuning68. Similar to the HD 

system, the grid-cell map is anchored to external landmarks but persists in their absence69.

A toroidal manifold for spatial position

The grid-like periodicity of spatial tuning in single grid cells suggests that their population 

responses will organize on a low-dimensional manifold. Since the tuning of single cells 

within a module varies only by spatial phase, it is expected that their population responses 

form a two-dimensional torus in state space70. Intuitively, the population response of grid 

cells within a module repeats cyclically whenever the animal moves along one of the two 

directions defining the grid period.

Evidence for such a torus-like manifold structure was discovered recently in a study that 

used Neuropixels probes to obtain simultaneous recordings from thousands of MEC grid 

cells in freely moving or sleeping rats71 (Fig. 2b). This work showed that, as the animal 

moves in an open field, the population activity within a module also moves continuously 

across the toroidal manifold, updating the spatial representation via path integration71. The 

same toroidal manifold persists in the absence of sensory input and is maintained, with 

minimal distortion, across different environments and behavioral states from wakefulness to 

sleep71. Moreover, mapping the population activity at each time to a point on the identified 

torus in state space showed that individual cells preferentially fired when population 

responses fell at a particular location on this torus (Fig. 2b). Thus, individual grid cells 

are tuned to specific locations on the toroidal manifold and these locations do not change 

across environments71 (Fig. 2b).

The crystalline rigidity of the toroidal manifold indicates that it is likely to arise from the 

connectivity structure in the circuit, and not from external input. Multiple tori (one in each 

module) observed experimentally71 could arise from multiple subnetworks with toroidal 

topology20. In contrast to the HD system, in which head direction is naturally encoded as 

a circular variable, this toroidal structure does not reflect the topology of the underlying 

spatial variable and thus its functional significance is still debated. One possibility is that the 

representation of position with respect to multiple tori with distinct periods provides a high 

capacity combinatorial encoding that is read out downstream by place cells72.

Discovering structure with manifold analyses.—The example of grid cells shows 

that the tuning functions of single cells to external variables contain the same information 

as the manifold obtained from their trial-averaged responses34. However, manifold analyses 

can also reveal structure in neural population activity in situations in which estimating 

single-cell tuning is not possible or when the full set of variables encoded in neural 

activity is unknown. For example, during sleep, estimating single-cell tuning curves is 

not possible because there are no behavioral variables to which neural activity can be 
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referenced. However, manifold analyses reveal the same manifolds in HD cells48,54 and grid 

cells71 during sleep as during wakefulness, suggesting that they arise from the anatomical 

connectivity. Similarly, manifold analyses enabled the discovery of a HD circuit in the 

anterior hindbrain of larval zebrafish, by demonstrating that neural responses in this area 

form a ring manifold73. Since the fish were head fixed for volumetric calcium imaging, 

computing single-cell tuning to head direction was not possible. Moreover, unsupervised 

manifold discovery methods can reveal neural representations encoding an expansive 

task knowledge beyond external physical variables74,75. In the hippocampus of rodents 

performing decision-making tasks, neural population activity was well described by a 

low-dimensional manifold, within which both spatial location and abstract variables (such 

as accumulated evidence) were orderly encoded. The manifold thus formed a conjoined 

cognitive map of the task74, with some dimensions reflecting information beyond the 

measured behavioral variables75. While the activity of single place cells in hippocampus 

is known to vary substantially across repeated trials, manifold analysis has shown that this 

variability could result from neural trajectories taking different paths on the manifold and 

may reflect the operation of internal cognitive processes75. Thus, manifold analyses enable 

scientific insights beyond those made possible by the tuning-curve approach.

Circuit mechanisms for the toroidal manifold

Continuous attractor models.—Similar to the HD system, continuous attractor models 

provide a candidate circuit mechanism that can support the toroidal manifold and dynamics 

for path integration in grid cells76. These models are a direct extension of the one-

dimensional ring attractor models into two dimensions. In a two-dimensional continuous 

attractor network model of grid cells, the cells are spatially arranged on a two-dimensional 

torus, with the strength of the recurrent excitatory connections between the cells decreasing 

in proportion to the distance that separates them77,78 (Fig. 2c). In these networks, a single 

bump or multiple bumps of activity form spontaneously in a spatial pattern corresponding 

to the positions of co-active grid cells in the population. This pattern of activity moves 

across the two-dimensional network to update the representation of spatial location via path 

integration according to the self-motion input78. The movements of activity bumps arise 

due to local asymmetric connections between the grid cells and additional two-dimensional 

layers of cells that represent a combination of velocity and position, analogous to the layer 

of rotation cells in the head direction model78 (Fig. 2c). Grid firing patterns can also arise in 

feedforward models in which spatial selectivity is inherited from external inputs79,80,81, but 

this mechanism is inconsistent with the rigidity of the toroidal manifold across environments 

and behavioral states. By contrast, the spatially arranged connectivity in attractor models 

naturally leads to a rigid manifold structure that does not change with varying input77,78,82.

Toroidal manifolds can arise in continuous attractor models that include either periodic 

boundary conditions (such that neurons at one boundary connect to neurons at the 

opposite boundary of the two-dimensional network, forming a torus) or aperiodic boundary 

conditions76,82, but which one applies to the grid-cell system is unknown. Unlike the 

fly HD system, the anatomical connectivity supporting the toroidal manifold in grid cell 

population activity remains unknown, with such research being hampered by a lack of 

simple topography and the more limited set of circuit dissection tools currently available 
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in mammals. In the absence of direct connectivity measurements, the alternative circuit 

models could be evaluated by testing their predictions in experiments that combine sparse 

neural recordings with global perturbation strategies76. In particular, perturbations of either 

the time constant of neurons or the gain of the recurrent inhibition between neurons have 

predictable effects on the spatial tuning relationships between pairs of cells (and hence the 

manifold) in candidate models and these effects can be detected using only a small number 

of neurons76. Thus, cortical cooling to alter the time constant83 and drug infusions to alter 

the gain of recurrent inhibition84 are two feasible experimental manipulations that could, in 

principle, be used to test alternative circuit models of grid cells in future studies.

Emergent circuit mechanisms in complex networks.—To help us understand the 

links between the circuit structure and neural dynamics in mammalian navigational systems 

that lack simple topography, we can turn to artificial recurrent neural network (RNN) models 

of path integration in which connectivity is not topographically arranged. RNNs can be 

trained to perform path integration by optimizing recurrent connectivity parameters. In these 

networks, representations can emerge that are similar to those formed by biological HD 

cells and grid cells59,85,86. In the hand-crafted attractor models described above, the ring 

or toroidal response manifolds arise from connectivity that is spatially arranged in one 

or two dimensions, respectively. By contrast, RNN units are not arranged in any space, 

and ring and toroidal manifolds exist without topographic organization of neural responses 

(as is also the case in the rodent’s navigational circuits). The trained RNN connectivity 

appears complex and the mechanism through which it generates precisely organized neural 

responses is not immediately obvious. Uncovering the mechanism for path integration in 

the RNN connectivity required analysis methods that arrange neurons in space according to 

their functional properties59,86 (Fig. 2d). These analyses revealed a hidden structure in the 

RNN connectivity that matches the mechanism used for path integration in the hand-crafted 

attractor models. In both hand-crafted models and RNNs, the precisely organized spatial 

responses arise from similar low-dimensional connectivity structure; however, in RNNs, 

this structure is additively superimposed over random connectivity and its presence is 

therefore not obvious in the connectivity of individual units59,86 (Fig. 2e). This means that, 

without the prior intuition provided by the theoretical models, finding this low-dimensional 

connectivity structure would have been extremely challenging. This example therefore 

demonstrates a more general point: while measuring the activity and anatomical connectivity 

of the same neurons can enable direct testing of hypothesized circuit mechanisms with 

single-cell resolution86,87, without the guidance of theoretical models there is no universal 

path by which we may discover new mechanisms from the high-dimensional heterogeneous 

data. Therefore, theory is crucial for elucidating circuit mechanisms from simultaneous 

measurements of activity and connectivity.

Circuits with mixed selectivity

In contrast to navigational systems, the relationship between the neural manifold and circuit 

connectivity is more elusive in the higher cortical areas supporting cognitive functions, 

such as working memory88,89,90,91 or decision making92,93. Tasks used to study cognitive 

functions in animal experiments often have a simple topological structure (Box 1), akin 
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to spatial navigation tasks. For example, a common visual spatial working memory task 

requires an animal to remember a location at a particular angle around a circle on a 

screen94,95 (Fig. 3a). The remembered angle is a one-dimensional circular variable, just 

like head direction. Similarly, in many decision-making tasks, task variables have a simple 

branching topology, in which diverging values of a decision variable represent alternative 

choices92. However, unlike neurons in navigational circuits, cortical neurons exhibit more 

complex and heterogeneous responses in these tasks, with a less obvious link to neural 

computation and circuit connectivity.

Classical circuit models of cognitive tasks

Early studies using single-cell recordings focused on the salient, interpretable tuning 

features of single neurons that aligned with the task structure. During working memory 

maintenance, for example, some neurons in the primate prefrontal cortex (PFC) show 

persistent activity with stimulus-dependent spatial tuning, providing an essential neural 

correlate of working memory88,90,91,94,95. Similarly, during decision-making, the firing rates 

of single neurons across many cortical areas tend to ramp up or down, diverging across trials 

on which the animal makes different choices92,96,97,98,99,100,101.

These lucid features of single-neuron responses map naturally to the activity in attractor 

network models with simple connectivity structures. A ring attractor model (with the 

same connectivity as the ring attractor model of the HD cells) captures the stimulus-

dependent persistent activity observed during spatial working memory tasks9,102,103 (Fig. 

3a). Moreover, the continuous attractor dynamics in this model predict the relationship 

between the precision of a memory report and fluctuations in PFC activity104 as well 

as memory deficits arising from circuit disruptions (such as altered excitation-inhibition 

balance) in mental illness21,105,106,107. The ramping activity associated with decision-

making arises in discrete attractor models10,15,16,17,18. These networks include several 

groups of excitatory neurons, one for each choice, with stronger recurrent excitation within a 

group than across groups. The inhibitory neurons in these networks mediate winner-take-all 

competition between the excitatory populations so that in response to a stimulus, one group 

elevates its firing rate representing the decision outcome. The discrete attractor models 

predict the changes in ramping activity and decision-making behavior that occur when 

optogenetic perturbations of neural activity are performed in rodents23,24,25.

Manifolds for cognitive tasks

Recent large-scale recordings have exposed the rich complexity and heterogeneity of single-

neuron responses in higher cortical areas and revealed that simple interpretable tuning, such 

as that described above, is a rare exception27,28,29,30,108,109. Only a relatively small fraction 

(5-10%) of PFC neurons shows strictly tonic persistent activity during working memory, 

with all other neurons displaying complex temporal variations28,29 (Fig. 3b). The responses 

of PFC neurons are even more perplexing in tasks that involve interactions between multiple 

variables, such as context-dependent decision-making108,109. Single neurons show mixed 

selectivity, responding to combinations of multiple task variables and the encoding of those 

variables is distributed across the entire neuronal population and varies over time27,30. This 

distributed mixed selectivity (Box 1) does not fit with the classical attractor models, in 
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which neurons inherit homogeneous tuning properties from clustered or spatially organized 

connectivity structures. The question that therefore arises is how neural computations should 

be understood in networks with distributed mixed selectivity.

Manifold analysis approaches this question by finding low-dimensional representations of 

task variables in the population state space that are not obvious in the heterogeneous 

responses of single neurons. To identify the manifold structure in neural response data, many 

dimensionality reduction methods model heterogeneous responses as linear combinations 

of a few latent variables to extract a low-dimensional subspace within the population 

state space in which task-related dynamics can be observed31,110,111,112. The manifold 

structure found within this low-dimensional subspace often agrees with the topology of 

task variables. For example, in the spatial working memory task described above, the high-

dimensional PFC population activity contains a low-dimensional subspace in which stimulus 

representations are stable across time and arranged on a circle representing the remembered 

location29 (Fig. 3b). The variation of population activity over time occurs in an orthogonal 

subspace and therefore does not interfere with the stable mnemonic representation. In 

decision-making tasks, low-dimensional projections of neural population activity reveal 

branching trajectories that diverge at each decision point108,109 (Fig. 3c).

Manifold analyses have uncovered manifolds mirroring the topology of task variables 

in many cortical areas and cognitive tasks27,28,29,30,108,109. Manifolds and single-neuron 

heterogeneity qualitatively similar to that observed in brain recordings also emerge 

in RNNs trained to perform cognitive tasks by optimizing recurrent connectivity 

parameters108,109,113,114,115,116 (Box 2). These discoveries led to the proposition that 

computation through dynamics on a manifold may be a general principle for the 

organization of heterogeneous neural responses in the brain40. Moreover, it has been 

suggested that understanding computation on the level of connectivity and circuits may 

be unnecessary or even intractable in systems with distributed mixed selectivity41. Is such 

a strong proposition warranted, or can the manifold and circuit perspectives be reconciled 

despite single-cell heterogeneity?

Linking manifolds to connectivity

Low-rank recurrent neural networks.—It is possible to reconcile the manifold and 

circuit perspectives by engineering non-linear high-dimensional RNNs in which dynamics 

on a low-dimensional manifold arise from low-dimensional connectivity (Box 3). In these 

RNNs, connectivity is constructed to be low-rank117,118. Rank-one connectivity is an outer 

product of two high-dimensional vectors m and n of length N (where N is the number 

of neurons in the high-dimensional network). With this connectivity structure, network 

dynamics are confined to the two-dimensional subspace of the neural activity space spanned 

by vectors m and n when external input is aligned with n. Moreover, activity along direction 

n drives activity along direction m, creating a substrate for implementing computations. 

By composing low-rank connectivity from several rank-one terms (Box 3), it is possible to 

construct RNNs with dynamics flowing on manifolds spanning a few directions in neural 

activity space, designed to solve various cognitive tasks117,119. It is, however, important to 

note that, although low-rank RNNs can be engineered to solve certain tasks, it does not 
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necessarily follow that brain networks use this particular connectivity structure to solve the 

same tasks. Low-rank solutions are one of many candidate mechanisms, and it remains 

unknown whether low-dimensional connectivity underlies manifolds in other heterogeneous 

networks, such as task-optimized RNNs or the brain. Moreover, it is unclear whether low-

rank RNNs utilize mechanisms similar to classical circuit models or implement truly novel 

solutions that are emergent in high-dimensional non-linear systems.

Latent circuits in heterogeneous networks.—We can start to gain a better 

understanding of the link between low-rank connectivity in large recurrent networks and 

low-dimensional circuits with few populations interacting via excitation and inhibition 

through an examination of low-rank linear dynamical systems120. Linear dynamical systems 

provide a mathematically tractable approximation to non-linear brain dynamics108. In a 

high-dimensional linear network with low-rank connectivity composed of a few orthogonal 

vectors q(i), the dynamics are confined to a low-dimensional subspace spanned by these 

vectors (Box 4)120. Each vector q(i) specifies a direction in the high-dimensional state 

space. These vectors, assembled as columns into the orthonormal matrix Q, define the 

low-dimensional subspace in which the dynamics unfold. Mathematically, these dynamics 

correspond to a high-dimensional embedding of a low-dimensional dynamical system, in 

which recurrent connectivity captures causal interactions between directions q(i) along the 

manifold. Thus, the low-dimensional dynamical system is latent in the high-dimensional 

network31, and we call it the latent circuit119,121. The embedding matrix Q provides a 

mapping between the latent circuit and the high-dimensional network such that a latent node 

i maps onto a direction q(i). A connection between two latent nodes maps onto a distributed 

connectivity pattern given by an outer product of two corresponding directions along the 

manifold. This mapping allows us to translate perturbations of activity and connectivity 

from the low-dimensional circuit onto the high-dimensional network, making it possible 

to causally test the circuit mechanism. Thus, in linear networks, we can formally link the 

manifold and circuit perspectives with a latent circuit structure that constrains dynamics on 

the manifold119,121.

To what extent does the intuition gained from such linear systems extend to non-linear 

recurrent networks such as RNNs or the brain? A recent preprint121 developed an approach 

for fitting high-dimensional neural responses with a model in which these responses 

arise as an embedding of low-dimensional dynamics generated by a non-linear latent 

circuit. Using this approach, the latent circuit connectivity and the embedding matrix can 

be simultaneously inferred from neural responses, making it equally applicable to the 

activity generated by an RNN or the brain. In general, however, it is unclear whether a 

low-dimensional circuit can satisfactorily account for the responses of a high-dimensional 

network. If the solutions to cognitive tasks that emerge in high-dimensional systems are 

qualitatively different from those that operate in small circuits, then a low-dimensional 

circuit model should not be able to adequately account for the task-related dynamics of 

the large system. However, if the dynamics of the large system are accurately predicted 

by the low-dimensional circuit model, then this would suggest that the low-dimensional 

circuit mechanism may be latent in the high-dimensional system. Applied to RNNs 

optimized to perform a cognitive task, this approach revealed a low-dimensional circuit 
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structure in these networks, which was validated by patterned perturbations of the RNN 

activity and connectivity121. Future work is needed to determine under what conditions 

such low-dimensional connectivity underlies the manifold structure in heterogeneous neural 

responses.

This latent circuit approach is similar to methods which fit neural responses with latent 

linear dynamical systems122,123, but incorporates a biologically plausible non-linearity 

and task-relevant inputs and outputs and therefore provides an interpretable model of 

the dynamics supporting cognitive task execution. Other approaches estimate full high-

dimensional RNN connectivity by fitting RNN models to neural response data124,125,126. 

However, the full high-dimensional connectivity is not uniquely constrained by low-

dimensional neural trajectories and is not easily interpretable86 (Box 2). By contrast, the 

latent circuit approach infers only the low-dimensional connectivity structure generating 

task-related dynamics and can be sufficiently constrained by low-dimensional neural 

responses. The latent circuit framework also provides a conceptual advance over other 

methods for fitting neural circuit models to neural response data127,128,129 by introducing the 

idea that circuit mechanisms may be distributed across heterogeneous neural populations.

Demixed representations versus circuit mechanisms.—Identifying task manifolds 

from neural response data requires dimensionality reduction to project high-dimensional 

activity onto a low-dimensional subspace. The resulting low-dimensional representations 

are not unique and depend on the choice of a dimensionality reduction method. Intuition 

tells us that there are infinite number of ways to project high-dimensional data onto a low-

dimensional subspace, and each projection yields a distinct view of the data manifold. For 

example, principle component analysis looks for the projections that account for the most 

variance in the response data, irrespective of whether or not this variance is related to the 

task execution. By contrast, targeted dimensionality reduction methods aim to identify task-

related dimensions in neural population activity, usually by searching for pure (demixed) 

representations of task variables30,108,110,111. Demixing approaches find directions in the 

neural population state space that correlate with each task variable, so that representations 

of task variables do not interact and are demixed in orthogonal dimensions30,108,110,111. The 

objective of demixing task variables contrasts with the mechanistic perspective provided 

by neural circuit models, in which nodes representing task variables interact via recurrent 

connectivity. These interactions are crucial as they implement the computations necessary 

to solve the task. Thus, demixing approaches and dimensionality reduction incorporating 

mechanistic constraints can infer different task manifolds from the same neural responses. 

Indeed, dimensionality reduction based on regression and the latent circuit model approach 

yielded contradictory conclusions about the representations of irrelevant stimuli in RNN 

models of context-dependent decision making, but only the representations identified by 

the latent circuit model were validated using causal perturbations121. These results thus 

highlight the importance of interpreting neural representations within the context of circuit 

mechanisms.
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Outlook for mixed selectivity circuits

The recent theoretical work described above suggests that the organization of heterogeneous 

neural responses on a manifold arises from a low-dimensional connectivity structure in 

the circuit86,117,119,121. These theoretical insights open new possibilities for testing the 

circuit-manifold correspondence in future experiments. In particular, the use of latent circuit 

inference from neural activity data can generate specific mechanistic hypotheses about 

how neurons interact to produce behavior. Experiments can test these causal relationships 

by validating the behavioral effects of patterned perturbations of neural activity and 

connectivity predicted by the latent circuit model. Patterned activity perturbations in 

behaving animals are becoming increasingly more feasible with advances in optogenetic 

stimulation130,131,132. While patterned connectivity perturbations are still experimentally out 

of reach, neural recordings followed by detailed connectivity reconstructions can validate 

the circuit-manifold relationship predicted by the theory. It is likely that the anatomical 

structure will be more complex than predicted by the minimal circuit models and that 

distinct cell types may play specific functional roles, as in the Drosophila HD system. 

These anatomical discoveries will lead to refinements of theoretical models to solidify the 

relationship between neural manifolds and circuits.

Conclusions and perspectives

Our understanding of how cognitive computations emerge from collective dynamics in 

neural populations has advanced significantly over the past decade. Neural manifolds 

were in the vanguard of many breakthroughs that have led to a conceptual shift in 

focus from the single neuron to the neural population133,134. Neural manifolds gracefully 

compress the daunting complexity and heterogeneity of single-neuron responses to reveal 

interpretable low-dimensional structure on the population level that can often be related 

to the computational scaffold of the behavioral task. The successes in describing neural 

computations as dynamics on low-dimensional manifolds spurred the idea that manifolds are 

the necessary and sufficient building blocks to explain cognition40. At its extreme, this view 

suggests that understanding cognitive functions on the level of connectivity and circuits is 

unnecessary and may even be impossible41.

The work we reviewed here supports an alternative view that the manifold and 

circuit approaches to cognition are inseparable. Representations of task variables on low-

dimensional neural manifolds mirror the topological structure of the cognitive task variables 

and, in many cases, manifolds arise from the low-dimensional connectivity structure 

in the circuit49,68,86,117,119,121. In navigational systems, the regularity of single-neuron 

responses and simple manifold geometry naturally suggest the underlying connectivity 

structure and form the basis for theoretical circuit models50,51. Measurements of the 

activity and connectivity of all neurons in the entire circuit provide a direct test of such 

models and fully confirmed the ring attractor model in the fly navigational system47. 

The intuition provided by theoretical models is crucial for identifying circuit mechanisms 

from simultaneous measurements of activity and connectivity86,87,135. In the mammalian 

neocortex, the diversity of single-neuron responses conceals the link to the underlying 

connectivity. However, the organization of neural responses on a low-dimensional manifold 
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can be related to a low-dimensional connectivity structure that gives rise to the manifold in 

neural activity space117,119,121. This relationship was directly confirmed in RNNs121, and 

future work can test it in biological data.

Similar to the classical circuit models, the neural manifold and circuit mechanism 

intertwine in systems with distributed mixed selectivity. However, a circuit mechanism 

in such systems exists not as specific connections between pairs of neurons but as a low-

dimensional connectivity structure that enables one distributed activity pattern to influence 

another117,118,119,121,136. The activity patterns define the low-dimensional manifold, and 

the low-dimensional connectivity structure implements causal interactions between different 

dimensions on this manifold.

Why should we seek circuit structure and not satisfy ourselves with descriptions of neural 

computations as dynamics on manifolds? Without links to the underlying circuit mechanism, 

neural manifolds provide merely an abstract statistical description of the population 

dynamics. Thus, the dynamics discovered from data are sensitive to nuances of the statistical 

method. Different methods sometimes arrive at seemingly contradictory hypotheses without 

a clear path to falsify them. By contrast, a circuit mechanism captures causal interactions 

between neurons and generates testable predictions for perturbation experiments, offering 

an objective way to identify an accurate model among plausible circuits. Mechanistic 

understanding of the neural circuits underlying cognition will give us new opportunities 

to interface with these circuits and treat mental disorders. Therefore, neural manifolds are 

not the end goal but a link between experiments and theoretical modeling that is needed to 

identify the circuit mechanisms giving rise to the neural dynamics that drive behavior.
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Box 1:

Neural manifolds

Task variables refer to the discrete or continuous parameters of a task, as well as related 

variables for intermediate representations and computations. These include stimulus 

parameters (such as the orientation or color of a visual stimulus), variables that reflect 

the state of the environment (such as current spatial position or head orientation; see the 

figure, part a), and unobserved cognitive representations such as decision variables or 

accumulated evidence towards a choice. Unobserved variables are called latent variables.

Task variables are encoded by neural activity in the brain. The neural code can be 

summarized on the level of individual neurons in the form of tuning curves that describe 

the neuron’s firing rate as a function of particular task variables (see the figure, part 

b). For example, neurons in the primary visual cortex have bell-shaped tuning curves 

for the orientation of a stimulus, with each curve being centered at the preferred 

orientation angle of the neuron138. In many brain regions, the responses of single 

neurons are complex and heterogeneous, with each neuron being tuned for a mixture 

of task variables27,28,29,30,48 and many neurons responding to each task variable. These 

properties of the neural code are referred to as distributed mixed selectivity.

The joint activity of all neurons in a population can be described in a neural population 

state space, an N-dimensional Euclidian space in which each axis corresponds to the 

firing rate of one neuron (see the figure, part c). A population state is a point in this 

N-dimensional space and the evolution of neural responses over time forms a trajectory 

that reflects the collective dynamics of all neurons, called neural population dynamics40. 

In many tasks and brain areas, neural population activity does not explore all possible 

states but stays within a confined region of the state space31,32,33,34,42. The neural 

manifold is the continuous set of points in a state space that are explored by neural 

population activity (see the figure, part c). The position of neural population activity on 

a manifold at a given time often encodes task variables. For example, the ring manifold 

is a one-dimensional manifold parameterized by an angle α, thus the ring manifold can 

encode circular variables such as head direction48 or stimulus location at a particular 

spatial angle in a working memory task29. In some cases, the neural manifold can be 

non-linearly embedded in the high-dimensional neural population state space. The shape 

of this embedding (i.e. the manifold’s geometry) depends on the tuning curves of all 

neurons in the population34.
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Box 2:

Neural circuits

A neural circuit is a network of nodes in which the connections, dynamics of each node’s 

activity and inputs are specified. According to the traditional view, the nodes in the 

network can be individual neurons, clusters of neurons or brain areas. The connections 

between nodes implement neural computations. For example, recurrent self-excitation 

in two clusters of excitatory neurons and cross-inhibition mediated by a third cluster 

of inhibitory neurons (see the figure, part a) can generate ‘winner-take-all’ dynamics, 

in which two discrete attractors support decision-making10,18. A network in which 

connectivity is spatially arranged in a pattern with local excitation and global inhibition 

can generate a continuous attractor (such as a ring attractor), in which a localized subset 

of active neurons (‘bump’) within the spatially organized network represents a continuous 

task variable (such as the head direction, see Fig. 1b,c).

Traditional neural circuit models implement interpretable mechanisms that can relate 

connectivity to dynamics and behavior. Interpretable mechanisms enable us to predict the 

behavioral effects of specific circuit perturbations, making it possible to experimentally 

test circuit mechanisms21,22,23,24,25. However, the simple connectivity structure of these 

traditional circuit models results in homogeneous tuning (e.g., all neurons within a 

cluster have the same response profile), which is inconsistent with the distributed mixed 

selectivity (Box 1) that has been observed in brain recordings.

Artificial recurrent neural networks (RNNs) are a class of neural circuit models that 

can account for distributed mixed selectivity. A RNN consists of many recurrently 

connected units, with the weights of the connections optimized to produce a desired 

output from a specific external input (see the figure, part b). RNNs can be trained to 

reproduce behavioral responses in a cognitive task108,109,113,114,115,116, low-dimensional 

manifolds139 or recorded brain activity (in which case the activity of each RNN unit 

tracks a target experimental neuron124). Distributed mixed selectivity emerges in RNNs 

through training108. However, trained RNN connectivity appears complex and the circuit 

mechanism that generates task-relevant dynamics in these networks is not immediately 

interpretable. Two RNNs trained to perform the same task may produce similar low-

dimensional responses but have distinct high-dimensional connectivity114. Finding an 

interpretable connectivity structure that generates low-dimensional responses is important 

because it can allow us to determine whether different RNNs implement similar circuit 

mechanisms and to design perturbations to causally test these mechanisms.

Despite these challenges, there is evidence that interpretable circuit mechanisms can 

exist in networks with distributed mixed selectivity. The connectivity of such networks 

can contain a low-dimensional structure that implements casual interactions between 

distributed activity patterns on the manifold117,118,121,136, similar to the interactions 

between nodes in a low-dimensional latent circuit (Box 4). This low-dimensional 

connectivity structure can be added to random connectivity in RNNs86,117, making it 

challenging to identify. However, traditional circuit models can guide the search for 

interpretable mechanisms in RNNs86,135.
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Box 3:

Dimensionality of manifolds and circuits

Dimensionality generally refers to the number of independent variables that are necessary 

to describe an object, such as a neural manifold. We can define different types of 

dimensionality depending on the choice of these variables. The linear dimensionality 

(sometimes called embedding dimensionality42) is the smallest number of orthogonal 

directions that span a linear subspace containing the manifold. The non-linear intrinsic 

dimensionality is the minimal number of continuous variables necessary to parameterize 

the manifold. For example, the intrinsic dimensionality of the ring manifold is one, 

because it can be parameterized by a single angular variable (Box 1). The linear 

dimensionality of the ring manifold in the neural state space depends on the width of 

the tuning curves of individual neurons and can be very high if the tuning curves are 

narrow34.

The dimensionality of a neural manifold depends, in part, on the connectivity of the 

underlying neural circuit. Such connectivity can be described by a matrix J in which the 

elements Jij specify the weight of connection from neuron j to neuron i. A connectivity 

matrix can also contain a low-dimensional interpretable structure. One example of low-

dimensional connectivity is low-rank connectivity. The rank of a connectivity matrix is 

the number of orthogonal vectors needed to reconstruct the matrix. A connectivity matrix 

is low-rank if its N columns (or rows) can be assembled as linear combinations of a 

much smaller number k ≪ N of columns (or rows)140. The simplest possible type of 

low-rank connectivity is a rank-one connectivity matrix J, which is fully specified by two 

N-dimensional vectors, m = mi  and n = nj  (i and j are indices taking values from 1 to 

N, see the figure, part a). Every column of a rank-one matrix J is a multiple of the vector 

m, and every row is a multiple of the vector n (that is, J is an outer product of m and n):

J = mnT, Jij = minj .

One way to compose a low-rank connectivity matrix is by adding together k rank-one 

terms (see the figure, part b):

J =
l = 1

k
m(l)n(l)

T

Another example of low-dimensional interpretable connectivity structure is the circulant 

connectivity matrix that is used in a ring attractor model. The circulant matrix is fully 

specified by a single vector n that defines the connectivity profile of one neuron140. 

Each row of a circulant matrix is obtained through a circular shift of the vector n one 

element to the right relative to the preceding row (see the figure, part c). Although this 

matrix can be high-rank if the connectivity profile is narrow, it contains an interpretable 

low-dimensional structure.
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It is unknown whether low-dimensional manifolds always arise from low-dimensional 

connectivity, or whether they can emerge without any low-dimensional structure in either 

the input or recurrent connectivity. Many dimensionality reduction methods exist for 

finding low-dimensional manifolds in neural population activity, but there are no general 

approaches for finding the corresponding low-dimensional structure in the connectivity. 

In this article, we highlight examples in which it has been possible to establish 

a relationship between the low-dimensional activity and connectivity55,76,86,117,121. 

Finding such cases is important because they reveal interpretable circuit mechanisms 

that can be validated in perturbation experiments.
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Box 4:

Latent circuits in linear low-rank networks

Linear dynamical systems provide a simple case in which we can link low-rank networks 

with the classical picture of a few nodes interacting via excitatory and inhibitory 

connections in a circuit. Consider a low-dimensional linear dynamical system

ẋ = Ax,

(1)

which we can view as a circuit with a small number n of nodes interacting via a n × n
recurrent connectivity matrix A = Aij  (see the figure, part a). We can embed these low-

dimensional dynamics in a high-dimensional state space to construct a high-dimensional 

linear dynamical system in which this circuit is latent. We can do this by considering the 

N-dimensional variable y = Qx where Q is an orthonormal embedding matrix of shape 

N × n(n ≪ N)140 (see the figure, part b). The dynamics of y are then described by a linear 

dynamical system

ẏ = Jy

(2)

with the low-rank connectivity matrixJ = QAQT  of size N × N141. The dynamics of this 

high-dimensional network are confined to the low-dimensional subspace spanned by 

the columns of Q and follow Eq. 1 within this subspace (see the figure, part c). From 

this perspective, the low-dimensional dynamical system is latent in the high-dimensional 

network y with dynamics described by latent variablesx. The activity of the node xi in 

the low-dimensional circuit maps to a high-dimensional activity pattern aligned with the 

vector q(i) where q(i) is the i-th column ofQ (see the figure, part d). Moreover, writing J as a 

sum of low-rank terms (Box 2)

J =
ij

Aijq(i)q(j)
T ,

(3)

we see that an edge from node j to node i in the latent circuit maps to the outer product 

q(i)q(j)
T  in the connectivity of the high-dimensional network (see the figure, part e). In this 

way, node j driving node i in the latent circuit corresponds to the activity alongq(j) driving 

the activity alongq(i) via low-rank connectivity121.

Recent theoretical work suggests that low-dimensional dynamics can arise from low-

rank connectivity in non-linear RNNs117,118,119,121,136. Under what conditions low-

dimensional manifolds arise from low-dimensional connectivity in non-linear recurrent 

networks is an open question. Finding such cases will enable validation of distributed 

circuit mechanisms via perturbations121.
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Figure 1. Convergence of a manifold and circuit in the head direction system.
a, Head direction angle is a one-dimensional circular variable, α (upper left). A neural 

manifold discovered from neural population activity recorded in the anterodorsal thalamic 

nucleus of mice as they explore their surroundings takes the form of a one-dimensional ring 

that smoothly encodes head direction48. This is shown in a visualization of the manifold 

created using the Isomap algorithm137 (upper right). Each dot corresponds to the population 

activity state at a single time. Color code represents parameterization of the manifold by a 

one-dimensional circular variable α, which closely matches the measured heading angle up 

to a choice of origin and direction. The ring manifold is nonlinearly embedded in the neural 

population state space. The shape of this embedding is determined by the heterogeneous 

and nonlinear tuning curves of individual neurons, five examples of which are shown in 

the lower panel48. b, E-PG neurons in Drosophila melanogaster head direction system are 

arranged in a circle within the ellipsoid body of the fly brain. Calcium imaging reveals a 

localized ‘bump’ of neuronal activity within the ring encoding the head direction at any 

given time (upper left, F is fluorescence intensity in arbitrary units)49,50. Upper center: The 

population vector average (PVA, gold arrow) estimates the position of the center of the bump 

on the circle by summing vectors (dashed red arrows) pointing in the directions of each 

of 22.5° wedges around the EB with length equal to the instantaneous calcium activity in 

each wedge. Shade of blue indicates calcium activity in each wedge. EB is unwrapped in a 

vertical axis (upper right, gold bar indicates angle of PVA) to display population time series 

in the lower panel. The PVA accurately tracks the actual head direction of the animal (lower 

panel)50. c, A ring attractor model accounts for the ring manifold topology and dynamics of 

the head direction (HD) cells55,56. The model consists of HD cells arranged in a ring and 

receiving local excitatory (red) and uniform inhibitory (blue) connections (upper left, cells 

are colored according to their preferred head direction). Landmark cells provide direct input 

to the corresponding HD cells (upper right, shade of blue represents the firing rate). Left and 

right rotation cells (lower panels) make asymmetric recurrent connections with HD cells, 

projecting strongly to either the left or right neighbor of the HD cell from which they receive 

input. Upper right and lower images in panel a are adapted, with permission, from Ref.48 

Panel b is adapted, with permission, from Ref.50 Panel c is adapted, with permission from 

Refs.46,51
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Figure 2. Manifolds and circuits for spatial position encoding.
a, Responses of three example grid cells from a single grid module (in which cells 

have similar spatially periodic activity) in a freely moving rat in two different spatial 

environments. The firing rate maps indicate a reduced periodicity of spatial tuning in 

the second environment71. b, Despite changes in the spatial tuning of individual grid 

cells, neural population responses organize on the same toroidal manifold in different 

environments. Each point in the neural population state space represents the population 

activity state at a single time (dots are colored by first principal component of neural 

responses). Black dots indicate the population state at times when cell 2 fires. The clustering 

of black dots at the same location on the toroidal manifold indicates that there are stable 

relationships between the activity of grid cells across environments, which suggests that 

the manifold arises from a recurrent connectivity structure as in continuous attractor 

models68. c, A two-dimensional continuous attractor network (CAN) model accounts for 

the toroidal manifold and path integration dynamics in grid cells77,78. The model consists 

of a network of grid cells spatially arranged on a two-dimensional torus (upper left, 

dots represent cells, red lines show the connections made by one example cell). We can 

unfold the toroidal network into a two-dimensional sheet, in which the cells at opposite 

boundaries connect to each other (upper right, arrows mark the connected boundaries). In 

this network, multiple focused areas (bumps) of activity form spontaneously, with their 

spatial pattern corresponding to co-active grid cells in the population. As the animal moves, 
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these activity bumps move across the two-dimensional network to update the representation 

of spatial location via path integration. The movement of these bumps is mediated by local 

asymmetric connections between the grid cells and additional two-dimensional layers of 

cells that encode both head direction, speed and position (lower right). These layers of cells 

receive direct input from head direction cells (lower left) and are analogous to rotation cells 

in the ring attractor model (see Fig 1). d, Grid-like responses can emerge in RNNs trained 

to perform path integration85,86. Initially, RNN units are not arranged in any space. After 

training, RNN units can be sorted on a two-dimensional sheet (upper panel) so that units 

with similar phases of their grid tuning are close in space. Stable activity patterns on this 

neural sheet (lower panel, shown at three spacial locations) reveal a topographic hexagonal 

grid activation as in classical attractor models. e, The connections from an individual RNN 

unit to its neighbors on the neural sheet appear unstructured (inset, connections made by 

three example units are shown, excitatory connections are red and inhibitory connections 

are blue). However, when averaged across many units, the connectivity reveals a structure in 

which there is local excitation (red) and global inhibition (blue), matching the mechanism 

for generating continuous attractor dynamics proposed in hand-crafted models. Parts a and 

b are adapted, with permission from Ref.71. Part c is adapted, with permission, from Ref.20. 

Parts d and e are adapted, with permission, from Ref.86
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Figure 3. Low-dimensional task manifolds in heterogeneous responses of cortical neurons.
a, A visual spatial working memory task requires an animal to remember the location of a 

stimulus positioned at a particular angle around a circle on a screen (upper left: spatial cues 

are colored according to their angle). A ring attractor model (middle left) in which there is 

strong local excitation (red lines) and global inhibition (blue lines) between model neurons 

results in stimulus-dependent persistent activity in the model neurons9,102,103. A schematic 

representation of this activity in three model neurons in response to a stimulus in different 

locations (location is indicate by color) is shown in the right panels (y axis represents firing 

rate in Hz), based on the findings reported in Ref.9. This model produces tuning curves 

for individual model neurons with identical shapes that uniformly cover the stimulus space 

(lower left). b, In the spatial working memory task, responses of single neurons recorded 

in the primate prefrontal cortex (PFC) show heterogeneous temporal profiles and stimulus 

tuning (left panels, responses of three example PFC neurons, using the same color coding 

as part a)29. The PFC population activity contains a linear subspace (right, grey circle) with 

stable stimulus encoding on a ring, where the position on the ring represents the remembered 

location. The population activity varies over time in an orthogonal non-coding subspace 

(right, colored trajectories) without interfering with this stable mnemonic representation. 

The responses of single PFC neurons are heterogeneous because the coding and non-coding 

subspaces are rotated with respect to neural axes in the population state space. c, A delayed 

match-to-category task requires an animal to indicate whether a test stimulus belongs to 

the same category as a previously shown sample stimulus (left panel). This task involves 

two sequential decisions: what is the sample category, and does it match the test category? 

In recurrent neural networks trained to perform this task, population responses form a 

branching manifold, which is visualized by projecting responses of RNN units onto the first 

three principal components109 (right panel). Colors indicate task conditions corresponding 

to different pairs of sample and test categories. During the sample period, trajectories 

diverge (red and blue circles) and then approach one of two distinct states representing 

the memory of the sample category during the delay (red and blue triangles). During 

the test period, trajectories again diverge towards two other states representing match or 

non-match decisions (green and black crosses). Similar branching manifolds are observed in 

the population activity of neurons recorded in lateral intraparietal area and PFC as animals 
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complete the task109. Part b is adapted, with permission, from Ref.29. Part c is adapted, with 

permission from Ref.109
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