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Abstract
A role for inflammation in the development and progression of heart failure (HF) has been proposed for decades. Multiple 
studies have demonstrated the potential involvement of several groups of cytokines and chemokines in acute and chronic HF, 
though targeting these pathways in early therapeutic trials have produced mixed results. These studies served to highlight the 
complexity and nuances of how pro-inflammatory pathways contribute to the pathogenesis of HF. More recent investigations 
have highlighted how inflammation may play distinct roles based on HF syndrome phenotypes, findings that may guide the 
development of novel therapies. In this review, we propose a contemporary update on the role of inflammation mediated by 
the innate and adaptive immune systems with HF, highlighting differences that exist across the ejection fraction spectrum. 
This will specifically be looked at through the lens of established and novel biomarkers of inflammation. Subsequently, we 
review how improvements in inflammatory pathways may mediate clinical benefits of existing guideline-directed medical 
therapies for HF, as well as future therapies in the pipeline targeting HF and inflammation.

Keywords  Heart failure · Inflammation · Cardiomyopathy · Immune system · Cytokines

Introduction

A role for inflammation in the development and progression 
of heart failure (HF) has been proposed for more than three 
decades. While several analyses have since demonstrated 
the potential involvement of several groups of cytokines 
and chemokines in acute and chronic HF, targeting these 
pathways in therapeutic trials was initially not successful. 
These early studies served to highlight the complexity and 
nuances of how pro-inflammatory pathways contribute to 

the pathogenesis of HF. More recently, a few studies have 
demonstrated potential benefits of targeting inflammation 
on clinical outcomes in patients with heart disease. In this 
review, we first discuss the role of inflammation mediated by 
the innate and adaptive immune systems in HF, highlighting 
differences across the HF ejection fraction (EF) spectrum. 
This is specifically looked at through the lens of established 
and novel HF and inflammatory biomarkers. Subsequently, 
we review how improvements in inflammatory pathways 
may mediate clinical benefits of existing guideline-directed 
medical therapies (GDMT) for HF, as well as therapies and 
strategies targeting inflammation in HF.

Inflammation across the HF spectrum

Inflammation contributes to the development of HF across 
the EF spectrum and, through an array of mechanisms, 
HF itself promotes a chronic inflammatory state, two 
interconnected, and bidirectional processes. The concept 
of “inflamm-aging,” describing the state of chronic low-
grade inflammation occurring in older organisms, has been 
proposed as a driver of age-related chronic disease includ-
ing CV disease and ischemic cardiomyopathy (CMP) [1]. 
Inflammation is highly prevalent across acute and chronic 
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HF, from reduced to preserved EF, as demonstrated in sev-
eral large cohorts [2–4]. Additionally, a broad range of 
biomarkers associated with vascular injury and inflamma-
tion in stable advanced HF patients awaiting heart trans-
plant were found to be significantly increased, remaining 
elevated after transplantation [5].

Biomarker profiles differ across the spectrum of EF. 
In a network meta-analysis of biomarker profiles in HF, 
Tromp and colleagues reported that HFrEF patients pre-
dominantly exhibited a “cardiac stretch” profile with bio-
markers related to cellular proliferation and metabolism 
[6]. However, most biomarkers associated with HFpEF 
were related to cardiac inflammation and patients showed 
a more heterogeneous range of biomarkers, much like their 
diverse clinical profiles. Patients with HF and mid-range 
ejection fraction (HFmrEF) showed an intermediary pro-
file with abnormal biomarker levels of both cardiac stretch 
and inflammation. It may be that while there is an under-
lying group of mechanisms that may be common across 
the EF range, the contribution of inflammation may be 
more specific and predominant at one end of the spectrum 
[7]. The inflammatory/pro-fibrotic paradigm describes 
one such group of mechanisms believed to drive disease 
pathogenesis in HFpEF [8]. Comorbidities such as obe-
sity, diabetes, hypertension, and/or chronic kidney disease 
promote systemic inflammation that leads to a sequence 
of events including abnormal laminin–titin interactions, 
cardiomyocyte expression of inducible nitric oxide, and 
failing unfolded protein response within the myocardium. 
This culminates in myocardial fibrosis, hypertrophy, high 
diastolic left ventricular stiffness, and clinical HF [9]. 
Identification of mechanisms unique to HF phenotypes, 
like the inflammatory/pro-fibrotic paradigm in HFpEF, 
may help better organize the HF syndrome phenotypes by 
the predominant underlying pathophysiology, slowly mov-
ing away from the current classification solely based on 
ejection fraction, while guiding the development of novel 
therapies targeting phenotype-specific mechanisms.

Selected biomarkers in the context of inflammation 
and heart failure

The contribution of systemic and local inflammation to 
the pathogenesis of HF has been previously reviewed 
and is beyond the scope of this manuscript [10, 11]. In 
this section, we will review biomarkers of inflammation 
(Fig. 1), assessing whether changes in these biomarkers 
reflect pathways that mediate changes in clinical status 
and modify prognosis. Additionally, we will comment on 
the link between established and novel biomarkers of HF 
and inflammatory pathways.

C‑reactive protein

CRP is an acute phase pro-inflammatory cytokine predomi-
nantly synthesized by hepatocytes in response to interleukin 
(IL)-6 signaling. It has emerged as a potential risk predictor 
of adverse outcomes in HF patients. In patients without HF 
or ischemic heart disease at baseline, Vasan et al. assessed 
the relationship between CRP and other markers of inflam-
mation and the incidence of HF events [12]. After adjust-
ing for traditional risk factors, subjects with baseline CRP 
levels ≥ 5 mg/dl had a 2.8-fold increased risk of HF events 
(p = 0.02). The elevation of other inflammatory markers in 
addition to CRP further increased this risk. Pellicori and col-
leagues performed a similar analysis in patients with chronic 
HF referred to a HF clinic [13]. Higher baseline levels of 
hs-CRP independently predicted greater all-cause and CV 
mortality, after adjusting for age, symptom severity, creati-
nine, NT-proBNP and, in the case of CV mortality, baseline 
ejection fraction. It is unclear if targeting inflammatory path-
ways that determine CRP levels improve clinical outcomes 
in HF patients, particularly when considering side effects of 
these therapies. Additionally, it remains to be determined if 
some of the benefits of established HF therapies are medi-
ated by reductions in CRP levels.

Uric acid

Uric acid has been recognized as a marker of systemic 
inflammation and as an adverse prognostic marker in HF 
[14, 15]. Hyperuricemia is also common, with a National 
Health and Nutrition Examination Survey reporting a preva-
lence in HF patients of up to 50% [16]. Hyperuricemia has 
been associated with elevated circulating levels of interleu-
kins and TNF-alpha [14]. Through several proposed mecha-
nisms, uric acid may also contribute to oxidative stress at the 
organ level. Hyperuricemia can up-regulate xanthine oxidase 
activity leading to increased generation of reactive oxygen 
species (ROS), which in turn contributes to cardiac hyper-
trophy and fibrosis [17].

Angiotensin‑converting enzyme 2 and renin–angiotensin–
aldosterone system biomarkers

Angiotensin II (Ang II) has pro-inflammatory and pro-
fibrotic properties and has been clearly implicated in the 
pathogenesis of HF, and Ang II levels may remain elevated 
despite optimal GDMT. Angiotensin-converting enzyme 2 
(ACE2) breaks down Ang II to angiotensin 1–7 (Ang 1–7) 
which exerts strong anti-inflammatory, antioxidant, anti-
fibrotic, and vasodilatory effects. Elevated Ang II levels in 
the face of optimal RAS blockade with ACE inhibitors is 
associated with mortality and HF [18]. Increased human 
plasma ACE2 activity is also associated with increased 
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HF severity and lower LVEF [19]. Wang and colleagues 
measured plasma angiotensin peptides in a diverse cohort of 
HF patients including clinic and emergency room patients 
with HFpEF and HFrEF that were followed for a median 
of 5.1 years [20]. In an adjusted multivariate analysis, Ang 
1–7/Ang II ratios above the median were an independent 
predictor of lower mortality and shorter duration of hospi-
talization. Individual levels of Ang 1–7 or Ang II did not 
have a prognostic significance, in what the study authors 
describe as a reflection of the dynamic state of the RAS and 
its detrimental effects increased Ang II without a balancing 
increase in Ang 1–7 levels. Aldosterone additionally con-
tributes to mechanistic pathways that promote HFrEF by 
modulating the effect of Ang II on plasminogen activator 

inhibitor-1, which in turn promotes oxidative stress and 
organ-level fibrosis.

Neutrophils

Neutrophils play an important role in the progression of 
CV diseases, including the mediation of tissue damage and 
cardiac remodeling [21]. In patients with advanced HF, 
the neutrophil-derived inflammation response at rest, after 
stimulation, and after attenuation by immunosuppressive 
agents have been investigated [22]. The isolation of neu-
trophils in these patients demonstrated a profound decrease 
in VEGF and Il-8 release after the use of pro-inflammatory 
agents, whereas IL-1RA was found to be elevated. Other 

Fig. 1   Established and Novel Biomarkers of Inflammation in Heart 
Failure. Ang angiotensin, BNP brain natriuretic peptide, CKD chronic 
kidney disease, CRP C-reactive protein, ESR erythrocyte sedimenta-
tion rate, GAL-3 galectin-3, HF heart failure, HFpEF heart failure 
with preserved ejection fraction, HFrEF heart failure with reduced 
ejection fraction, HHF heart failure hospitalization, IL interleukin, 

IL-1 RA interleukin-1 receptor antagonist, LVEDV left ventricular 
end-diastolic volume, MACE major adverse cardiac events, NLR neu-
trophil-to-leukocyte ratio, NP natriuretic peptide, sST2 soluble sup-
pression of tumorigenesis-2, STEMI ST-elevation myocardial infarc-
tion, CMP cardiomyopathy
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studies have investigated the relevance of the neutrophil-to-
leukocyte ratio (NLR) which has been shown to be strongly 
associated not only with HF and increased mortality but also 
with major CV events, HF hospitalizations, and chronic kid-
ney disease in elderly patients [23, 24]. In a secondary analy-
sis of the BIOSTAT-CHF study composed of patients with 
worsening or new-onset HF (HFrEF and HFpEF), baseline 
NLR was independently associated with the primary out-
come of time to all-cause mortality or HF hospitalization, 
irrespective of EF [25]. Consistent with the assumption that 
the NLR is a wide-available marker of inflammation, NLR 
was also strongly associated with other well-established 
inflammatory biomarkers including IL-6 and sST2, as well 
as NT-proBNP. Importantly, not only neutrophils but also 
leucocytes and eosinophils contribute through distinct 
inflammatory pathways to the pathogenesis of HF, such as 
seen with inflammatory cardiomyopathy syndromes [26]. 
The role of lymphocyte is discussed in more details in the 
diuretic and decongestant therapies section below. Despite 
the evidence that neutrophils play an important role in the 
pathogenesis of HF and their established association with 
HF severity and overall mortality in patients with different 
HF etiologies [27], therapies targeting neutrophils remain 
limited.

Natriuretic peptides

Natriuretic peptides (NP) including B-type natriuretic 
peptide (BNP) and N-terminal pro BNP (NT-proBNP) are 
typically considered neurohumoral biomarkers, although 
inflammation has been shown to be an independent trig-
ger of NP release [28]. In one cohort of participants, IL-6 
levels independently and positively correlated with NT-
proBNP levels after 4 years of follow-up. In another cohort 
of healthy individuals, administration of lipopolysaccharide, 
a pro-inflammatory stimulus, significantly increased median 
NT-proBNP levels. McKechnie et al. further explored this 
inter-relationship between inflammation and NP in a sec-
ondary analysis of the British Regional Heart Study where 
inflammation was associated with HF when adjusted for 
traditional risk factors [29]. However, additional adjust-
ment for NT-proBNP eliminated much of the relationship 
between inflammation, measured by IL-6 and CRP levels, 
and HF events in an older male population. The authors sug-
gest that NP may therefore explain much of the association 
between inflammation and HF events, with inflammation 
leading to subclinical ventricular dysfunction and compensa-
tory release of BNP/NT-proBNP. However, it remains to be 
established whether there is role for NP in tracking inflam-
mation in clinical practice where it may be more difficult to 
tease apart the various mechanisms that influence levels of 
this biomarker.

Inflammatory cytokines

The HF state is characterized by an imbalance between pro- 
and anti-inflammatory cytokines [30]. The predominance 
of pro-inflammatory cytokines has been correlated with 
increased severity of HF [31]. At the cellular level, these 
cytokines are mostly released by neutrophils and contribute 
to cardiomyocyte apoptosis and matrix metalloproteinase 
activation, leading to cardiac remodeling and alterations in 
heart function [32, 33]. Many pro- and anti-inflammatory 
cytokines have been shown to play a significant role in HF, 
notably IL-1, IL-6, IL-8, IL-18, IL-1RA, and IL-33.

IL-1β is an important pro-inflammatory cytokine regulat-
ing downstream factors in the immune response and promot-
ing the migration of leukocytes to site of tissue injury [34]. 
In the setting of HF, IL-1β has been implicated in adverse 
cardiac remodeling. In animal models, inhibition of IL-1β 
has been shown to suppress progression to overt HF [35]. 
In humans, regardless of etiology, IL-1β has been shown 
to be proportional to NYHA functional status [36]. Similar 
to IL-1, IL-18 activation necessitates the activation of the 
NLRP3 inflammasome and has been associated with higher 
risk of cardiovascular events and hospitalization for conges-
tive HF in post-myocardial infarct patients [37]. Another 
important pro-inflammatory cytokine found to be elevated 
in HF patients is IL-6. IL-6 has been independently asso-
ciated with HF hospitalization and death [38]. Within the 
general population, elevated IL-6 levels were also demon-
strated to independently predict the development of HFpEF 
[39]. Like IL-6, IL-8 levels are also elevated in patients 
with HF compared to healthy controls and associated with 
a worse clinical prognosis [27, 33, 40]. A member of the 
anti-inflammatory interleukin family, IL-1RA has also 
been found to be elevated in patients with HFrEF with or 
without diabetes compared to healthy controls [27]. Among 
anti-inflammatory cytokines, IL-33 has been found to be 
depressed in HF patients compared to healthy controls [34], 
and further down-regulated along with ST2-L in patients 
with decompensated HF awaiting LVAD support. Treatment 
with LVAD subsequently increased IL-33 and ST2-L cardiac 
expression, consistent with the proposed role this pathway 
plays in mechanical cardiac stress [41].

Soluble toll‑like receptor 2

Another biomarker with potential for future clinical use in 
the management of HF is the soluble suppression of tum-
origenesis (sST2), a member of the IL-1 receptor family 
[42]. Initially classified as a biomarker reflecting myocardial 
stress [43], sST2 is now recognized as a marker of inflamma-
tion and fibrosis, released in response to vascular congestion 
as well as inflammatory and pro-inflammatory stimuli [44]. 
At the cellular level, ST2-L, a trans-membrane receptor, 



713Inflammation in heart failure: pathophysiology and therapeutic strategies﻿	

binds to IL-33 which is activated after exposure to patho-
gens, injury-induced stress, and necrosis [45]. IL-33 binds 
to ST2-L and is proposed to possess cardioprotective proper-
ties including reducing apoptosis [46], as well as inhibiting 
Ang II and phenylephrine-induced cardiomyocyte fibrosis 
and hypertrophy [47]. The main clinical application of sST2 
in HF is outcome prediction, and its prognostication value 
is additive to NP [44, 45]. Increased incidence of HF and 
CV death is associated with higher concentrations of sST2, 
both in HFpEF and HFrEF [48, 49], and this association was 
found to be independent of standard CV risk factors as well 
as other markers of inflammation including CRP and NP 
[50]. In chronic HF, sST2 levels hold a stronger prognostic 
value than Gal-3 [51] which has in turn been reported to 
be more predictive of acute HF [52]. Aimo et al. reviewed 
the clinical and prognostic significance of sST2 in HF and 
outlined that, similar to NPs, sST2 measurements are accu-
rate and affordable allowing enhanced risk stratification in 
addition to usual clinical and biochemical evaluation of HF 
patients [44]. However, the optimal timing, measurement, 
and clinical use of sST2 level remain to be clarified.

Galectin‑3

Galectin-3 (GAL-3) is a member of the galectin family of 
lectins that bind cell surface and intra-cellular ligands and 
are involved in various intra-cellular signaling pathways 
[53]. GAL-3 was first identified as a potential biomarker 
of decompensated HF in an animal model by Sharma and 
colleagues [54]. The authors put forth that GAL-3 was 
directly involved in adverse cardiac remodeling and there-
fore a potential therapeutic target. Besler et al. studied the 
relationship between GAL-3, inflammation, and fibrosis, 
revealing contrasting correlations depending on the etiol-
ogy of CMP [55]. In endomyocardial biopsies obtained from 
patients with non-ischemic dilated CMP and inflammatory 
CMP, myocardial GAL-3 expression positively correlated 
with inflammatory cell count but negatively correlated with 
fibrosis in inflammatory CMP. Conversely, a positive corre-
lation between myocardial GAL-3 and fibrosis was observed 
in dilated CMP.

The potential for GAL-3 as a clinical biomarker has also 
been shown in a number of human studies. In a study of 
232 patients with NYHA class III or IV chronic HF, cir-
culating GAL-3 was an independent predictor of mortal-
ity during a 6.5-year follow-up period after adjusting for 
the severity of HF (determined by NT-proBNP levels) and 
kidney function [56]. In a subsequent study of this cohort, 
GAL-3 was also positively correlated with an increase in left 
ventricular end-diastolic volume in a multivariate analysis 
[57]. Another study compared multiple plasma biomarkers 
including GAL-3 and NT-proBNP in 209 patients diagnosed 
with acute HF [58]. While the natriuretic peptide remained 

the superior biomarker for diagnosing HF, GAL-3 was the 
strongest predictor of death and the composite of death and 
rehospitalization with HF. The rationale and evidence for 
the use of GAL-3 as a marker of inflammation/fibrosis and 
as a prognostic marker in acute and chronic HF are certainly 
compelling though larger studies are required.

Growth/differentiation factor 15

Growth/differentiation factor 15 (GDF-15) is a member of 
the transforming growth factor-β superfamily who plays an 
important role in cell proliferation and differentiation, as 
well as in tissue homeostasis [59]. GDF-15 concentrations 
may increase in response to inflammatory or hypoxic stim-
uli, oxidative stress, and tissue injury. Studies have shown 
the predictive role of GDF-15 across an array of CV dis-
eases, including an independent prognostic role in stable 
patients with chronic HFrEF [60–62]. Despite the finding 
that a 20% increase in GDF-15 levels was associated with a 
statistically significant higher risk of mortality and poor CV 
outcomes in the PARADIGM-HF study population, GDF-
15 levels were not affected by sacubitril–valsartan therapy 
[63]. The ability to predict poor CV outcomes was found to 
be independent of other biomarkers of significance in HF, 
namely, NT-proBNP and high-sensitivity troponins. The role 
of GDF-15 in HF patients needs to be better defined and 
additional studies would likely help identifying its potential 
use for the diagnosis and management of HF patients [64].

Clonal hematopoiesis of indeterminate significance

Clonal hematopoiesis of indeterminate potential (CHIP) is a 
hematologic disorder characterized by age-related acquisi-
tion of mutations in hematopoietic stem cells [65], leading 
to a clonal myeloid cell population that is associated with 
increased systemic inflammation [66]. The presence of CHIP 
is strongly associated with adverse cardiovascular outcomes, 
including incident HF [67] and increased death/HF hospi-
talization in patients with chronic HF [68]. Patients with 
cardiogenic shock also have a higher frequency of CHIP 
mutations compared to stable HF patients, a finding that is 
also associated with worse survival and a pro-inflammatory 
cytokine profile [69]. The association between CHIP muta-
tions and aberrant inflammatory cytokine profiles suggest 
that directed anti-inflammatory therapies may modify the 
observed effect of CHIP mutations on adverse cardiovascu-
lar and HF outcomes.

The anti‑inflammatory effects of guideline‑directed 
HF therapy

The established clinical benefits of guideline-directed med-
ical therapy (GDMT) in HF may in part be attributed to 
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the immunomodulatory role of these agents. Their effects 
on inflammatory markers and circulating inflammatory 
cytokines, as well as the potential impacts of these specific 
effects on prognosis and clinical outcomes will be discussed 
(Fig. 2).

Beta‑blocker therapy

While beta-blockers improve clinical status and LV function 
in the setting of HF and reduced ejection fraction, their anti-
inflammatory effects are less apparent. Reductions in levels 
of circulating inflammatory markers with beta-blockade 

have been inconsistent and limited to non-randomized 
studies or those with small sample sizes [33, 70]. In one 
meta-analysis of randomized controlled trials with carve-
dilol, Tatli et al. reported reductions in plasma TNF-alpha, 
IL-2 and IL-6 accompanied by improvements in EF and 
HF severity in patients with dilated cardiomyopathy [71]. 
Similarly, Krum et al. reported reductions in TNF-alpha and 
IL-6 with carvedilol compared to placebo in participants 
with ischemic and non-ischemic CMP [72]. Subsequently, 
Toyoda and colleagues compared bisoprolol with carvedilol 
in HF patients and reported reductions in hs-CRP and mark-
ers of oxidative stress in both study groups [73]. The reports 

Fig. 2   Therapies in Heart Failure and Inflammation. ACEI: angio-
tensin-converting enzyme inhibitor. ACS acute coronary syndrome, 
ARB angiotensin receptor blocker, ARNI angiotensin receptor nepri-
lysin inhibitor, CRP C-reactive protein, CV cardiovascular, GAL-3 
galectin-3, HF heart failure, HHF heart failure hospitalization, IFN 

interferon, IL interleukin, LVEF left ventricular ejection fraction, 
RAS renin–angiotensin system, SGLT2i sodium glucose transporter 
2 inhibitor, sST2 soluble suppression of tumorigenesis-2, TNF tumor 
necrosis factor
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outlined above were from single-center studies with small 
to medium sample sizes, and whether these changes in bio-
markers have been associated with a parallel improvement 
in LV function and /or a direct anti-inflammatory effect of 
beta-blocker therapy remains unknown.

The effects of beta-blockers on other biomarkers associ-
ated with surrogate markers of inflammation has also been 
described. Beta-blockers appear to increase or have neutral 
effects on NP in the short term, but consistently reduce NP 
in the longer term [74]. However, the degree to which these 
reductions are mediated by neurohumoral improvements 
versus anti-inflammatory effects has not been elucidated. 
Levels of sST2 and Gal-3 have been reported to modify the 
effects of beta-blockade on CV events and mortality events, 
though absolute number of events were small [75, 76]. With 
respect to the effect of changes in beta-blocker on sST2 lev-
els, Gaggin and colleagues described an increase in sST2 
levels after reduction in beta-blocker dosing [77]. In the 
same study, serial reductions in sST2 predicted a decrease 
in left ventricular end-diastolic index. The effect of beta-
blockers on Gal-3 levels over the course of therapy is less 
clear, with human and animal studies demonstrating mixed 
effects [78, 79].

Despite their positive effect on clinical status, myocardial 
function, and reverse remodeling, beta-blockers have been 
associated with modest changes, if any, on pro-inflammatory 
markers.

Angiotensin‑converting enzyme inhibitors and angiotensin 
receptor blockers

Through the blockade of angiotensin II which has pro-
inflammatory and pro-fibrotic properties, angiotensin-con-
verting inhibitors (ACEI) and angiotensin receptor blockers 
(ARB) reduce the production of ROS, pro-inflammatory 
cytokines, and adhesion molecules [80]. The therapeutic 
benefits of ACEI in patients with HF are likely pleiotropic 
and may in part be mediated through anti-inflammatory 
mechanisms. In a prospective observational study conducted 
in 507 patients with first-ever ischemic stroke, the use of 
ACEI was associated with a 2.6-fold decrease in median 
CRP levels and with a reduced 2-year CV risk [81]. These 
benefits were found to be independent of the lowering blood 
pressure effect of ACEI. In HFrEF patients, the addition of 
an ARB to ACEI and BB therapy was associated with a 
statistically significant decrease in hs-CRP and NT-proBNP 
at 6 months [82]. Also, the use of ACEI with high-dose 
enalapril in patients with congestive HF compared with 
healthy controls was associated with a statistically signifi-
cant decrease in IL-6 bioactivity [83]. Overall, both ACEI 
and ARB show evidence of anti-inflammatory properties 
through their pleiotropic properties with demonstrated ben-
efits in the HF population.

Angiotensin receptor neprilysin inhibitor

ARNI has also been described to harbor anti-inflammatory 
properties similar to ACEI and ARB. Goncalves et al. pro-
spectively compared CRP values before and six months after 
sacubitril–valsartan therapy in HF patients with reduced 
ejection fraction [84]. After 6 months of treatment, more 
than two-thirds of patients had a reduction in CRP levels 
with a statistically significant reduction compared to base-
line. Reductions in inflammatory cytokines with sacubi-
tril–valsartan therapy have, however, been limited to ani-
mal models [85], PARADIGM-HF was the landmark trial 
demonstrating efficacy with sacubitril–valsartan in HF and 
reduced ejection fraction. While Gal-3 was elevated at base-
line in PARADIGM-HF, there was no statistically significant 
difference between treatment groups with respect to changes 
in Gal-3 [86]. Baseline sST2 concentrations were found to 
have prognostic significance for the composite outcome of 
CV death or HF hospitalization for both treatment groups in 
PARADIGM-HF. Treatment with sacubitril–valsartan also 
led to a statistically significant decrease in sST2, a finding 
demonstrated in the PIONEER-HF trial as early as 1 week 
after randomization [87, 88]

These results suggest a significant effect of sacubitril–val-
sartan on subclinical inflammation, although its impact has 
been reported on a limited number of biomarkers. Never-
theless, the anti-inflammatory effect of sacubitril–valsartan 
appears marginal compared to other angiotensin modulating 
agents such as ACE inhibitors and ARB.

Mineralocorticoid receptor antagonists

Considering the role aldosterone plays in promoting cardiac 
inflammation and fibrosis, improvements in these deleteri-
ous pathways are believed to mediate the clinical benefits of 
MRAs in HF. This is supported by a secondary analysis of 
the EPHESUS trial suggesting that the survival benefits of 
eplerenone were independent of its diuretic and potassium-
sparing effects [89]. Specifically, MRA is proposed to reduce 
oxidative stress, decrease ACE activity, and increase ACE2 
activity along with Ang 1–7 [90].

Spironolactone has been shown to lower levels of NT-
proBNP and BNP in HF patients, but no effect on CRP or 
uric acid was observed [91, 92]. In HF patients, spironolac-
tone was found to decrease the production of TNF-α, IL-6, 
and INF-γ, which was found to be independent from its anti-
mineralocorticoid and anti-androgen activities [93]. With 
respect to new markers in HF such as sST2 and Gal-3, their 
prognostic effects appear to be intact and independent of 
concomitant MRA therapy [94]. In animal models of acute 
MI and LV systolic dysfunction, treatment with an MRA was 
shown to result in lower levels of Gal-3 and sST2 compared 
to controls, a finding that was also correlated with lower 
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expression of pro-inflammatory and fibrotic markers [95]. At 
least one study in participants with acute decompensated HF 
demonstrated reductions in sST2 with spironolactone within 
3 days of initiation compared to placebo [96].

In summary, the evidence for MRAs’ anti-inflammatory 
properties in the literature is mixed. While there is clear 
evidence that MRAs lower biomarkers of the RAAS system 
and inflammatory cytokines, the literature failed to report a 
decrease in other traditional markers of inflammation that 
are used clinically such as CRP and uric acid. Additionally, 
MRAs seem to decrease newer markers of inflammation in 
HF, namely, sST2 and Gal-3.

Sodium glucose cotransporter 2 (SGLT2) inhibitors

Some of the improvements in HF and kidney outcomes 
mediated by SGLT2 inhibition have been attributed to anti-
inflammatory pathways. Their systemic effects in addition 
to their hemodynamic benefits that have been previously 
described [97]. In a systematic review involving 23 het-
erogeneous studies with more than 1600 participants, 10 
of 12 studies that measured CRP demonstrated significant 
reductions associated with SGLT2 inhibition [98]. Improve-
ments in systemic and organ-level inflammation with SGLT2 
inhibitors have been proposed to occur via reductions in oxi-
dative stress, advanced glycolytic end products, ameliora-
tions in cytokine/chemokine profiles, and improvement in 
adipose tissue function, as reflected by changes in associated 
biomarkers.

SGLT2 inhibition has been shown to decrease ROS gen-
eration in human coronary arterial endothelial cells and 
to reduce myocardial ROS and cardiac fibrosis in diabetic 
mice [99]. Additionally, adipose tissue contributes to inflam-
mation through the release of adipokines including leptin, 
while reducing levels of the anti-inflammatory adipokine, 
adiponectin—these changes have been shown to be reversed 
after treatment with SGLT2 inhibition [100]. Beyond adi-
pokines, SGLT2 inhibitors have also been shown to have 
favorable effects on pro-inflammatory cytokines including 
IL-6, TNF-α, and IFN-γ in several studies [98].

Mechanisms involved with reductions in inflammation 
at the level of cardiac tissue are less clear. Improvements 
in oxidative stress associated with ischemia reperfusion 
injury is one proposed mechanism. The nucleotide-binding 
oligomerization domain, leucine-rich repeat, and pyrin 
domain-containing 3 (NLRP3) inflammasome are also 
believed to play a mechanistic role in the pathogenesis and 
severity of HF in animal and human studies [101] Subse-
quent studies using animal HF models (and models of other 
organ failure) have demonstrated decreased activation of 
NLRP3 independent of diabetes status, offering another 
potential mechanism for improving inflammation in HF 
with SGLT2 inhibition [102]. Reductions in myocardial wall 

stress accompanying improvements in overall volume status 
in the setting of HF are also hypothesized to reduce cardiac 
inflammation. Experimental models have also demonstrated 
that SGLT2 inhibition activates nutrient deprivation sign-
aling through the SIRT1/PGC-1α/ FGF21 pathway [103]. 
Activation of this pathway has been proposed to stimulate 
autophagy of cellular sources of oxidative and endoplasmic 
reticulum stress, alleviating a pro-inflammatory state and 
adverse cardiac remodeling [103].

Diuretics and decongestive therapies

Portal congestion in patients with HF has been associated 
with increased lymphocyte apoptosis from inflammatory 
cytokine release [104]. Congestion in the venous portal 
system also leads to bacterial endotoxin translocation from 
altered permeability of the gastrointestinal tract, which con-
tributes to the immune system activation in HF patients [104, 
105]. A low lymphocyte count ensues and lymphopenia in 
both acute and chronic HF has been associated with worse 
clinical outcomes [106, 107]. Additionally, lymphopenia has 
been associated with ultrasound surrogates of portal conges-
tion and right ventricular failure in patients with signs and 
symptoms of HF with NYHA functional class II-IV man-
aged with intravenous diuretic therapy [108]. While not 
strictly a GDMT, diuretics have been found to normalize 
concentrations of bacterial endotoxins and thus exert an indi-
rect anti-inflammatory effect by decreasing gut edema [104]. 
The loop diuretic furosemide has been found to reduce levels 
of some inflammatory biomarkers in a dose-dependent man-
ner, including TNF-α [109], IL-6, 8, and 10 [110]. Specifi-
cally in HF patients, furosemide has been shown to exert an 
anti-inflammatory effect by reducing TNF-α, IL-1β, and 6, 
in addition to natriuretic peptides [111]. The clinical sig-
nificance of diuretic mediated reductions in inflammatory 
markers is unclear considering obvious confounders such as 
comorbidities, disease stage and severity, hyperactivation of 
the RAAS, and concomitant use of GDMT.

Targeted anti‑inflammatory therapy in HF

Colchicine and urate lowering therapy

Colchicine has several anti-inflammatory properties due to 
its inhibitory effects on microtubule polymerization and sec-
ondarily on the inflammasome. Interest in its application in 
CV disease has risen with the publication of multiple clini-
cal trials over the last few years. Specifically, colchicine has 
been clearly demonstrated in two large, randomized trials 
(COLCOT and LoDoCo2) to be beneficial in reducing the 
risk of atherothrombotic CV events in patients with coronary 
artery disease [112, 113]. Post-acute myocardial infarction, 
reduced infarct size, and pro-inflammatory cytokine levels 
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were demonstrated in mice after a short-term treatment 
of colchicine post-permanent ligation of the left anterior 
coronary artery [114]. In this study, survival rate and left 
ventricular end-diastolic diameter were improved, with an 
associated reduction in natriuretic peptide expression. In 
contrast, the effect of colchicine in chronic HF was only 
studied in a small placebo-controlled study of 267 patients 
followed for 6 months [115]. Although CRP and IL-6 levels 
were significantly reduced after treatment with colchicine in 
HF, there were no differences observed with respect to the 
primary outcome of NYHA functional status. While inflam-
matory markers were significantly lowered with colchicine, 
they remained abnormal pointing toward incomplete inhibi-
tion of the inflammatory process. The role of colchicine in 
HF has therefore yet to be established [116]. The clinical 
impact of colchicine in patients with various phenotypes and 
severity of HF remains subject to further investigations. The 
COLpEF trial (NCT04857931) is one such planned study 
of colchicine in the patients with HFpEF, with a proposed 
outcomes including CRP, NT-proBNP, as well as changes in 
functional status and echocardiographic parameters.

As discussed above, elevated uric acid levels have 
been associated with worse prognosis in patients with HF, 
although studies assessing the effect of uric acid reduction 
with xanthine oxidase inhibitors such as the OPT-CHF [117] 
and EXACT-HF [118] trials failed to demonstrate any sig-
nificant clinical benefit of the chronic administration of 
allopurinol in these patients.

Therapies inhibiting cytokine pathways

Agents targeting inflammatory cytokine pathways have 
largely been studied in the context of preventing atheroscle-
rotic CV outcomes. Pertinent examples include the IL-1β 
inhibitor canakinumab in the CANTOS trial [119], low-
dose methotrexate in the CIRT trial [120], and comparing 
the vascular safety of the IL-6 inhibitor tocilizumab with 
the TNF-α inhibitor etanercept in the setting of rheumatoid 
arthritis in the ENTRACTE trial [121]. The TNF-α inhibitor 
infliximab was studied in a pilot placebo-controlled study 
(ATTACH Trial) of patients with moderate to severe HF 
for 28 weeks [122]. Despite reducing CRP and IL-6 levels, 
infliximab failed to improve clinical status and appeared to 
be associated with adverse events with the highest dose. 
Shortly after, the RENEWAL study examined the effect of 
the TNF-α inhibitor etanercept in HFrEF patients and failed 
to demonstrate any benefit on mortality or hospitalization 
for HF (HHF) [123]. The effect of the IL-1 beta inhibitor 
canakinumab on HF outcomes was studied in a prespecified 
secondary analysis of the CANTOS trial in participants with 
prior ACS and elevated hs-CRP [124]. In this exploratory 
analysis, canakinumab was noted to reduce HHF and the 
composite of HHF and HF mortality in a dose-dependent 

manner. The same pathway was targeted using the IL-1 
receptor antagonist anakinra in a series of smaller rand-
omized trials in HF patients [125]. In recently decompen-
sated HF, anakinra improved peak oxygen consumption 
(VO2 max) at 12 weeks compared to placebo [126]. Fur-
thermore, in patients with ST-elevation myocardial infarc-
tion (STEMI), 14-day treatment with anakinra reduced hs-
CRP levels as well as the incidence of new-onset HF or HF 
hospitalization at 1-year after the STEMI [127]. Longer and 
larger studies are required to examine the impact of anakinra 
on harder HF outcomes. Taken together, these exploratory 
studies do appear to suggest a beneficial role of some anti-
inflammatory therapies in HF, particularly those targeting 
interleukins proximal to the IL-6 cascade [128]. Indeed, 
ziltivekimab, a human monoclonal antibody against IL-6, 
has been shown in the RESCUE study to reduce high-sensi-
tivity CRP in participants at high atherosclerotic risk [129]. 
Its effects on CV, heart failure, and mortality outcomes in 
participants with HF and at high CV risk are being studied in 
the HERMES (NCT05636176) and ZEUS (NCT05021835) 
trials, respectively.

Non‑pharmacological interventions

Exercise

Several small studies have demonstrated the benefits of exer-
cise on systemic inflammation and larger population studies 
have shown an inverse relationship between physical activ-
ity and biomarker levels of systemic inflammation [130]. 
The current literature is limited in randomized controlled 
trials assessing the effect of exercise training on inflamma-
tion, especially in the HF population, and results drawn from 
those studies are often inconclusive. Exercise has also been 
shown to reduce circulating levels of biomarkers specifically 
in HF patients, including TNF-α, IL-6, and CRP [131]. On 
the contrary, a recent systematic review failed to demon-
strate any benefit on inflammatory biomarkers with exercise 
training in patients with congestive HF [132]. Interestingly, 
a single-center multi-arm controlled clinical trial comparing 
the effects of a 12-week aerobic exercise training program 
on functional capacity in patients with HF demonstrated that 
different inflammatory profiles (pro-inflammatory versus 
pro-fibrotic) respond differently to types of exercise training 
[133]. Future randomized controlled studies need to improve 
our understanding regarding the role and potential benefits 
of exercise training with respect to inflammation in the HF 
population.

Nutrition and microbiome interventions

Multiple studies have described altered gut microbiomes 
in patients with HF, a finding that may have prognostic 
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relevance and be amenable to therapeutic interventions 
[134]. One possible way the gut–heart axis affects HF out-
comes is through decreased mucosal integrity from intes-
tinal ischemia or edema—subsequent leakage of bacterial 
components has been hypothesized to contribute to systemic 
inflammation and worse outcomes [135]. Diet is one poten-
tial intervention that has been proposed to favorably alter 
gut microbiota in HF patients. In a cross-sectional analysis, 
Mayerhofer and colleagues reported that HF patients had 
lower bacterial biodiversity and a lower butyrate-producing 
capacity, integral to maintaining the gut–blood barrier. This 
finding was specifically associated with lower fiber intake, 
a modifiable risk factor [136]. The same group also studied 
modification of gut microbiota in HFrEF patients with Sac-
charomyces boulardii or rifaximin for three months on top of 
standard HF therapy [137]. However, neither therapy dem-
onstrated differences in gut microbial biodiversity, LVEF, 
or CRP. Given the compelling preclinical data describing 
the role of the gut–heart axis in HF, targeted studies in 
select HF population may be needed to explore therapeutic 
interventions.

HF and other conditions associated with inflammatory 
activation also tend to be associated with iron deficiency. 
Treatment of iron deficiency in HF populations has been 
demonstrated in clinical trials and meta-analyses to improve 
quality of life, rates of HF hospitalizations, and mortality 
[138]. FAIR-HF2 (NCT03036462) is an ongoing prospective 
trial designed to explore the effects on intravenous iron on 
HF hospitalizations and CV death.

Conclusion

Inflammation plays a significant role in the pathogenesis of 
the HF syndrome, with maladaptive responses within the 
innate and adaptive immune systems contributing to adverse 
cardiac remodeling, fibrosis, and perturbed vascular and 
extra-cardiac organ physiology. There are most likely mul-
tiple mechanisms involved that remain poorly understood. 
In this review, we highlighted key biomarkers in HF and 
how improvements in inflammatory pathways may mediate 
clinical benefits of existing GDMT for HF, as well as novel 
therapies in the pipeline targeting HF and inflammation. 
Biomarkers may also have a role to play in the identifica-
tion of patients that may benefit further from augmentation 
or optimization of HF therapy, an approach that may even-
tually guide future trial design and be incorporated into the 
classification of HF.
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