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For many drug targets, it has been shown that the kinetics of drug binding (e.g., on rate and off 

rate) is more predictive of drug efficacy than thermodynamic quantities alone. This motivates the 

development of predictive computational models that can be used to optimize compounds on the 

basis of their kinetics. The structural details underpinning these computational models are found 

not only in the bound state but also in the short-lived ligand binding transition states. Although 

transition states cannot be directly observed experimentally due to their extremely short lifetimes, 

recent successes have demonstrated that modeling the ligand binding transition state is possible 

with the help of enhanced sampling molecular dynamics methods. Previously, we generated 

unbinding paths for an inhibitor of soluble epoxide hydrolase (sEH) with a residence time of 11 

min. Here, we computationally modeled unbinding events with the weighted ensemble method 

REVO (resampling of ensembles by variation optimization) for five additional inhibitors of sEH 

with residence times ranging from 14.25 to 31.75 min, with average prediction accuracy within 

an order of magnitude. The unbinding ensembles are analyzed in detail, focusing on features of 

the ligand binding transition state ensembles (TSEs). We find that ligands with similar bound 

poses can show significant differences in their ligand binding TSEs, in terms of their spatial 

distribution and protein–ligand interactions. However, we also find similarities across the TSEs 

when examining more general features such as ligand degrees of freedom. Together these findings 

show significant challenges for rational, kinetics-based drug design.

Graphical Abstract

1. INTRODUCTION

Structure-based drug design (SBDD) has matured over the past few decades from a 

handful of success stories1–5 into a near-ubiquitous tool to guide the discovery and 

optimization of potential drug molecules.6 SBDD approach–sincluding docking- and AI-

assisted virtual screens,7,8 Molecular Mechanics Poisson–Boltzmann Surface Area (MM-

PBSA) methods,9 and free energy perturbation10,11—all utilize the knowledge of the 3D 

structure of a target protein and its probable binding site to design potential drug molecules 

by optimizing the binding free energy or approximations thereof. In principle, this provides 

an incomplete picture of the drug–target interaction; since the in vivo environment is far 

from thermodynamic equilibrium, the binding kinetics are also necessary to thoroughly 
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model drug efficacy.12–14 In practice, it has been shown that the residence tim–the average 

duration of a given drug–target binding event–can be the central feature related to drug 

efficacy in some systems,15 including soluble epoxide hydrolase (sEH),16,17 studied here. In 

contrast to the binding free energy, which is a path-independent state function relying only 

on the bound and unbound states, the unbinding rate constant depends on the details of the 

transition path ensemble of (un)binding events. Specifcally, it is related by the Arrhenius 

equation to the free energy of activation of the unbinding event, which is the difference in 

free energy of the bound state and the ligand binding transition state. Hence, to fully engage 

the tools of SBDD for kinetics-based rational design, we need to consider the molecular 

structures of both the bound state and the transition state.

This poses a monumental challenge because unlike ligand bound states, for which there 

are hundreds of thousands of available experimentally determined structures, there are no 

experimental observations of ligand binding transition state structures, due to their extremely 

short lifetimes. Ligand binding transition states are also challenging to model in silico. 

Although the transition state lifetimes are short, they are often at the top of extremely 

large energy barriers with mean first passage times (MFPTs) of unbinding events that 

range up to minutes or even hours in duration. This is 6–8 orders of magnitude beyond 

the current capabilities of even specialized supercomputers for molecular dynamics, which 

are still restricted to the μs to ms regime.18 Also, transition state ensembles (TSEs) for 

ligand binding are likely to be much more diverse than bound ensembles and are unable 

to be captured in a single structure. There is substantial possibility of a ligand unbinding 

from a protein using multiple pathways, and within each pathway, there are conformational 

fluctuations that change particular ligand–protein interactions.19–23 This requires not just 

generation of a single unbinding event but of a representative ensemble of unbinding 

events. Finally, even with an ensemble of (un)binding transition paths, identification of 

the TSE requires additional analysis techniques that calculate the unbinding committor 

probability24 for each conformation. The introduction of biasing forces in methods such 

as metadynamics25 and τ-random acceleration molecular dynamics26 introduces further 

uncertainty to the definition of the transition state, as biasing forces can change the 

underlying energy landscapes. Recent studies have sought to bypass explicit identification 

of the TSE by combining biased dynamics methods with machine learning approaches that 

can identify relevant structural features of the transition in a data-driven manner.27–30 While 

these could be promising approaches to predict rates for specific systems, it is difficult to 

extract direct structural insight into the TSE of the unbiased transition paths.

Here, we apply an alternative enhanced sampling method that can generate long-time scale 

ligand unbinding events without applying biasing forces. The weighted ensemble method31 

is a general framework for path sampling where an ensemble of trajectories, each with 

an associated statistical weight, is evolved forward together in time.32 Periodically, the 

ensemble of trajectories is “resampled”: the number copies of each trajectory are changed 

in order to better direct the computational effort toward a predefined objective,33 here, 

the generation of ligand unbinding events. We have previously shown that variants of the 

weighted ensemble algorithm34,35 can efficiently generate a thorough sampling of possible 

ligand unbinding transition paths.19,35–37 As these paths are all generated using the unbiased 

energy function, this provides us with the clearest window through which to examine 

Bose et al. Page 3

J Am Chem Soc. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



properties of the TSE. We analyze the resulting trajectory sets with Markov state models 

(MSMs)38–40 that are constructed using the trajectory weights from the Weighted Ensemble 

(WE) sampling method and are history-augmented (haMSM41) in that they only include 

trajectories originating from the bound state. This allows for quantitative predictions of 

ligand unbinding rate constants (koff) both through the MSMs and directly from the WE 

simulations.42–44

The target protein studied here is the enzyme sEH, which is present in mammalian 

tissues and metabolizes epoxy fatty acids (EpFAs) to their corresponding dihydroxy fatty 

acids.45 EpFAs are a novel class of lipid mediators that play critical roles in blood 

pressure regulation, inflammation, pain perception, and endoplasmic reticulum stress.46 

Epoxyeicosatrienoic acid (EET), one of the most studied EpFAs, is antihypertensive, anti-

inflammatory, analgesic, and neuroprotective.47 Inhibitors of sEH can raise EET levels and 

thus have been developed as potential treatments for these medical conditions.48,49 As it 

has been previously shown that the residence time is a key quantity for determining the 

efficacy of sEH inhibitors in these contexts,16,17 our long-term goal is the development of 

new molecules with longer sEH residence times.

The binding site of sEH is large and deeply buried inside the protein. The reference 

crystal structure (PDBID: 4OD0), which is used in our study, reveals that the large binding 

site of sEH is separated into two compartments by a center pinch, resulting from two 

flexible loops of the protein (Figure 1C). Previously we also used weighted ensemble 

simulation techniques to simulate the unbinding mechanism and estimate unbinding rates 

for 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl)-urea (TPPU), achieving a rough 

agreement with the experimental rate (42 s predicted vs 660 s experimental), and offering 

the first structural hints for the TSE.36 We found that while the TSE was structurally diverse, 

there were a small number of specific protein ligand interactions that could potentially 

be targeted for kinetic-driven SBDD. However, a key question remained: could we extend 

this information to give us insight into the transition states of other structurally related 

inhibitors? Put another way, how robust is the ligand binding transition state?

Here, we tackle this question using simulations of five sEH inhibitors that are 

structurally related to TPPU. Their inhibition constants and residence times were measured 

experimentally and directly compared to residence times from simulations. We developed 

broad models of the ligand binding energy landscape for each ligand by maximizing the 

average agreement with experimental residence times. The transition path ensembles are 

then identified, analyzed, and compared across the set of ligands, focusing on (1) spatial 

location, (2) ligand–protein interactions, and (3) internal ligand degrees of freedom. We then 

discuss the implications of these results for kinetics-driven SBDD.

2. METHODS

2.1. Soluble Epoxide Hydrolase Inhibitors.

The inhibitors studied here share a common piperidyl phenylurea scaffold with a few 

different functional groups at the open-ends of the scaffold. The N atom of the piperidine 

group connects to a secondary keto-alkyl group. On the other side of the scaffold, the phenyl 
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group has substitution in the meta and/or para position. Figure 1 describes the chemical 

structure of the inhibitor candidates. The inhibitor candidates (ligands 1, 2, 3, 4, and 5) are 

numbered without any particular order of significance.

2.2. Experimental Determination of Rates.

General information about the sourcing, synthesis, and characterization of the ligand 

compounds is given in Supplemental Methods. The measurement of unbinding rates (koff) 

for ligands 2–5 was previously reported.16,50 The unbinding rate for ligand 1 is reported 

here and was determined using the same FRET-displacement assay. The sEH enzyme (8 μM) 

was preincubated with the selected inhibitor (8.8 μM, 100 mM PB buffer, pH 7.4, 0.01% 

gelatin) for 1.5 h at room temperature. The sEH-inhibitor complex was diluted 40 times with 

ACPU (20 μM, 100 mM sodium phosphate buffer, pH 7.4, 0.01% gelatin). The fluorescence 

(λexcitation at 280 nm, λemission at 450 nm) intensity was monitored immediately every 30 

s up to 5100 s. The resulting λemission versus time curve was fitted to a single exponential 

growth equation to calculate the relative koff.

To prevent the leaching of fluorescence impurities from the plastic tube and loss of sEH 

inhibitors due to nonspecific binding, the inhibitor stock solution (10 mM, DMSO) was 

stored in glass vials. All buffer used in this assay was filtered with a sterilized filtration unit 

(Millipore Durapore PVDF Membrane, pore size: 0.22 μm). All the measurements for the 

FRET-based displacement assays in a 96-well plate format were done in a Biotek Synergy 

Neo Plate Reader. To prevent nonspecific binding of sEH or inhibitor on the 96-well plate, 

the 96-well plates were preincubated with PB buffer with 0.1% gelatin overnight at room 

temperature. The gelatin coats the plate and prevents the nonspecific binding of sEH and 

sEH inhibitors to the plate. The buffer was discarded, and the plate was dried before use.

2.3. System Preparation for Molecular Dynamics.

The bound pose of the inhibitors inside sEH was obtained by aligning the central scaffold 

of each inhibitor with the bound pose of TPPU in sEH from our previous study36 

and then minimizing with the CHARMM36 force field.51 This conserves the previously 

mentioned important bound pose interactions between the ligand and protein amino acids 

(Asp334, Tyr383, and Tyr466). The structure from PDB ID4OD0was used to generate 

initial conformations for all ligands examined here.16 The catalytic domain was isolated by 

selecting residues 231–547 and preserving the positions of associated water molecules in the 

crystal structure. The ligands were parametrized using CGenFF.52,53 We ensured that the key 

previously reported protein–ligand nonbonded interactions in the bound pose are conserved 

after alignment across all the ligands. A representation of the bound pose of one of the 

ligands (ligand 2) is provided in Figure 1C. The systems were solvated in TIP3 water up to 

a cutoff of 10 Å from the protein to the edge of the periodic box. The systems were then 

charge neutralized in slightly different ways across the ligand sets. Ligand 1 used 7 sodium 

atoms, ligands 2 and 3 used 7 potassium atoms, and ligands 4 and 5 added 17 potassium 

and 10 chlorine atoms to achieve an ionic strength of 150 mM. We do not expect that these 

differences had a significant impact on the kinetics or the transition paths.
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The OpenMM simulation engine54 was used for all of the minimization and dynamics steps 

in this work. CHARMM-GUI was used to generate the systems, as well as the scripts 

for minimization and heating.55 The system was energy minimized by using the Limited-

memory Broyden, Fletcher, Goldfarb, and Shanno (L-BFGS) algorithm with a maximum 

number of 5000 steps and an energy tolerance of 100 kcal/mol. The system was run at 

303.15 K for 1 ns using a 0.001 ps time step with harmonic positional restraints on the 

protein backbone (force constant 400 kJ/mol/nm2) and protein side chains (force constant 

40 kJ/mol/nm2). A force switch method was used to handle the nonbonded interactions 

with a switch-on distance of 10 Å and a switch-off distance of 12 Å. The particle mesh 

Ewald method was used to handle the electrostatic cutoff with an error tolerance of 0.0005. 

All covalent bonds with hydrogens were constrained. The protein restraints were then 

removed, and the system was equilibrated for 10 ns using a 0.002 ps time step. An isotropic 

Monte Carlo barostat was used to maintain a constant pressure of 1.0 bar with a pressure 

coupling frequency of 100 steps. The final structure was used to initialize subsequent 

weighted ensemble simulations, which used the same simulation conditions as the second 

equilibration step.

2.4. Generation of Ligand Unbinding Paths with the REVO Weighted Ensemble Method.

As mentioned above, weighted ensemble methods seek to shift the focus of the ensemble 

toward undersampled regions. It achieves this by “cloning” certain members of the 

ensemble, dividing the weight of the parent walker to be distributed evenly across the clones. 

Typically, trajectories are run with a stochastic integrator, such as a Langevin integrator, 

so that the clones diverge to explore independent paths as the simulation continues. To 

save computational expense, pairs of trajectories can also be “merged”. This typically 

occurs in oversampled regions of space near local or global free energy minima. When 

two trajectories A and B are merged, the resulting walker takes on the sum of the weights 

wA + wB  and adopts either the conformation of walker A (with probability wA/ wA + wB ) or 

walker B (with probability wB/ wA + wB ). The exact nature of this random choice is important 

to ensure that the expectation value of the flow of probability is zero between any two 

regions of space.56

The resampling of ensembles by variation optimization (REVO) algorithm is a particular 

implementation of the weighted ensemble that was designed to efficiently sample rare events 

while using an ensemble size that is as small as possible.35 It achieves this by using a fixed 

ensemble size (here, 48) and proposing coupled merging and cloning events that are either 

accepted or rejected. To decide whether to accept these events, it computes the value of an 

objective variable termed the “trajectory variation”, V :

V =
i j

dij
α

d0
ϕiϕj

both before and after the proposed events. This quantifies the variation between members 

of the trajectory set using a measurement of distance dij, which is discussed in the next 

paragraph. The constant d0 is a characteristic distance to make the variation unitless but does 
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not affect resampling outcomes. The function ϕi determines the importance of individual 

trajectories and is defined as a function of the walker weight: ϕ wi = log wi − log pmin/C , 

where pmin is a predefined minimum walker weight allowed in the simulation and C is a 

constant, set here to 100 following previous work.57–59 If the proposed cloning and merging 

event increases the value of V , then it is executed, and another coupled merging and cloning 

event is proposed. This continues until V  reaches a local maximum, at which point the 

ensemble is propagated forward in time by the molecular dynamics integrator. Here, a round 

of 20 ps of dynamics (10 000 MD steps with 0.002 ps of integrator timestep) for each 

trajectory followed by a round of resampling is called a “cycle”. For each ligand, we run 

between 5 and 6 independent runs, each containing at least 2000 cycles with an ensemble 

size of 48. We store the frames after each “cycle” for each walker. The ensemble size was 

chosen to be large enough to capture a diversity of snapshots along the ligand unbinding 

pathway while being as small as possible to enable extension of the runs as far as possible in 

time. For efficient implementation, an ensemble size that is divisible by the number of GPU 

cards on a node (in our case, 8) is also ideal. A summary of the number of cycles in each run 

is given in Table 1. In total, the results presented here combined 82.9 μs of the total sampling 

time.

The distance between trajectories dij  is calculated by aligning the binding site residues 

of the two trajectories and computing the rootmean-square (RMSD) distance between the 

ligand atoms. The set of binding site residues are defined as those within a cutoff of 5.0 

Å from the ligand in the equilibrated bound pose. This distance metric captures both (1) 

movements of the ligand with respect to the binding site and (2) movement of ligand internal 

degrees of freedom. By maximizing the variation with respect to this distance, we can 

enhance observations of not only one unbinding path but also a broad ensemble of ligand 

unbinding paths.

The simulations were run with recycling boundary conditions, where all trajectories 

originate in the bound state and are terminated when they cross into the unbound state, 

which at run time was defined as having at least 10 Å of clearance between the ligand 

and the protein. Trajectories that unbind are reinitialized in the bound state but keeping the 

same weight. In practice, these are quickly merged into other high-weight trajectories in the 

bound state by the resampling algorithm. The simulations were conducted using the Wepy 

software,60 which is a Python implementation of the REVO resampler.

2.5. Markov State Modeling and Transition State Definition.

An overview of the Markov state modeling workflow is given in Figure 2. Each frame 

of each trajectory is projected onto a set of features, which form the basis of the MSMs 

used to define the TSEs and calculate the unbinding rates. The features are a set of 336 

distances calculated between a set of 56 backbone atoms in the binding site from residues 

Phe267, Asp335, Trp336, Ile363, Phe381, Tyr383, Gln384, Phe387, Met419, Leu328, 

Tyr466, Val498, Leu499, and Met503 and six ligand atoms (as shown in Figure S1) for all 

the frames in each simulation trajectories. The ligand atoms were chosen along the common 

central scaffold to facilitate a comparison of features between ligands.
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For analyses where time-independent component analysis (tICA61,62) is used, we process 

the features into a Deeptime63 time-lagged data set object using the sliding_windows 

function from Wepy. The size of the time-lagged data sets ranges from 736 000 (ligand 

1) to 954 500 (ligand 3) data points, depending upon the total simulation time (Table 2). 

Separately for each ligand, we randomly choose a subset of 500 000 data points from the 

time-lagged data set members to train a tICA model, which is then used to transform the 

entire data set for that ligand. The reduced tICA variables are clustered into a number of 

states using the KMeans algorithm, and each frame of the trajectories is labeled with a 

cluster index. For analyses where tICA is not used, the complete set of feature vectors is 

used as the basis for clustering with KMeans.

In both cases, transition count matrices are built by counting the interstate transitions 

between two states across a lag time of 20 ps, again using the sliding_windows function 

from Wepy. Unless specified otherwise below, transitions contribute to the count matrix 

according to the weight of the trajectory at the end of the time interval. These are used to 

generate conformation space network (“CSN”) objects from the CSNAnalysis package.64 

For all clusters, we compute the average ligand RMSD to the initial reference structure. 

If this RMSD value is less than 2.5 Å, then the cluster is labeled as “bound”. We also 

compute the minimum distance dunb‐min between the ligand and the sEH binding site for each 

frame in the simulation. If any members of a cluster have dunb‐min > 5.0 Å, then the cluster 

is labeled as “unbound”. Note that this is a more relaxed definition than the minimum 

distance of 10 Å used during run time. We consider the dunb‐min > 5.0 Å to be more appropriate 

for describing unbinding rates that are measured by competitive binding assays, as it is 

more sensitive to whether the binding site has been vacated. Using these definitions of the 

bound and unbound basins, unbinding committor probabilities24 and the unbinding MFPTs 

are computed using the calc_committors and calc_mfpt functions of CSNAnalysis, 

respectively. The calc_mfpt function creates a first-passage time distribution at intervals of 

2iτ, where τ is the lag time of the underlying transition probability matrix and i is an integer 

that increases until 99.9% of the trajectory population has reached the unbound state. We 

then average over the first-passage times from the bound basin to unbound basin in the unit 

of lag times. Subsequently, multiplying this by the lag time provides us the MFPT for the 

bound to unbound state.

The committor probability is a quantity from the transition path theory that measures the 

likelihood of an intermediate state in a two-basin system of next visiting (or “committing 

to”) one basin versus the other. In a ligand unbinding system, these are the bound and 

unbound basins. All states outside of these basins have unbinding committor probabilities 

that range from ~0 for states that are very close to the bound basin to ~1 for states that are 

close to the unbound basin. TSEs were chosen by selecting all conformations belonging to 

clusters within a given committor range across an unbinding committor of 0.5.

2.6. Direct Rate Calculation.

In addition to the rates from the MSMs, we also directly calculate unbinding rates using the 

flux into the unbound state. The flux is simply calculated as the sum of the weights of the 

unbinding trajectories divided by the elapsed time.
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koff = ∑ i, t ∈ u wi, t
T

(2)

where U is the set of tuples denoting the trajectory indices i and the time points t where the 

unbinding events occurred, wi, t is the weight of the trajectory at that time point, and T  is the 

total elapsed time of the simulation. Equation 2 is also known as “Hill’s equation.”

For comparison, we also compute the fluxes corresponding to the more relaxed unbound 

state definition: dunb‐min > 5.0 Å, defined in Section 2.5. This is done by identifying the set 

of crossing points in the relaxed unbound state (U*). To mimic an absorbing boundary 

condition, we add crossing points starting from cycle 0 and only add a new crossing point if 

none of its predecessors have been added to U*.

3. RESULTS

3.1. Unbinding Pathways of Five sEH Ligands.

For each of the five ligands, we performed a set of weighted ensemble simulations with the 

REVO algorithm that starts from an equilibrated bound pose. We observed unbinding events 

for all five ligands that we simulated. In our study, a ligand is defined to be unbound from 

the protein when it has a minimum distance of 5 Å or more from the residues that make 

up the binding site (Figure S2). The number of unbinding events for each ligand along with 

the cumulative unbinding weights and simulation time are provided in Table 2. The number 

of cycles in each run varies, ranging from 2224 to 4000 (see Table 1), with all the ligands 

having achieved at least 14.7 μs of combined sampling.

Upon inspection of the unbinding trajectories for each ligand, we noticed that the ligand 

unbinding in sEH can be broadly divided into two categories: (i) Unbinding through the 

right side of the cavity and (ii) unbinding through the left side of the cavity of sEH. For 

ligands 1 and 5, all of their unbinding events occur through the right side of the cavity, 

whereas ligand 3 accesses the left side only during unbinding. Ligands 2 and 4 have at 

least one unbinding pathway on either side of the cavity. The right and left sides of the 

sEH cavity are highlighted in Figure S3, and exemplary unbinding trajectories through each 

cavity are shown in Figure S4. In a weighted ensemble simulation, the cavity specificity of 

a ligand should not be determined based on the mere existence of binding paths but should 

take into account the relative weights of the trajectories that exit through those pathways. 

For example, the weight fractions from Table 2 indicate that despite having at least one 

unbinding pathway through the right, ligand 4 will almost always preferentially unbind 

through the left cavity. In contrast, we find that ligand 2 has an almost equal probability of 

unbinding through either of the cavities.

Figure 3 shows the CSNs of all the ligands, where each node represents a particular cluster 

of ligand–protein conformations. These are obtained from the same transition probability 

matrices used to build MSMs, as described in Section 2.5. Each network shows 1200 nodes 

that are colored according to the ligand RMSD, with the dark blue clusters corresponding to 
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the bound states. The networks are oriented such that the left and right branches extending 

from the bound region in each network correspond to structures with the ligand occupying 

the left and right cavities. This reveals that although ligands 3 and 5 did not register full 

unbinding trajectories through the right and left cavities, respectively, we were able to 

sample trajectories that progressed along both directions. In contrast, ligand 1 only accesses 

the right side of the cavity and hence has no left branch.

The unbinding pathways with the highest weights contribute most strongly to the transition 

path ensemble. We present three snapshots from the highest-weighted unbinding pathways 

obtained for ligand 5 (right panels) and ligand 4 (left panels) in Figure 3. The snapshots 

at the bottom show the bound pose for both of the ligands. The middle snapshots on each 

side show vertical ligand poses inside the cavity, which is a characteristic feature for all 

unbinding pathways of all the ligands. The top snapshots are further along the pathway 

and show only sparse interactions with the outer surface of the protein. Additional sets of 

snapshots for ligands 1 and 2 are shown in Figure S5. Interestingly, ligand 3 has an equal 

unbinding probability in all four of its pathways. These unbinding events all originated from 

the same starting trajectory, sharing a common vertical pose as an unbinding intermediate 

(Figure S6).

We observe a slight correlation between the total weight of the unbinding trajectories and 

the number of unbinding events generated. Opposing this trend, ligand 5 showed the highest 

total unbinding weight but registered only four unbinding events. As trajectories within a 

run are interrelated through cloning and merging events in the weighted ensemble algorithm, 

not all of the unbinding events are independent observations. However, unbinding events 

between runs can be considered to be completely independent. For all ligands except for 

ligand 3, we obtained unbinding events from at least two runs.

3.2. Kinetics of Ligand Unbinding.

Rates of unbinding can be calculated either directly from the sum of the transition rates (eq 

2) or indirectly through the construction of a MSM. These can be compared with unbinding 

rates determined experimentally using a FRET-displacement assay, which correspond to 

MFPTs ranging from 14 to 32 min. We note that these MFPTs are at least tens of millions 

of times longer than the cumulative simulation times from our MD simulations. Despite this 

extreme difference of time scales, we are able to achieve RMSLEs of 2.3 for our direct rate 

calculations and 0.9 for our MSM results. The latter indicates an average agreement with 

experimental quantities that is within an order of magnitude. Values for experimental and 

computational MFPTs are summarized in Table 3, and log-scale RMSEs are shown in Figure 

4. It should be noted from Hill’s relation that the cumulative weight of unbinding events 

(Table 2, column 5) is related to the direct MFPT estimation (Table 3, column 3) in case 

we have the same amount of the total simulation time. However, the number of unbinding 

events does not have any correlation with the unbinding MFPTs.

The larger error in our direct rate calculations is primarily due to the inadequate sampling 

of exit points. In the direct rate calculation method, the rates are entirely dependent on the 

weights of the unbinding trajectories. Although we observe unbinding events for all the 

ligands, the number of these events is limited to only a handful (a range of 4–34) per ligand. 
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On the contrary, MSMs are not as susceptible to the sampling of the unbinding events, as 

they are built with all the simulation data and consider the nonreactive trajectories as well. 

Hence, trajectories far away from the bound pose that may not go on to unbind because of 

the finite length of the simulation will still contribute statistically in rates determined from 

the MSM.

While predicting the MFPTs, we have considered both (i) tICA-based MSMs and (ii) 

feature-distance-based MSMs. Figure 4A is a swarmplot showing MFPTs estimated from all 

MSMs constructed for each ligand. The experimental data and medians of the computational 

estimates are also plotted. The Root Mean Squared Log Error (RMSLE) between the 

experimental data and the computational medians is 0.97. We observe that the tICA-based 

models perform worse than the full feature distance clustered MSMs, particularly for ligand 

5. We discuss possible reasons for this in Section 4. We also calculated MFPTs from 

MSMs where the transitions in the counts matrix were not scaled by the weighted ensemble 

probability; rather, all transitions between microstates were given an equal weight of 1. 

As shown in Figure 4B, unweighted MSMs deviate from the MFPTs by over 8 orders 

of magnitude. This is due to a systematic underestimation of the MFPT, resulting from 

improper weighting of state-to-state transitions in the MSM.

Both types of weighted MSMs perform significantly better than the MFPT calculated from 

only the unbinding flux. The feature-distance-based MSMs (“no-TICA”) have an RMSLE 

of 0.93 averaged over all three different cluster numbers, while tICA-based MSMs have a 

higher average RMSLE of 1.63. In examining different numbers of clusters for the no-TICA 

MSMs, we find that 500, 800, and 1200 all have similarly low RMSLEs. We find no-TICA 

MSMs with 1200 clusters have the highest Spearman’s rank coefficient and Kendall’s rank 

coefficient (Table S1). MFPTs from these MSMs are shown in Table 3 as the “WE-MSM 

best model”.

To examine the sensitivity of the K-means algorithm to the amount of data used, we examine 

MFPTs resulting from randomly chosen subsets of the training data. These varied from 20% 

to 90% of the full feature set using the “WE-MSM best model.” We then constructed a 

transition matrix using the full data set in each case. We notice that the MFPTs obtained 

from the subsequent transition probability matrices do not vary significantly (Figure S7) in 

most cases, even though we use as small as 20% of the total feature data. For each ligand, 

at each percentage, we carry out five iterations to obtain a standard deviation and average of 

the estimates. This is an indication that the clustering algorithm is not sensitive toward the 

amount of the data used, although, as expected, the standard deviation of the five iterations 

increases as we decrease the size of the data set.

3.3. Robustness of Transition State Ensembles.

The structural determinants that underlie the unbinding rates are found in the TSEs for each 

ligand. We developed a workflow to isolate and characterize the TSEs from the weighted 

ensemble simulation data (Figure 2), which was guided by the kinetics results in Section 3.2. 

We use a MSM constructed using the complete set of distance features (e.g., no tICA) and 

1200 states, as it resulted in the best agreement with experimental unbinding rates. However, 

the number of states was not found to significantly impact the location of the TSE (Figure 
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S8). We also estimated the variance among the TSE ligand poses and their average RMSD to 

the bound state and observed that those structural parameters are similar across MSMs built 

with different numbers of microstates (Tables S2 and S3).

Density volume maps for all of the TSEs in sEH are illustrated in Figure 5. These TSEs 

were constructed using all trajectory frames that were assigned to a cluster with a committor 

probability in the range (0.3, 0.7). Figure 5 (bottom) shows the distribution of probabilities 

of these trajectory frames, which were computed using the equilibrium probabilities of 

the clusters computed from the MSM. Although the ligands share a common scaffold, the 

spatial densities of the TSEs show a significant variation. These densities are in accordance 

with the variety of unbinding pathways reported earlier for each ligand. Ligands 1 and 5 

have spatial density primarily on the right side of the cavity, and ligand 3 is mostly to the left 

side, while ligands 2 and 4 are distributed across both sides. The numbers of snapshots in 

the TSEs range from 140 to 5000. Higher numbers of snapshots indicate better sampling of 

transition paths, though not necessarily higher unbinding rates. We do not observe a strong 

relationship between the number of shapshots and the volume of the TSE density plots. 

This is expected as the TSEs are generated probabilistically using the MSM weights, and 

the density plots show only the regions of space with a probability density above a cutoff 

of 0.05 for all ligands. Generally, we find that the TSEs of all the ligands are structurally 

closer to the unbound ensemble compared to the bound ensemble. This can be observed in 

the probability distributions of ligand RMSDs within the bound, TS, and unbound ensembles 

(Figure S9). The heterogeneity in the TSEs can lead to a wide variety of specific sEH-ligand 

interactions, which we study next.

Figure 6A shows the protein residues with the most stable contacts with the ligand for the 

bound ensemble and the TSE. We define a contact to be present when the minimum distance 

for a residue–ligand pair is below 2.5 Å; the fraction of frames in which the contact is 

formed is shown as a heatmap. The cutoff is carefully chosen based on the maximum range 

of the H-bond (2.2 Å) and VdW (~3.0 Å) interatomic distances. For both the bound state 

and the transition state, we show all residues that have a probability of interaction greater 

than 5% for at least one of the ligands. The horizontal axis denotes the ligand IDs with the 

right cavity specific ligands (1, 2, and 5) positioned first followed by the left cavity specific 

ligands (3 and 4). For the TSE heatmap, the residues are arranged so as to move from 

residues in the left cavity (on top) to the middle region to the right cavity (on the bottom). 

In the bound ensemble, the protein–ligand interactions are largely consistent from one ligand 

to another, with binding site residues Tyr383 and Asp335 having the maximum probabilities 

of contact formation. The protein–ligand interactions are substantially more varied in the 

TS ensembles. The types of amino acids and atomic interactions also change considerably: 

we notice that nonpolar amino acids such as VAL(380, 500, 416), PRO(364, 379, 501), 

ILE(363), LEU(499), and PHE(497) are more highly represented in the TSE, in contrast to 

interactions with polar amino acids. This is quantified in Figure 6B, which shows protein–

ligand interactions based on the type of the amino acids, averaged over all the ligands. It is 

evident that—moving from the bound ensemble to the TSE—there is a significant increase 

(18%) in the interactions with nonpolar residues, which are predominantly hydrophobic 

interactions. Visual representations of some of the most probable contacts in ligands 1, 3, 

and 5 are provided in Figure 6C. These snapshots show the high ligand-to-ligand variation 
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in the specific interactions formed in the TSE as well as the predominance of hydrophobic 

interactions. Interestingly, although the specific interactions vary from ligand-to-ligand, the 

shift toward hydrophobic protein–ligand interactions in the TSE is consistent across the set 

of ligands examined here (Figure S10).

Irrespective of the cavity preference of the ligand unbinding TSEs, all ligands have 

substantial hydrophobic interactions with sEH. The nonpolar isopropyl group attached 

to the aryl end of ligand 1 has a higher hydrophobicity compared to mildly lipophilic 

–OCF3 or –CF3 counterparts connected to other ligands. Consistently, we find that this 

isopropyl group has stable hydrophobic interactions with sEH nonpolar residues such as 

Pro379 and Val380 (Figure 6A,C) in the ligand 1 TSE, while in other ligand TSEs, the 

piperidyl end primarily accounts for the protein–ligand hydrophobic interactions. Figure 

6C illustrates the interactions between the piperidyl end of ligands 3 and 5 with nonpolar 

residues such as Ile363, Leu499, and Pro501. Interestingly, we notice that protein–ligand 

interactions mediated by –OCF3 or –CF3 groups are not significant in the TSE. The 

probable consequences of these functional groups are discussed in detail in Section 4 from 

the perspective of rational kinetics driven drug discovery.

In the context of SBDD, it is also important to understand the changes in the ligand degrees 

of freedom along the transition pathway. For instance, differences in the orientation of a 

rotatable bond, i.e., dihedral angle, between the bound state and TSE could be exploited 

to destabilize transition states, leading to longer residence times. Here, we examine a set 

of eight common dihedral angles, and we measure their corresponding angular probability 

distributions in both the bound and TSEs. All the dihedrals are illustrated in Figure S11, 

with the four constituent atoms highlighted. Wasserstein distances are computed between the 

bound and TS probability distributions for each dihedral across all the ligands (Figure S12). 

This is a metric of dissimilarity between two histograms, with a higher value indicating 

a higher dissimilarity between the distributions. We find that the C1–N2–C2–C3 dihedral 

angle has the most significant dissimilarity in the bound and TS ensemble (Figure 7). This 

angle is more restricted in the bound ensemble due to steric effects for all of the ligands 

examined here. In the TSE, these distributions are substantially broadened (Figure 7B), 

showing a more heterogeneous ensemble of conformations. It is interesting to note that the 

variation in the dihedral in TSEs is unidirectional in nature; i.e., the lower bound of the angle 

decreases in the TSE compared to the bound ensemble. We plot the dihedral angle along the 

most probable unbinding pathway of ligand 1 in Figure 7C. The average value of the angle 

in the bound ensemble of this trajectory is ~ −70°, while in the TSE, the average dihedral 

angle is ~ −130°. Two representative conformations of the dihedral from the bound and 

TS ensemble are provided in Figure 7D. The differences between these distributions imply 

that making chemical changes that hinder or freeze this rotational degree of freedom could 

entropically destabilize the transition state (as well as the unbound state) with respect to the 

bound state.

4. CONCLUSION

MFPTs of pharmacologically relevant ligands often occur on time scales ranging up to hours 

in length. Although molecular dynamics can be a powerful tool to characterize biomolecular 
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processes and predict MFPTs, it is still a challenge even for state-of-the-art enhanced 

sampling methods to model long-time scale unbinding events with statistical significance. 

We have previously found that the enhanced sampling method used here (“REVO”) 

performs excellently for standard millisecond-time scale protein–ligand unbinding events 

such as trypsin-benzamidine. Unbinding transition rates for this system quickly and 

reproducably converged to within an order of magnitude of the experimental value.19,35 

The sEH-inhibitor systems studied here pose additional challenges, as the ligands are larger, 

with more rotatable bonds, and the sEH binding pocket is deeply buried, which requires a 

multistep unbinding process. These systems thus display significantly increased complexity 

and variety in the unbinding mechanism. In addition, the experimental values for these 

MFPTs are six orders of magnitude larger than the trypsin-benzamidine system. Here, 

using a combination of REVO and Markov state modeling, our RMSLE in the unbinding 

rate averaged 0.94, indicating that our average agreement with the experiment was also 

within an order of magnitude. This was much better than we originally anticipated given 

that our individual trajectories are only tens of nanoseconds in length. It should be noted 

that, following our previous works, we have used CHARMM3651 as our force field for 

the MD simulations and the CGenFF tool52,53 to generate ligand parameters. While it has 

been shown that ligand parameters such as torsion angles can have significant impacts on 

binding modes and mechanisms,65 investigating the effects of different force fields on the 

ligand (un)binding mechanisms examined here would incur a significant computational cost. 

More targeted ways to examine the impact of different force fields, perhaps by examining 

snapshots along transition pathways, would be an interesting direction for future work.

With a total of 82.9 μs of ligand unbinding REVO simulations, we obtain a handful 

of unbinding events for five pharmacologically relevant ligands from the sEH protein. 

Although the weights of these trajectories can be used to directly compute MFPTs using 

the Hill relation, the low number of trajectories results in a high uncertainty and increased 

RMSLE > 2 compared to experimental values. This is consistent with previous results on 

the sEH-TPPU system studied with the WExplore algorithm,34,36 where the MFPT (42 

s) underestimated the experimental value (660 s) by more than 15 times. As all of the 

underlying trajectories are generated without biasing forces, we can use them to build a 

history-augmented MSM (“haMSM”41) where all trajectories originate in the bound state. 

The rates calculated by these haMSMs are potentially more accurate and robust, as they take 

into account not only the small set of fully reactive trajectories but also all of the transitions 

from the nonreactive trajectories as well. Here, we find that the RMSLEs of MFPTs in the 

MSM-REVO scheme are significantly lower by more than an order of magnitude than the 

directly estimated MFPTs from the weights of reactive trajectories. An important note is that 

the trajectory weights from the REVO simulations were used to build the transition count 

matrix of the haMSM. This led to a dramatic reduction in the RMSLE and demonstrated the 

powerful synergy of weighted ensemble methods with Markov state modeling.

In the context of Markov state modeling, dimensionality reduction is particularly important 

to account for redundancy and noise in the features before they are clustered. For studying 

kinetic properties associated with slow dynamical motions in biological systems, tICA 

has been an excellent tool to identify important collective variables.66,67 When dimension 

reduction is carried out with 3, 5, or 10 time-lagged independent components, we notice 
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that tIC-1 separates the bound and unbound frames and tIC-2 distinguishes the cavity 

specificity consistently for all the ligands (Figure S13). However, the RMSLE in MFPTs 

obtained from haMSMs built with clustered tICA data is higher compared to that of its full 

feature space counterpart. Moreover, the variation of MFPTs obtained from tIC-clustered 

MSMs is much larger compared to the variation of MFPTs obtained from the full feature 

space MSMs (Figure 4A). Although we are unable to identify a particular reason behind 

the lower accuracy of MSMs with tICA components, it should be noted that our feature 

space itself (the set of ligand–protein distances) is carefully chosen to describe the ligand 

unbinding process. Hence, although our feature set was highly redundant, we found that 

the transformation into a smaller set of linearly independent components decreased the 

quality of the clustering, likely grouping together trajectories that were less similar in 

their unbinding committor values. Dimension reduction schemes, including tICA, but also 

machine learning approaches68 such as VAMPnets69 or RAVE70 could be more useful 

for more heterogeneous sets of input features, such as those that describe solvation, ion 

densities, distances, and ligand degrees of freedom. These approaches and their combination 

with weighted ensemble sampling algorithms are the subject of ongoing work.

The MFPT depends upon the bound to the transition state activation energy barrier. Hence, 

to engineer ligands with a higher residence time, one needs to understand how changes 

to the ligand will differentially affect the bound and TSEs. This can include both protein–

ligand molecular interactions and conformational changes of the ligand. The five ligands 

have identical aryl piperidyl-urea scaffolds, which may lead to the assumption that the 

transition states along the ligand unbinding pathways could be similar for these ligands. 

However, in our molecular simulations, we find many differences between the transition 

paths. We did not observe a connection between the path specificity and the MFPT; ligands 

with both shorter (ligand 1) and longer (ligand 2) MFPTs were found to unbind through 

the right-side transition path. The location of the transition state as well as the specific 

ligand–protein interactions formed varied considerably from ligand-to-ligand. However, we 

find a number of similarities in the TSEs that could be exploited for kinetic-driven drug 

design. Although not completely conserved, the most probable protein–ligand contacts in 

the TSEs show some common elements. Ligands 1, 2, and 5 unbind through the right side 

of the sEH cavity and have substantial contacts with Pro379, Val380, and Phe497, while 

the ligands preferring the left side of the cavity (3 and 4) have contacts with Pro364 and 

Met503. TSEs for all of the ligands show an increased extent of hydrophobic interactions, 

primarily through the piperidyl end of the ligands. However, ligand 1 has hydrophobic TSE 

interactions through the isopropyl group only in the aryl end only. For other ligands, the 

–OCF3 and –CF3 groups in the aryl end do not interact with the protein and hence do not 

add any extra stabilization to the TSE. From the perspective of rational kinetics-driven drug 

discovery, to increase the residence time, one can consider chemical changes to the ligand 

that destabilize favorable interactions in the TSE. The shift from isopropyl to –OCF3 or 

–CF3 groups could be seen in this context, where –OCF3 or –CF3 disrupt some favorable 

transition state interactions without destabilizing the bound ensemble, thus contributing 

to a longer residence time. Finally, the probability distributions along the C1–N2–C2–C3 

dihedral angle show a similar shift between the ligands. The broadening of the dihedral 
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distribution in the TS ensemble compared to the bound ensemble is unidirectional toward a 

more “anti”-like TSE structures.

These findings present a mixed outlook for kinetic-oriented drug design. On the one hand, 

the diversity of specific protein–ligand interactions formed in the TSE from ligand-to-ligand 

makes attempts to rationally modulate the strength of TSE interactions unfeasible. More 

rigorous attempts such as free energy perturbation calculations for entire ensembles of 

bound and transition state structures will likely also suffer from poor overlap of the TSEs 

between ligands. On the other hand, we have identified some structural properties of the 

TSEs that are consistent across all ligands examined here. The rotatable bond C1–N2–C2–

C3 is rigid in the bound ensemble but shows considerable fluctuation in the TSE. This 

suggests that restricting the rotation of this bond could stabilize the bound state with respect 

to the transition state, increasing the free energy barrier to dissociation.

A characteristic feature of the sEH binding pocket is a deeply buried binding cavity. As a 

result, ligand unbinding is hindered by multiple stable interactions along the pathway. The 

depth of the binding site in the cavity could increase the number of probable unbinding 

pathways, making it difficult to thoroughly sample the TSE. Moreover, contrary to intuition, 

we observe that even when the bound state ligand–protein contacts are completely broken, 

the ligands can still be far from committing to the unbound states. This results in TS 

ensembles for all the ligands that are closer to the unbound state on the surface of the 

protein. It remains to be seen whether TSEs from shallower protein–ligand interactions 

will have similar characteristics, in terms of solvent accessibility and conformational 

heterogeneity. It is possible that the TSE of a moiety unbinding from a protein with a 

shallower binding site can be more robust with a more focused set of unbinding pathways.
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Figure 1. 
sEH protein and its inhibitors: (A) 2D representation of sEH inhibitors; (B) the combined 

epoxide-phosphatase domain: the binding region is highlighted in red; (C) the Ligand2 

bound sEH protein with the two most interacting residues in the bound state.

Bose et al. Page 21

J Am Chem Soc. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
(A) The scheme of extracting TSE from weighted ensemble MD data with MSMs. (B) 

Visual representation of the interatomic ligand-binding site distance features for a ligand, 

which are later used to cluster the simulation data. The yellow spheres are ligand–atom 

representations, and blue spheres are the backbone atoms of the residues constituting the 

binding site. (C) All ligand conformations from a particular microstate after clustering 

all the frames based on distance features. (D) Microstates and their connectivity from a 

transition probability matrix. (E) CSN of ligand 4, with ligand RMSD being the scale of 

color. The densely populated bound state is shown in dark blue, and the sparsely connected 

unbound states are shown in yellow/red.
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Figure 3. 
CSNs of ligand unbinding from sEH in the scale of the ligand RMSD. The networks 

are arranged and oriented according to pathway specificity. Three frames from the most 

probable unbinding pathways are highlighted for ligand 4 (cavity specificity: left) and ligand 

5 (cavity specificity: right). The states corresponding to those frames are highlighted in the 

CSNs. In each panel, the ligands are shown in licorice while the amino acid residues within 

2.5 Å of the ligands are depicted in CPK representation, with the binding site Asp335 and 

Tyr383 highlighted in vdW representation.

Bose et al. Page 23

J Am Chem Soc. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
(A) Computational prediction of MFPTs for each ligand with all MSMs is plotted together 

as a swarmplot. The full feature space MSMs (black circles) perform better compared to 

tICA-based MSMs (red circles). The experimental data (green asterices) are plotted along 

with the medians of all computational estimates (blue boxes). The ligands are ordered in the 

ascending order of experimental residence times. (B) Comparison of the root mean squared 

log-10 error plotted for various MSMs (red, blue, and green) and direct estimates from 

WE weights (violet). The MSM using the full feature set has the lowest RMS log-10 error, 

while the unweighted MSM has the highest RMS log-10 error. The horizontal line marks an 

average error of 1 order of magnitude.

Bose et al. Page 24

J Am Chem Soc. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
(Top row) Density plots of the ligand unbinding TSEs: different ligands are plotted in 

different colors. The two binding site residues Asp335 and Tyr383 are shown in the licorice 

representation, while the overall binding region is highlighted by a red color. Each surface is 

plotted in VMD using the same density cutoff (“isovalue”) of 0.05. (Bottom row) Weights of 

conformations used to build the TS ensembles are plotted on a log-scale for each ligand. The 

horizontal axis shows the number of independent snapshots in the TSE. The vertical axis 

shows the log10 of the weight of that snapshot.
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Figure 6. 
Protein–ligand interactions in the ligand unbinding TS ensembles of sEH: (A) Heatmap of 

interaction probabilities in bound and TSE for the ligands; colorbar denotes the measure 

of probability. The ligands which unbind through the right side of the cavity (ligands 1, 2, 

and 5) are placed first in the horizontal axis, followed by the ligands unbinding through 

the left side of the cavity (ligands 3 and 4). (B) Pie chart describing the category of protein–

ligand interactions based on the type of the amino acids, averaged over all the ligands. (C) 

Representations of a few of the most probable interactions in TS ensembles for ligands 1, 3, 

and 5.
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Figure 7. 
(A) The atoms corresponding to the rotatable bond with the largest difference between the 

bound ensemble and the TSE are shown in the van der Waals representation, with other 

atoms in licorice representation. (B) Probability distributions of this angle are shown for 

each ligand in both the bound ensemble (top) and TSE (bottom). (C) The value of this 

dihedral angle is shown over the course of the most probable unbinding trajectory for ligand 

1. The black boxes indicate the frames corresponding to the bound (left) and TS (right) 

ensembles. (D) Representative snapshots of the bound (left) and TS (right) ensembles, 

showing the dihedral angle in the insets.
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Table 1.

Length of the REVO Simulations Run for Each Liganda

Lig. ID num. walkers run index num. cycles aggregated sampling (μs)

Lig1 48 0 2986 2.97

1 2751 2.64

2 2453 2.35

3 2224 2.13

4 2450 2.35

5 2470 2.37

Lig2 48 0 3257 3.13

1 3295 3.16

2 3274 3.14

3 3294 3.16

4 3275 3.14

Lig3 48 0 4000 3.84

1 4000 3.84

2 3885 3.73

3 4000 3.84

4 4000 3.84

Lig4 48 0 4000 3.84

1 4000 3.84

2 3414 3.28

3 2799 2.69

4 3518 3.38

Lig5 48 0 3400 3.26

1 3400 3.26

2 3400 3.26

3 3400 3.26

4 3400 3.26

a
The aggregated sampling is summed across all trajectories in a given run.
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Table 3.

MFPT (Residence Time, in Minutes) of Ligand Unbinding by Experimental Assay, Hill’s Equation, and 

Markov State Modelinga

expt. residence time comp. MFPT comp. MFPT comp. MFPT comp. MFPT

Lig. ID
(unbinding kinetics 

assay) (Hill’s eq., 5 Å cutoff) (Hill’s eq., 10 Å cutoff)
(WE-MSM, best 

model) (WE-MSM, median)

Lig1 14.25 723.44 1346.9 3.1 3.9

Lig2 31.75 21984.8 40971.1 227.1 27.5

Lig3 17.31 45952.9 45952.9 282.1 54.7

Lig4 27.14 864.1 1083.3 1.2 1.0

Lig5 25.37 1.87 12512.8 11.6 0.1

a
The “best model” for the WE-MSM uses the full feature set (without tICA) and 1200 clusters.

J Am Chem Soc. Author manuscript; available in PMC 2024 April 30.


	Abstract
	Graphical Abstract
	INTRODUCTION
	METHODS
	Soluble Epoxide Hydrolase Inhibitors.
	Experimental Determination of Rates.
	System Preparation for Molecular Dynamics.
	Generation of Ligand Unbinding Paths with the REVO Weighted Ensemble Method.
	Markov State Modeling and Transition State Definition.
	Direct Rate Calculation.

	RESULTS
	Unbinding Pathways of Five sEH Ligands.
	Kinetics of Ligand Unbinding.
	Robustness of Transition State Ensembles.

	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Figure 3.
	Figure 4.
	Figure 5.
	Figure 6.
	Figure 7.
	Table 1.
	Table 2.
	Table 3.

