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Abstract

Summarization models often generate text that is poorly calibrated to quality metrics because 

they are trained to maximize the likelihood of a single reference (MLE). To address this, 

recent work has added a calibration step, which exposes a model to its own ranked outputs 

to improve relevance or, in a separate line of work, contrasts positive and negative sets to 

improve faithfulness. While effective, much of this work has focused on how to generate and 

optimize these sets. Less is known about why one setup is more effective than another. In this 

work, we uncover the underlying characteristics of effective sets. For each training instance, we 

form a large, diverse pool of candidates and systematically vary the subsets used for calibration 

fine-tuning. Each selection strategy targets distinct aspects of the sets, such as lexical diversity 

or the size of the gap between positive and negatives. On three diverse scientific long-form 

summarization datasets (spanning biomedical, clinical, and chemical domains), we find, among 

others, that faithfulness calibration is optimal when the negative sets are extractive and more 

likely to be generated, whereas for relevance calibration, the metric margin between candidates 

should be maximized and surprise–the disagreement between model and metric defined candidate 

rankings–minimized. Code to create, select, and optimize calibration sets is available at https://

github.com/griff4692/calibrating-summaries.

1 Introduction

Traditionally, summarization models have been trained to maximize the likelihood of gold-

standard references. This training paradigm introduces an exposure bias because, during 

training, the model is not exposed to the metrics on which it is evaluated. Without being able 

to calibrate its own predictions with metrics, models are prone to produce summaries with 

irrelevant or repetitive content (Zhao et al., 2022), or misrepresent the claims in the source 

text (Cao et al., 2018; Maynez et al., 2020).
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Calibration offers a flexible and effective set of methods to remedy this exposure bias by 

explicitly instructing a model to distinguish between high and low quality summaries. By 

varying how candidate sets are constructed and optimized, an extra calibration step can 

unlock large gains in relevance (via ROUGE (Liu and Liu, 2021a; Liu et al., 2022)) or 

improve the faithfulness of summaries to the source (Nan et al., 2021b; Cao and Wang, 

2021a).

Yet, much of this work has addressed how—how to generate candidates (Cao and Wang, 

2021a) and how to define effective calibration objectives (Nan et al., 2021b; Zhao et al., 

2022). Work has largely been separated into relevance and faithfulness calibration, with less 

study of the interaction between the two. Relevance, often measured with ROUGE, captures 

the content overlap with a human-written reference, whereas faithfulness is typically 

reference-free, and captures the fidelity of a summary to the source text(s). In this paper, 

we examine both faithfulness and relevance as the target metrics for calibration and seek 

to uncover the underlying characteristics of effective calibration sets for each separately, 

as well as analyze the interactions between them. To accomplish this, we implement a 

diverse set of existing methods for constructing candidate and corrupted summaries and 

combine them to form a large candidate pool. From this pool, we implement different 

filtering strategies for set selection, which target specific characteristics, such as the metric 

margin between negatives and positives, diversity, and the model likelihood of generating 

each candidate in the set.

We run experiments that vary only in the training data selected for candidate sets. For 

each experiment, we extract a wide range of relevant statistics (e.g., diversity, length) on 

the candidate sets and show the relationship between these set statistics and downstream 

performance. To guide future research, we analyze the plots to provide insights into, and 

rationale for, optimal set construction.

Additionally, a large portion of research has focused on summarization of single-document 

news articles (Gehrmann et al., 2022; McKeown, 2020). We seek to broaden and pressure 

test recent advances in contrastive fine-tuning by experimenting on three long-form, 

scientific, highly specialized corpora in which metrics, e.g. faithfulness, are non-trivial 

to define, capture, and categorize. Also, long-form summarization is appealing for our 

calibration experiments given that memory is constrained. Even with training tricks, such as 

gradient accumulation and half precision, only a small handful of candidates per example (4 

in our experiments1) fit in memory. This makes the selection step more important compared 

to shorter tasks.

The primary contributions of this work are to: (1) benchmark calibration models on 

three scientific long-form datasets, including a new, chemistry-focused corpus, for which 

we collect fine-grained faithfulness annotations and relevance rankings from experts; (2) 
conduct extensive experiments to better understand the underlying characteristics and 

dynamics of effective calibration tuning sets. We release easily extensible code for forming 

and optimizing calibration sets in the scientific domain.

1Each experiment was run on a relatively large card with 40GB of GPU memory (the NVIDIA A100).
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2 Related Work

Typically, when summarization models are calibrated to quality metrics, this refers to 

contrastive learning to improve faithfulness. Contrastive learning for faithfulness has been 

applied to fine-tuning (Nan et al., 2021b; Tang et al., 2022; Cao and Wang, 2021a), post-hoc 

editing (Cao et al., 2020; Zhu et al., 2021), re-ranking (Chen et al., 2021), and evaluation 

(Kryscinski et al., 2020; Wu et al., 2020; Deng et al., 2021a). This line of research has 

largely focused on the methods used to generate synthetic errors for negative contrast sets: 

i.e., by directly mimicking errors observed during human evaluation (Tang et al., 2022), 

entity swapping (Cao and Wang, 2021a), language model infilling (Cao and Wang, 2021a), 

or using unfaithful system outputs (Nan et al., 2021b). Orthogonal to our work, Cao and 

Wang (2021a) assess the relative efficacy of a diverse set of corruption methods when used 

for contrastive fine-tuning for faithfulness.

For relevance calibration, models are typically calibrated to the ROUGE scores of their own 

outputs after an initial fine-tuning step (Liu and Liu, 2021b; Liu et al., 2022). Zhao et al. 

(2022) extend the work of Liu et al. (2022) and run a broad sweep of loss functions and 

candidate generation methods for two-step relevance calibration while establishing state of 

the art performance (ROUGE) across single document corpora. As opposed to contrasting 

positives and negatives in a latent space, these models are instructed to calibrate decoder 

likelihoods to ROUGE or BERTScore-defined rankings.

Our work is distinct along three key dimensions: (1) we consider long-document 

scientific summarization, rather than single-document; (2) we consider both faithfulness 

and relevance calibration and analyze the interactions between the two, often competing, 

quality objectives; (3) we uncover relationships between key set statistics and downstream 

performance by systematically varying how calibration sets are formed from candidate 

pools.

3 Datasets

Dataset statistics are shown in Table 1.

Clinical.

We use the long-form hospital course summarization dataset from Adams et al. (2022). 

Refer to Appendix A for details on this dataset.

Chemical.

We introduce a dataset with a pure chemistry focus by compiling a list of chemistry 

academic journals with Open-Access articles. For each journal, we downloaded full-text 

article PDFs from the Open-Access portion of the journal using available APIs, or scraping 

this content using Selenium Chrome WebDriver. Each PDF was processed with Grobid 

(Lopez, 2009) via a client to extract free-text paragraphs with sections. The inputs for the 

summarization models are section headers and associated paragraphs for all sections from 

Introduction through Conclusion, excluding references, tables, and image captions. The 

abstract is treated as the reference. While other scientific summarization datasets exist (Lu et 
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al., 2020; Gupta et al., 2021; DeYoung et al., 2021), ours is the first to exclusively contain 

chemistry-related papers.

Table 2 shows the journals from which Open Access articles were sourced, as well as the 

number of papers processed. For all journals, we filtered for papers with the provided topic 

of Chemistry when papers from other disciplines were also available (e.g. PubMed). We 

randomly split the aggregated dataset into train-validation-test splits.

The dataset is available for download on the HuggingFace Datasets Hub under griffin/

ChemSum.

Biomedical.

We use the PubMed abstract generation dataset (Cohan et al., 2018), which pairs 

automatically extracted abstracts with full-text articles from the PubMed Open-Access 

Subset.

4 Calibration Pipeline

At a high-level, we fine-tune (FT) language models with standard maximum likelihood 

estimation (MLE) on each summarization corpus, and then calibration-tune (CT) on a 

combined objective, which adds a calibration loss (CA) to the MLE loss:

ℒFT = ℒMLE
ℒCT = λMLE * ℒMLE + λCA * ℒCA

(1)

λMLE, λCA are scalars controlling the relative weight of objective. For ℒCT, ℒMLE acts as a 

regularizer, as in Liu et al. (2022); Zhao et al. (2022).

We describe the setup (objective, metrics, and candidate generation methods) for Relevance 

Calibration (§4.1) and Faithful Calibration (§4.2, before jointly discussing statistics on each 

setup (§4.3).

4.1 Relevance Calibration

As in (Liu et al., 2022; Zhao et al., 2022), we calibrate for relevance by learning to rank 

model-generated summaries (post-FT, pre-CT weights).

Objective.—Specifically, a set of model-generated summaries Ŝ is ranked: 

q Ŝi; S ≥ q Ŝj; S , ∀i, j ∈ Ŝ , i < j, where S is the reference and q represents RelAgg (defined 

below). A score function f is applied to each candidate and calibrated to the metric ranking 

via a pairwise margin:

max 0, f D, Ŝj − f D, Ŝi + j − i * λmargin ∀i, j ∈ Ŝ , i < j

(2)
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f represents for the length normalized log likelihood of generating a summary (Liu et al., 

2022).

Rank Metric.—To define a gold-standard ordering, we aggregate 3 relevance metrics 

which are normalized to be zero after fine-tuning FT. RelAgg, a combination of ROUGE 

1/2 F-1 (Lin, 2004) and BERTScore-Ref (Zhang et al., 2020b), represents the standard 

deviation change in the aggregated metric from FT. Full details are in Appendix D.

Candidates.—We fine-tune (FT) two state of the art long-document language models: 

LongT5 (Guo et al., 2022) and PRIMERA (Xiao et al., 2022), on each corpus before 

decoding 10 candidates with diverse beam search (Vijayakumar et al., 2016) with diversity 

penalty of 1.0, as in Liu et al. (2022).

4.2 Faithfulness Calibration

Objective.—As in Gunel et al. (2021); Khosla et al. (2020); Cao and Wang (2021a), we 

use contrastive learning to minimize the latent distance between pairs of positive summaries 

vis-a-vis negative ones:

− 1
ŜP

2
Ŝi, Ŝj ∈ ŜP

log exp sim ℎi, ℎj /τ
Ŝk ∈ ŜN exp sim ℎi, ℎk /τ

(3)

where τ is a temperature parameter. It pushes positive summaries closer to each in latent 

space (ℎi and ℎj) and further away from negatives ℎk . We follow Cao and Wang (2021a) 

and use cosine similarity as sim and treat ℎ as the mean-pooled decoder states, followed by a 

linear projection.

Faithfulness Metric.—Similar to RelAgg, we compute FaitℎAgg as an aggregation of 

normalized metrics. We combine BARTScore (Yuan et al., 2021), BERTScore-Src (vis-a-

vis source), and a new metric FactScore, which is based on a scientific fact detection model 

(MultiVERS (Wadden et al., 2022)). Full details are in Appendix D.

Negative Methods.—We use an in-domain LM (SciFive) to Mask-And-Fill 
hallucinations, as well as perform Entity Swaps of scientific concepts and numbers which 

separately target intrinsic and extrinsic hallucinations (Maynez et al., 2020). Please 

refer to Appendix B for more details.

Positive Methods.—We pool together the Reference with Paraphrased versions of it. 

General domain neural paraphrases performed poorly on scientific text. As such, we collect 

10 paraphrases from relevant domain experts (each an author of this paper), and incorporate 

them as few-shot demonstrations for paraphrase generation by GPT-3 (Brown et al., 2020). 

In Appendix C, we provide more details and show an example.
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4.3 Candidate Set Details

Table 3 displays the differences between candidate methods at a very basic level, as well 

as the particular models used for our experiments on long-form scientific summarization. 

In Table 4, we show the number of distinct candidates we produce for each example 

in the training set by each method / hyper-parameter combination. When calibrating for 

faithfulness, we select 4 out of 66 possible candidates (2 positive and 2 negative), and for 

relevance, we select 4 out of 20 possible candidates2.

5 Selection Strategies.

Problem Statement.

From a large candidate pool, select a target number to be used for CT (2 positives and 2 

negatives for faithfulness, and 4 for rank-based relevance). Figure 1 graphically reveals the 

different strategies implemented which are designed to target specific set characteristics. 

They do not represent optimal or recommended strategies, e.g., a minimum metric gap for 

faithfulness. In Appendix G, we hypothesize as to the specific nature and direction of the 

impact of the above characteristics on post-calibration summaries.

Random.

For random, for each training instance, we take a random sample without replacement.

Quality-Based.

For quality-based, we rank all candidates by RelAgg or FaitℎAgg. Then, we select candidates at 

different extremes of these scales.

Margin-Based.

For relevance ranking, we enumerate all possible subsets of size 4 and compute the average 

metric margin Avg RelAgg Ŝi, S − RelAgg Si + 1
ˆ , S , i ∈ Ŝ − 1. We implement both extremes: 

one which selects the set with the Max Margin, and its inverse, Min Margin. For 

faithfulness contrast sets, we either take the most faithful positives and least faithful 

negatives (Max Margin) or the inverse (Min Margin).

Diversity.

For relevance ranking, we also enumerate all possible subsets of 4 and rank them by their 

average pairwise inverse self-BLEU score (1 - self-BLEU). We either take the set which 

has the most Max or Min lexical diversity. We do the same for Faithfulness, except that 

candidates are selected separately among positive and negative subsets.

Likelihood.

For relevance ranking, we perform selections based on the model’s own beam order. We 

either take the Top Beams (4), Bottom Beams (4), or top 2 and bottom 2 – Extreme 

24 is the maximum number which fits in GPU memory on an A100 40GB card, even with a device batch size of one (with gradient 
accumulation steps) and half precision (fp16).
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Beams. For faithfulness, we compute the average token-level log likelihood of generating 

each candidate in the positive and negative sets after FT. Then we either take the most likely 

positives (2) and least likely negatives (2) or the least likely positives and the most likely 

negatives. For the former, the model is already well-calibrated, which we call Easy. For the 

latter, confidence and faithfulness are in conflict, which, in comparison, is Hard.

Spurious Correlates.

For relevance, we take the Shortest and Longest summaries. For faithfulness, we filter for 

the Max Extractive Gap–the most extractive positives and most abstractive negatives (as 

measured by the extractive density).

6 Results

Please refer to Appendix F for implementation details on FT and CT training and hyper-

parameters.

6.1 Fine-Tuning

Table 5 shows that PRIMERA outperforms LongT5 across faithfulness and relevance 

and across datasets3. Relevance and faithfulness are much higher for abstract generation 

(Chemical and Biomedical) than for clinical summarization, which has highly noisy 

references. Interestingly, the BARTScore results are lowest for the chemical dataset 

(−6.29/−6.36 versus −2.92/−2.88 and −3.77/−3.89). This underscores the difference in 

biomedical versus chemistry-specific papers because the BARTScore model used was 

trained on the PubMed dataset (google/pegasus–pubmed).

6.2 Calibration Tuning

In Tables 6 and 7, we report results for relevance, rank-based calibration (§4.1) and 

faithfulness contrastive learning (§4.2), respectively. RelAgg and FaitℎAgg are normalized 

such that positive values represent standard deviation improvements over fine-tuning, while 

negative results show a decrease in performance from calibration (marked in red).

In the following sections, we break down analysis into a tl;dr, evidence, explanation, and 

potential implications, or takeaways, for future research.

Appendix H details the impact of spurious correlates (i.e., length and extractiveness of 

candidates).

6.3 The Impact of Reference Quality

tl;dr.—Relevance and faithfulness calibration offer the most upside when references are 

noisy.

Evidence.—As detailed in Adams et al. (2022), clinical references are often unsupported 

by the source text. The average across strategies for both Tables 6 and 7 reveal the largest 

3We note that these our results from own runs. They do not represent results from the PRIMERA and LongT5 papers.
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relative improvement in RelAgg and FaitℎAgg for clinical, respectively (.211 / .237 versus .044 / 

.072 and .027 / .089 for chemical and biomedical abstracts).

Explanation.—For relevance calibration, it is likely that training on model outputs, 

especially highly extractive ones, dampens some of the noise from variable references. 

For faithfulness, the rationale is less clear because the reference (and paraphrases of it) 

form the positive set. Yet, there is an extensive body of work to suggest that training on 

unfaithful references leads to unfaithful outputs (Kang and Hashimoto, 2020), which might 

make calibrating for faithfulness more impactful.

Implications.—Calibration could be complementary to other methods which address noisy 

references, such as loss truncation (Kang and Hashimoto, 2020), data filtering (Narayan et 

al., 2021; Nan et al., 2021a), and reference revision (Wan and Bansal, 2022; Adams et al., 

2022).

6.4 Relevance and Faithfulness at Odds

tl;dr.—Relevance and faithfulness share an inverse relationship when calibrating for 

faithfulness. Research should focus on designing contrast sets that maximize their 

correlation for joint optimization.

Evidence.—In Figure 2, we plot RelAgg versus FaitℎAgg across experiments to measure the 

tradeoff between relevance and faithfulness. On average, improving faithfulness comes at 

the cost of relevance, yet the trend is not conclusive. This is validated by previous work 

which shows a decrease in relevance when models are trained to be more faithful (Filippova, 

2020; Narayan et al., 2021). Faithfulness and relevance appear to be positively related when 

calibrating for relevance. This might be a spurious correlation, however. Model summaries 

are more extractive than references for each dataset. Including highly extractive summaries 

as candidates for calibration, in turn, leads to to even more extractive models, as the 

extractive density of PRIMERA summaries rises from 3.1 / 9.2 / 13.0 after FT to an average 

of 3.5 / 11.4 / 14.0 for clinical / chemical / biomedical after a round of calibration.

To see if this relationship is meaningful, we conduct a human evaluation with trained 

chemists on a random sample of 25 papers from the chemistry test set. For each generated 

abstract, we ask annotators to separately highlight intrinsic and extrinsic errors, and then 

to rank each by relevance. We consider abstracts from 3 systems (75 abstracts): the 

Most Relevant system (according to RelAgg), from relevance calibration (Random), Most 

Faithful (according to FaitℎAgg) from faithfulness calibration (Likelihood – Hard), and 

the FT model.

On a small sample, Table 8 confirms what the metrics reveal: an inverse relationship 

between faithfulness (Int., Ext., Total error counts) and relevance (Rel. Rank). Most 

Faithful (according to FaitℎAgg) summaries contain the fewest annotated total errors (1.90 

versus 3.24 and 3.10) yet are ranked least relevant (average rank of 2.12 versus 2.04 and 

1.85). Most Relevant (according to metrics) achieves the highest relevance ranking from 

experts (1.85 versus 2.04 / 2.12) while slightly reducing the number of errors from FT : 
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3.10 versus 3.10. On average, there are more intrinsic errors versus extrinsic, which makes 

sense given how extractive the generated abstracts are. Most Relevant abstracts contain 

the highest average number of Extrinsic errors (1.43 versus 1.24 and 0.81), which could 

stem from the fact that abstracts, as naturally occurring summaries, may introduce external 

knowledge into the abstracts, for which the Most Relevant may be mimicking.

Please refer to Appendix I for more details on the annotation protocol and instructions.

Explanation.—From Table 10, while references, from a metric perspective, are perfectly 

relevant, the GPT-3 paraphrases are seen as slightly less relevant (0.9 / 0.94 / 0.92), on 

average, than the negative methods (0.94 / 0.97 / 0.97) in aggregate). This is likely a by-

product of the fact that the negative generation methods selected for this paper involve local 

corruptions to the reference. The meaning is changed but the word overlap is similar. The 

GPT-3 paraphrases are prompted with human paraphrases, which involve more substantial 

re-writing.

Implications.—Most calibration research is focused on either relevance or faithfulness. 

We advocate that more papers address them together, since both informativeness and 

faithfulness are important for real-world systems. Future research could explore joint 

calibration by intentionally introducing more errors into less relevant summaries.

As a quick proof of concept, we define a hybrid selection strategy which maximizes the 

rank correlation between AggRel and AggFaitℎ. Table 9 demonstrates that calibrating on these 

sets leads to positive (pareto) improvements for both metrics. The average improvement in 

combined metrics across datasets is .1, which is greater than an average of the strategies 

shown in Table 6 (.059).

6.5 On the Dual Role of Surprise

tl;dr.—Summaries in sets should be likely under the fine-tuned model. Yet, for relevance, 

this confidence should mostly already agree with the oracle ranking, while contrastive 

learning for faithfulness is most effective when the model is surprised.

Evidence.—For relevance, we look at the Likelihood section of Table 6 and note that, 

of all strategies, taking the top 4 beams is the most effective (an average of .128 across 

datasets). Taking the bottom beams is one of the worst (.062) and taking some from each 

lies in the middle (.106). For faithfulness, we examine the Likelihood section of Table 7 

and note that Hard is the best strategy, on average, across datasets (.179 for FaitℎAgg) and 

Easy is the worst (−.083). Hard selects negatives which are most likely under the model, 

which suggests that contrastive learning for faithfulness is most effective when the model 

is “surprised”, i.e., the negative summaries are as likely, if not more, to be generated as the 

positives.

Across all selection strategies and datasets, we can compute the pre-calibration, average 

likelihood gap between positives and negatives and regress it against the post-calibration 

FaitℎAgg (Figure 3). An inverse relationship emerges, especially for chemical dataset (a 

pearson correlation of −.91).
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We can run a similar analysis for relevance calibration by computing an average pre-

calibration score for each selected set, which we define as the negative spearman correlation 

coefficient between the model beam and the RelAgg ranking. It measures the extent to 

which the model is precalibrated from MLE FT. We plot this set statistic against the 

post-calibration AggRel score, as shown in Figure 4. The pearson correlation coefficient for 

the pre-calibration statistic to post-calibration relevance is .52, which is stronger than the 

correlation of average beam of candidates to relevance (.45).

We can also link the model’s ranking ability after calibration to the post-calibration 

relevance. In other words, does it matter how well the model can rank candidates given 

that, when used for inference, it generates a single candidate? Figure 5 shows that a well 

calibrated model is a better generator due to an inverse relationship between the predicted 

rank of the top ranked candidate (x-axis) and the average post-calibration RelAgg score 

(y-axis).

Taken together, the results suggest that an optimal rank set for relevance is one that is fairly 

calibrated before CT and well-calibrated after CT.

Explanation.—A possible explanation for this conflicting evidence is a difference in 

objectives. As in Liu et al. (2022), the relevance ordering is directly calibrated to log 

likelihood of outputs, whereas for faithfulness, we contrast binary positives and negatives in 

latent space. For the former, large parameter updates from the ranking loss directly affect 

the generation behavior of the model, which may push outputs further away from the MLE 

optimum.

Implications.—The results suggest it might be preferable to surprise for faithfulness 

calibration yet confirm for relevance calibration. Yet, further work is necessary to assess 

whether this behavior is attributable to the objective or the metric.

6.6 Margin over Absolute

tl;dr.—For relevance training, the presence of a large metric margin between candidate 

summaries appears to be more impactful to downstream performance than the overall 

relevance of the set.

Evidence.—Based on Table 6 for Quality Based Avg. Across Strategies, no clear-cut 

trend exists between RelAgg and absolute relevance values: .117/.024/.100/.098 for Extreme, 

Average, Min, and High, respectively. For Margin Based, which targets the relative 

values, Max outperforms .110 over .067. To better uncover any trends, we separately plot 

the average set relevance (absolute value), and the Margin Gap (relative values), against 

downstream RelAgg for each run (row in Table 6) in Figures 6 and 7. Figure 7 shows a positive 

correlation between margin gap and downstream RelAgg across datasets (pearson correlation 

of .48, .29, and .38 for clinical, chemical, and biomedical, respectively). The relationship 

in Figure 6 is less consistent, as it is positive for clinical (.12 correlation), yet negative for 

chemical (−.10) and biomedical (−.51). We connect margins to diversity in Appendix J.
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Implications.—Diversity may help calibration with increased exploration and smooth out 

some noise from ROUGE / BERTScore defined rankings. Although Zhao et al. (2022) find 

consistently better performance using regular beam search over diverse beam search, the 

opposite may hold true for longer tasks with larger output search spaces.

7 Conclusion

In this paper, we explore what makes an effective calibration set for both relevance and 

faithfulness tuning. To do so, we create large candidate pools for calibration and design 

strategies which systematically target set characterstics. We then analyze trends between 

these characteristics and downstream performance. Our analysis is intended to serve as a 

guide for subsequent research when designing methods to form synthetic candidates, as 

well as motivation to jointly consider relevance and faithfulness for calibration, given their 

covariance and the importance of both to real-world systems.

8 Limitations

As we cannot control for all confounding variables when examining the correlates of 

the most effective contrast sets, we only claim to identify trends, not causality, between 

calibration set characteristics and downstream performance. For instance, the top beams, 

on average, have higher relevance. As such, for each strategy, we record all key set 

characteristics and focus our analysis on observing trends between set characteristic values 

and downstream performance across all experiments, not simply within each Selection 

Type.

A: Clinical Dataset

As in Adams et al. (2021), references are extracted from the Brief Hospital Course section of 

discharge summaries from the publicly-available MIMIC-III dataset (Johnson et al., 2016), 

and the source text consists of all available notes written between admission and discharge 

regarding a single patient. It is a highly noisy, naturally occurring dataset, which we expect 

to present challenges for faithfulness.

B: Negative Methods

Negative Methods.

Mask-And-Fill involves masking portions of a reference summary, and using a pre-trained 

language model to fill in the blanks. It has been used for contrastive fine-tuning (Cao 

and Wang, 2021a), evaluation (Deng et al., 2021b), and fine-grained optimization of noisy 

references (Zhou et al., 2021). First, following Goyal and Durrett (2021); Lee et al. (2022), 

we identify all noun phrases4 as candidates for masking using Stanza’s constituency parser 

(Qi et al., 2020). Then, we sample a subset of non overlapping phrases to mask and generate 

replacements with SciFive (Phan et al., 2021). SciFive is a language model pre-trained on 

diverse biomedical tasks with T5-inspired (Raffel et al., 2020) prefixes. We perform a beam 

4’NP’ using the annotation scheme from the Penn Treebank (Marcus et al., 1993).
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search of size 4 to generate in-filled text for each spans and set the minimum generated 

tokens to be equal to the number of masked tokens to preserve length.

Hyper-Parameters of Significance:

the target token mask rate: m, which defines the percentage of noun phrases from the 

unmasked reference to mask. We vary m to measure the impact of corruption ‘intensity’ on 

the efficacy of contrastive fine-tuning.

For Entity swapping (Kryscinski et al., 2020), we replace reference entities and numbers 

with entities and numbers from the source text (intrinsic hallucinations) or the corpus 

(extrinsic). Please refer to Appendix B for more details.

Hyper-Parameters of Significance:

the swap rate: s, which defines the percentage of named entities and numbers in the 

reference, separately, to replace.

Entity and number swapping was initially proposed for faithfulness evaluation (FactCC 

(Kryscinski et al., 2020)) and has subsequently been used for contrastive fine-tuning (Tang 

et al., 2022) and post-hoc editing (Cao et al., 2020; Chen et al., 2021; Zhu et al., 2021), 

etc. For each corpora, we extract numbers with numbers with quantulum3. Separately for 

each corpora, we extract named entities relevant to each domain. For chemistry, we extract 

chemicals and other types5 with BERN2 (Kim et al., 2019). BERN2 is trained on PubMed 

articles to identify chemicals and diseases and link them to a unique identifier (CUI) in the 

Unified Medical Language System (UMLS) (Bodenreider, 2004). For the clinical corpus, 

we use the Stanza transformer model (Qi et al., 2020; Zhang et al., 2021) trained on the 

i2b2 corpus (Uzuner et al., 2011), which learns to identify patient problems, tests, and 

treatments. Finally, for biomedical, we use the Stanza model trained on the BioNLP13CG 

corpus (Pyysalo et al., 2015), which includes a diverse set of 13 categories.

To simulate intrinsic errors, we perform swaps at random with entities of the same semantic 

category from the source document. For extrinsic, we also restrict the swap to be from the 

same semantic category, yet sample from the entire corpus.

C: GPT-3 as a Paraphraser

Paraphrasing is typically done with synonym substitution (Zhou and Bhat, 2021), neural 

models (Goyal and Durrett, 2020) trained on paraphrase corpora (Wieting and Gimpel, 

2018; Zhang et al., 2019), or back-translation (Kryscinski et al., 2020; Fabbri et al., 2021a). 

Yet, these methods performed very poorly on our long scientific texts, likely due to highly 

specialized lexicons and lack of large-scale, domain-specific paraphrase corpora. In Figure 

8, we show an example prompt and sampled paraphrase from one-shot paraphrasing with 

GPT-3. A random sample of one annotation pair, as well as the abstract to be paraphrased, 

are then provided as prompts, which are both preceeded by a fixed instruction: Paraphrase 

this abstract. for abstract generation, and Paraphrase this Summary. for clinical 

5The list of types includes genes, diseases, species, mutations, cell lines, and cell types.
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summarization). We sample 1 due to token limits yet prompt sampling also increases 

diversity, as shown in Chintagunta et al. (2021).

A softmax temperature t of 0.7 is used to sample 5 unique outputs from GPT-3 (text–

davinci–002).

D: Evaluation Metrics

D. 1 Relevance

For BERTScore (Zhang et al., 2020b), we use allenai/scibert_scivocab_uncased weights and 

all default settings from HuggingFace (Wolf et al., 2020). We normalize by subtracting 

each metric by its mean and then dividing by the standard deviation to account for metrics 

with different scales. We use test set fine-tuning (FT) scores to compute mean and standard 

deviation so that RelAgg is 0 after FT and > 0 values are standard deviation improvements 

from calibration.

D. 2 Faithfulness

For BARTScore, we use a PEGASUS (Zhang et al., 2020a) model pretrained on the PubMed 

summarization corpus6 for the PubMed and Clinical datsets, and we use a Longformer 

Encoder-Decoder (Beltagy et al., 2020) trained on a more faithful, synthetic version of our 

clinical corpus from Adams et al. (2022). We report the average log-likelihood of each 

candidate summary S : 1
S ∑i ∈ S p si ∣ , sj < i, D . BARTScore and BERTScore are not explicitly 

trained to detect domain-specific errors. As such, we implement FactScore, which is based 

on the state of the art model (MultiVERS (Wadden et al., 2022)) trained on the SciFact 

scientific claims dataset (Wadden et al., 2020). SciFact is an expert-annotated dataset of 

1,409 sentence-level scientific claims. We first align each summary sentence to a handful of 

sentences (1–5) from the source document, following the greedy algorithm from Lebanoff et 

al. (2019). Then we score each sentence based on its alignment and average the SUPPORTED 

label prediction probabilities.

Figure 8: 

6google/pegasus–pubmed on the HuggingFace Transformers Hub (Wolf et al., 2020).
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An example prompt and paraphrase output from GPT-3. Words are changed but the meaning 

is preserved.

Table 10:

Statistics for each candidate generation method. Rel. stands for Relevance and is measured 

by BERTScore F1 overlap with the reference. Faith. stands for faithfulness and is measured 

by the FactScore (as defined in §4.2). Extract. stands for the extractive density (level of 

copy-and-paste) as defined by Grusky et al. (2018). The first 6 rows (Mask-And-Fill and 

Swaps) construct negative examples for faithfulness calibration. The next two rows form the 

positive candidate set for faithfulness. The last two (diverse beam) form candidates for 

relevance calibration.

Candidate 
Method

Clinical Chemical Biomedical

Rel. Faith. Extract. Rel. Faith. Extract. Rel. Faith. Extract.

Faith. 
Contrast

Mask-And-Fill 
(Low) 0.98 0.52 1.55 0.99 0.75 3.24 0.97 0.73 4.92

Mask-And-Fill 
(High) 0.97 0.52 1.44 0.97 0.73 2.90 0.95 0.71 4.05

Swap Intrinsic 
(Low) 0.94 0.52 1.64 0.97 0.70 2.92 0.98 0.71 4.70

Swap Intrinsic 
(High) 0.90 0.52 1.82 0.95 0.65 2.62 0.97 0.67 4.13

Swap Extrinsic 
(Low) 0.94 0.52 1.64 0.97 0.70 2.92 0.98 0.68 4.44

Swap Extrinsic 
(High) 0.90 0.52 1.82 0.95 0.65 2.62 0.97 0.64 3.79

Paraphrase 0.90 0.52 1.26 0.94 0.77 3.06 0.92 0.73 4.00

Reference 1.00 0.52 1.96 1.00 0.76 3.54 1.00 0.74 5.78

Rel. Diverse Beam 
(PRIMERA) 0.84 0.53 2.65 0.87 0.85 9.66 0.86 0.86 12.90

Rank Diverse Beam 
(LongT5) 0.83 0.52 2.06 0.86 0.83 7.46 0.85 0.82 8.39

E: Candidate Set Analysis (Ctd.)

The idea behind generating candidates with different methods and parameters is twofold: (1) 

to better understand which candidate generation methods work best on our task of interest: 

long-form scientific summarization, and (2) to end up with a diverse candidate pool, which 

allows us to effectively control for certain characteristics when selecting final subsets for 

calibration experiments.

In Table 10, we show statistics (relevance, faithfulness, and extractive density) for each 

candidate generation method across the three datasets.

Analysis.

As noted in Adams et al. (2022), the references for the clinical dataset are very abstractive 

(1.96 density) and unfaithful (0.52 FactScore), as compared to the chemical (3.54 / 0.76) 

and biomedical (5.78 / 0.74) data. The former is affected by missing clinical notes while the 
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latter references are abstracts, which should be mostly entailed by the claims made in the 

main paper. Interestingly, the reference is deemed less faithful than the model generations 

(0.52 vs 0.53/0.52, 0.76 vs 0.85/0.83, and 0.74 vs 0.86/0.82 for diverse beam search clinical, 

chemical, and biomedical). This likely has to do with the fact that the fine-tuned models 

(PRIMERA and LongT5) perform substantially more copy-and-pasting from the source 

input as the references (1.96 vs 2.65/2.06, 3.54 vs 9.66/7.46, and 5.78 vs 12.90/8.39, 

respectively).

The most unfaithful corruption method is Swap. When looking at (High) across Intrinsic 

and Extrinsic, its FactScores are 0.52/0.52, 0.65/0.65, and 0.67/0.64 versus 0.52, 0.73, 

0.71 for Mask-And-Fill (High), respectively. This likely has to do with an in-domain LM 

(SciFive) making reasonably well-informed replacements for noun phrases, whereas entity 

swapping is indiscriminate and random. The (High) parameter settings for Mask-And-Fill 

and Swap create less faithful candidates vis-a-vis the (Low) settings (0.75/0.70/0.70 versus 

0.73/0.65/0.65 for High and Low on Chemical, for example), as expected. Replacing more 

text from the references introduces more factual errors.

The PRIMERA model produces more extractive summaries with diverse beam search 

(2.65/9.66/12.90 vs 2.06/7.46/8.39), which are scored as more relevant and faithful than 

LongT5.

F: Training Details

F. 1 FT Training Details

We fine-tune (FT) two state of the art long-document summarization models for 50,000 

steps: PRIMERA (Xiao et al., 2022) (the backbone is a Longformer Encoder-Decoder 

(LED) (Beltagy et al., 2020) model) and LongT5 (Guo et al., 2022) (which incorporates 

the sparse attention of ETC (Ainslie et al., 2020) into PEGASUS (Zhang et al., 2020a)) 

on a single A100 40GB GPU with half precision (FP16)7) and a batch a size of 1 (with 

16 gradient accumulation steps). We set the maximum learning rate to 3e − 5 with 2,000 

warmup steps, followed by a linear decay. We set a maximum input sequence length of 

4,096 for both models8, and a maximum target length of 512 for training / inference for 

abstract generation (Chemical and Biomedical) and 256 for clinical summarization. Each 

fine-tuning (FT) experiment took ~ 3.5 days.

We select the better performing model (PRIMERA) as the model to be used for CT (See 

Table 5). As discussed in §4.1, LongT5 is still used to supply ten diverse summaries to the 

candidate pool for relevance calibration.

7Only for PRIMERA since LongT5 does not support half precision weights.
8Even though LongT5 has a maximum input sequence length of 16,384, we chose 4,096 to match PRIMERA and because of GPU 
memory constraints.
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Table 11:

Hyper-Parameters for calibration fine-tuning.

Parameter Clin Chem Bio

Relevance Ranking

λMLE 0.1 0.1 0.1

λCA 1.0 1.0 1.0

λmargin .001 .001 .001

α (length penalty) 1.0 2.0 2.0

τ (scale) .01 0.1 0.1

Faithful λMLE 1.0 1.0 1.0

Contrast λCA 1.0 10.0 1.0

F. 2 CT Training Details

We run calibration-tuning (CT) for a maximum of 10,000 steps and select the checkpoint 

which maximizes either RelAgg or FaitℎAgg (depending on the experiment) on the validation set 

in 1,000 step intervals.

We use the same hyper-parameters as FT  except the batch size is reduced from 16 to 8. 

Hyper-parameters related to the CT loss function were tuned separately for each dataset and 

quality metric (the values selected are shown in Table 11). Each CT experiment took ~ 1 day 

to train.

As in Guo et al. (2022), summaries are generated greedily, which we found to be 

significantly faster and even slightly outperformed beam search9.

G: Identifying Possible Correlates

We examine five basic aspects of calibration sets that should have some impact on 

downstream performance. For each aspect, we provide intuition and some related work 

to guess the nature of the impact, which we investigate empirically in §6.

G. 1 Overall Quality

Definition.

For the purposes of this analysis, for relevance-rank sets, we define quality as the average 

RelAgg score of the candidates.

Relevance Hypothesis.

For relevance, high-quality sets might be preferable to lower-quality sets for two reasons: 

(1) the model before calibration (pre-CT) has already been fine-tuned (post-FT) on the same 

9This also means that a length penalty cannot be applied during decoding, which puts more emphasis on the significant role of length 
tuning during relevance calibration.
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training data used for CT, so it likely already assigns a high-probability mass to summaries 

which are close to the reference. Candidate summaries which deviate too much should 

already have a low probability of being generated and thus not provide much of a learning 

signal. In some ways, this hypothesis is supported by Zhao et al. (2022) who find that 

using a model’s top beams produces consistently better results than diverse beam search 

or sampling-based methods (e.g., nucleus sampling (Holtzman et al., 2020)). There is an 

inherent tension between the calibration objective, which involves exploration, and the MLE, 

which assigns all probability mass to a single point.

G. 2 Margin

Overall quality covers average metric values, while margin covers within-set variation in 

quality.

Definition.

For relevance rank-based sets, we define the margin as the average relevance score between 

all adjacent pairs of ranked candidates: Avg RelAgg Si
ˆ , S − RelAgg Si + 1

ˆ , S , i ∈ Ŝ − 1. For 

faithfulness, we define it as the delta in average FaitℎAgg scores for summaries in the positive 

and negative contrast sets, respectively.

Relevance Hypothesis.

As noisy proxies for human judgments (Peyrard and Gurevych, 2018), subtle differences 

in relevance metrics (e.g, ROUGE and BERTScore) might not be meaningful. As such, we 

hypothesize that, all else equal, sets with larger metric gaps will provide a clearer training 

signal during calibration and superior downstream results.

Faithfulness Hypothesis.

Trivially, one would want positive candidates which are fully faithful. For negatives, it is 

less clear. The emphasis in the literature has been on producing negative summaries which 

mimic model errors (Goyal and Durrett, 2021). Yet, less is discussed about the intensity of 

errors. Lee et al. (2022) explore corruption intensity in the context of training a faithfulness 

evaluator, and the results suggest a concave relationship. Too few edits and the contrast sets 

are not easily separable, yet too dramatic, and the contrastive loss is ineffectual. We suspect 

a similar result for calibrating with a contrastive objective.

G. 3 Lexical Diversity

The previous calibration set characteristic (Margin) covered metric-based comparisons. In 

this section, we perform comparisons solely at the word-level.

Definition.

We define lexical diversity as the average pairwise self-BLEU score (Zhu et al., 2018; 

Alihosseini et al., 2019) between all candidates in a relevance ranking set and separately, for 

positives and negative subsets in a faithfulness contrast set.
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Relevance Hypothesis.

All else equal, high lexical diversity should improve the robustness of calibration models as 

it somewhat dampens some of the noise from single-reference MLE training10.

Faithfulness Hypothesis.

High lexical diversity within positive and negative sets should make the contrastive classifier 

less reliant on lexical overlap and focus more on the gap in faithfulness between positive 

and negatives. Lexical diversity likely means more coverage of error types, which has been 

shown to be beneficial for contrastive fine-tuning (Cao and Wang, 2021b; Adams et al., 

2022).

G. 4 Likelihood

This section covers a model-specific aspect of calibration sets: the likelihood of the 

candidate summaries under the model post-FT and pre-CT.

Definition.

For each candidate summary, we compute its length-normalized conditional log likelihood: 
1
L ∑l = 1

L logp sl ∣ D, S < l; θFT , where θFT denotes the model parameters after fine-tuning.

Relevance Hypothesis.

One would suspect that likely calibration sets are preferable to unlikely since there is little 

need to calibrate a model to candidate summaries it was never likely to generate.

Faithfulness Hypothesis.

In a similar vein, it makes sense that contrastive learning for faithulness will be most 

powerful when the model is most surprised. That is, the negatives are more likely to be 

generated than the positive. This relates to work by Goyal and Durrett (2021), who argue 

that negative sets should mimic observed errors.

G. 5 Spurious Correlates

Automatic evaluation metrics have a tendency to reward outputs with characteristics which 

are spuriously correlated to quality (Durmus et al., 2022).

Definitions.

While many possibilities exist (Durmus et al., 2022), for relevance, we focus on summary 

length, as defined by number of tokens. For faithfulness, we focus on extractiveness, which 

we measure with density (Grusky et al., 2018): the average squared length of extractive 

fragments. It approximates the level of copy-and-paste.

10We use the word somewhat because we acknowledge that relevance metrics measure overlap to a single reference, so introducing 
diverse calibration candidates does not necessarily encourage, or reward, more diverse outputs. Access to multiple references, or 
calibrating against human judgments, would better mitigate the single reference exposure bias problem.
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Relevance Hypothesis.

Sun et al. (2019) discover that ROUGE rewards longer summaries while humans prefer 

concise summaries. We hypothesize that exposing models to longer outputs during 

calibration will lead to longer summaries, which will have higher relevance scores. By 

controlling for calibration set length, we can better understand whether or not some of the 

gains from calibration simply come from length tuning11.

Faithfulness Hypothesis.

Ladhak et al. (2022) note that faithfulness metrics tend to prefer summaries with high levels 

of extraction, all else equal. Yet, Zhang et al. (2022) demonstrate that highly extractive does 

not always mean more faithful, so it is important to get a sense of how much faithfulness 

calibration is driven by more copy-and-paste.

H: Analysis of Spurious Correlates

Figure 9: 
Sentence-level faithfulness, as defined by FactScore in §4.2, declines as summaries grow 

longer.

11While length can be influenced during beam search with minimum/maximum length restrictions and length penalties, these 
measures do not expose a model to long summaries.
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H.1 The Outsized Role of Length

tl;dr.

The length of summaries is correlated with performance for both relevance and faithful 

calibration yet for different reasons. For relevance, it can help reduce discrepancies in token-

level length between references and generated summaries after fine-tuning. For faithfulness, 

generated summaries become less faithful as average length increases.

Evidence.

For relevance calibration, the Table 6 section on Spurious Correlates shows that 

selecting the longest summaries is preferable to the shortest for Clinical calibration (.255 

versus .181) yet the reverse is true for Biomedical (.017 for max length and .033 for min 

length). We can trace this to a gap, after fine-tuning, in model summary length and reference 

lengths. On average, PRIMERA summaries after FT are 119 tokens for clinical and 230 

for biomedical. Yet, the clinical references are, on average, 416 tokens and only 205 for 

biomedical. The optimal length strategy seems contingent on the direction of the length gap.

For faithfulness, we simply compute the correlation between FaitℎAgg and summary tokens: 

−.75. For faithfulness, we can confirm the presence of text degeneration (Holtzman et al., 

2020) as a function of output length by measuring the average FactScore at each sentence 

position in the summary. Figure 9 confirms this story, despite an initial slight increase up to 

the third sentence.

Implications.

For relevance, as argued by Sun et al. (2019), work should acknowledges changes in 

the lengths of summaries and address its role in impacting relevance metrics. Long-form 

summarization research which involves identifying and solving subproblems (Krishna et al., 

2021) might mitigate some of the length-based degeneration.

Table 12:

Correlation of faithfulness metrics to extractive density of summaries. Correlations 

computed on the test set of the PRIMERA models after fine-tuning.

Metric Clinical Chemical Biomedical

FactScore .78 .42 .42

BARTScore .35 .16 .45

BERTScore-Src .52 .47 .60

H.2 Faithful or More Extractive?

tl;dr.

One would expect that training on contrast sets with a large difference in extractiveness 

(extractive positives, abstractive negatives) would lead to higher downstream faithfulness. 

Yet, we find the opposite to be true, which we connect to §6.5.
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Evidence.

Ladhak et al. (2022) note a spurious correlation between the extractiveness of summaries 

and faithfulness metrics, which holds true for the metrics which make up FaitℎAgg (as shown 

in Table 12). One would expect that reinforcing this correlation via contrastive learning (by 

targeting extractive positives and abstractive negatives) would lead to improved faithfulness 

metrics. Yet, this does not appear to be the case. Table 7 (Spurious selection type) shows 

that on average, controlling for a large extractiveness gap does not improve faithfulness 

(.131 versus an overall average improvement of .133). If anything, it leads to increased 

relevance (.017 versus −.067). While not definitive, a possible driver for this relationship 

relates to the analysis in §6.5, for which we show that a low likelihood gap between 

positives and negatives is preferable (an adversarial setup). Since extractive summaries are 

more likely to be generated than abstractive ones (see Extractive density for Diverse Beam 

search in Table 10), extractive negatives might be preferable to abstractive ones.

Figure 10: 
Three abstracts generated from model checkpoints after Relevance Calibration (Summary 

1), Fine-Tuning (PRIMERA FT checkpoint, Summary 2), and after Faithfulness Calibration 

(Summary 3). Red Text has been annotated as being part of an intrinsic error while Purple 

Text is extrinsic. The annotator rated Summary 1 as the most relevant and Summary 3 the 

least relevant.

Implications.

Given the extractiveness of long-form scientific summaries, more research should focus on 

subtle faithfulness errors, i.e., those which are less correlated to extractiveness. Zhang et al. 

(2022) provide a helpful typology of errors in fully extractive systems, which can provide a 

blueprint for the design of more extractive synthetic errors.
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I: Human Evaluation Details

To better understand whether or not our calibration models are driving meaningful changes 

in quality, we conduct a human evaluation on the chemistry dataset. Specifically, we 

randomly select 50 papers from the test set and collect model generated abstracts from the 

FT checkpoint as well as most relevant (Random strategy) and most faithful (Hard strategy) 

CT weights. After randomly shuffling the order of abstracts, we ask each annotator (four 

authors of this paper with PhDs in chemistry-related fields) to first read the main paper and 

then, separately for each paper, highlight spans of abstracts containing errors (intrinsic or 

extrinsic), before ranking the summaries by Relevance (Fabbri et al., 2021b). We defined 

relevance as in SummEval: how well does the summary captures the key points of the paper? 
Consider whether all and only the important aspects are contained in the summary.. We 

collect fine-grained faithfulness annotations, rather than summary-level, due to the length 

of the summaries and prior work on interannotator agreement scores of fine-grained errors 

(Pagnoni et al., 2021; Goyal and Durrett, 2021).

I. 1 Error Analysis

In this section, we analyze the errors from an example in the human annotation set. The 

abstracts are shown in Figure 10.

Abstract 1 takes the general form of an abstract, providing a reasonable motivation for the 

work then listing a number of key findings. It makes a number of errors in stating the 

key findings, however. First, the model seems to have had difficulty with abbreviations and 

measured values, misreporting a binding constant and confusing GTP and ATP on several 

occasions. Finally, the model includes several statements not supported in the text. Abstract 

2 contains superior prose to Abstract 1, better enumerating the motivation for the work and 

providing a cleaner concluding statement. It suffers from similar shortcomings, however, 

confusing GTP and ATP on several occasions and making a number of unsupported claims. 

In some cases, the unsupported claims appear lifted whole-cloth from another publication. In 

total, we judge the errors in Abstract 2 to be more misleading than those made in Abstract 

1 and thus find Abstract 1 to be more relevant. Abstract 3 is substantially shorter than either 

Abstract 1 or Abstract 2, minimizing the absolute number of errors it contains. Like the 

others, it has difficulty with both abbreviations and measured values, making errors due 

to both. Overall, Abstract 3 is not terribly written; however, its terseness leaves a highly 

limited description of the paper’s contributions. For this reason, it is less relevant than either 

Abstract 1 or Abstract 2.

J: Connecting Metric Margins to Diversity

Larger margin gaps are related to diversity as lexically similar summaries will have similar 

metric values. In fact, we can examine the Diversity section of Table 6 and note that 

average RelAgg score across datasets is higher when lexical diversity is maximized (.114) 

than when it is minimized (.082). Yet, this trend only holds for the Chemical dataset. 

To get a more complete sense, we examine the impact of set diversity across runs and 

note a slightly more reassuring trend: a pearson correlation coefficient of .21, .51, and .1 
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for clinical, chemical, and biomedical. Interestingly, chemical has the strongest positive 

relationship between diversity and downstream relevance across runs, yet is negative when 

directly controlling for diversity.
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Figure 1: 
Strategies for selecting rank sets of size 4 from larger candidate pools for relevance 

calibration (top half). The bottom half shows similar strategies to form binary contrast sets 

(2 positive, 2 negative) for faithfulness. Each strategy for the top half of the Figure occupies 

a row in Table 6, while the bottom corresponds to rows in Table 7.
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Figure 2: 
A plot of average summary relevance and faithfulness across experiments, which are 

designed to either improve relevance (blue) or faithfulness (red).
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Figure 3: 
A plot comparing the average likelihood gap (difference in log likelihood of generating a 

positive candidate over a negative pre-calibration) against the average summary faithfulness 

after calibration.
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Figure 4: 
A plot which shows average pre-calibration score for each clinical relevance experiment on 

the x-axis, and the post-calibration relevance on the y-axis.
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Figure 5: 
A plot showing the impact of calibration performance on downstream performance 

(relevance). An average rank of 0 reveals a model which always identifies the most relevant 

summary. The worst score is 3.
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Figure 6: 
The impact of the average relevance of calibration candidates on downstream summary 

relevance.
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Figure 7: 
The impact of the average metric-wise margin RelAgg  between calibration candidates on the 

relevance of downstream model outputs after calibration.
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Table 1:

Statistics for long-form scientific summarization datasets. The biomedical dataset is from Cohan et al. (2018), 

the recipe to recreate the clinical from Adams et al. (2022), and the chemical from this work.

Statistic Clinical Chemical Bio.

Train Size 41,705 115,956 119,924

Validation Size 940 1,000 6,633

Test Size 1,861 2,000 6,658

Source Tokens 8,175 5,364 3,092

Reference Tokens 416 216 205

Extractive Coverage 0.66 0.90 0.88

Extractive Density 1.97 3.53 5.87

Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2024 April 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Adams et al. Page 37

Table 2:

Journals accessed for Chemical papers.

Source # Articles

Beilstein 1,829

Chem Cell 546

ChemRxiv 12,231

Chemistry Open 398

Nature Communications Chemistry 572

PubMed Author Manuscript 57,680

PubMed Open Access 29,540

Royal Society of Chemistry (RSC) 9,334

Scientific Reports - Nature 6,826
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Table 4:

# of candidates pooled for each training instance. m is % of noun phrases masked, s % of entities swapped, and 

t the softmax temperature for GPT-3.

Method Hyper-Param Number

Mask-And-Fill (Low) m = 0.25 10

Mask-And-Fill (High) m = 0.75 10

Swap Intrinsic (Low) s = 0.5 10

Swap Intrinsic (High) s = 1.0 10

Swap Extrinsic (Low) s = 0.5 10

Swap Extrinsic (High) s = 1.0 10

Paraphrase t = 0.7 5

Reference N/A 1

Total For Faithfulness 66

Diverse Beam (PRIMERA) p = 1 10

Diverse Beam (LongT5) p = 1 10

Total For Relevance 20
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Table 8:

Results from human evaluation on 75 total system summaries from the chemistry test set. Int. and Ext. stand 

for average intrinsic and extrinsic errors identified. Rel. Rank stands for the average rank assigned by 

annotators (1–3) with 1 being viewed as the most relevant.

System Int. Ext. Total Rel. Rank

FT 2.00 1.24 3.24 2.04

Most Relevant 1.67 1.43 3.10 1.85

Most Faithful 1.10 0.81 1.90 2.12
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Table 9:

Relevance CT by forming sets which maximize rank correlation between Rel. and Faith. scores improves mean 

combined (comb.) Rel. and Faith. scores vis-a-vis an average of the strategies shown in Table 6.

Average Strategy Max Correlation

Rel Faith Comb Rel Faith Comb

Clin. .211 .104 .158 .090 .325 .208

Chem. .044 −.040 .007 .040 .104 .158

Bio. .027 .001 .014 .018 .025 .022

Avg. .094 .022 .059 .049 .151 .100
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