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Abstract

The functionalities of proteins rely on protein conformational changes during many 

process. Identification of the protein conformations and capturing transitions among different 

conformations are important but extremely challenging in both experiments and simulations. 

In this work, we develop a machine learning based approach to identify a reaction coordinate 

that accelerates the exploration of protein conformational changes in molecular simulations. We 

implement our approach to study the conformational changes of human NTHL1 during DNA 

repair. Our results identified three distinct conformations: open (stable), closed (unstable), and 

bundle (stable). The existence of this bundle conformation can rationalize the recent experimental 

observations. Comparison with an NTHL1 mutant demonstrates that a closely packed cluster of 

positively charged residues in the linker could be a factor to search for in the genes encoding 

when screening for genetic abnormalities. Results will lead to better modulation of the DNA repair 

pathway to protect against carcinogenesis.
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As biological macromolecules age, they are subject to spontaneous decomposition and 

DNA is no exception. DNA can be damaged by hydrolysis, oxidation, and nonenzymatic 

methylation at significant rates in vivo, and the accumulation of the DNA decay may 

contribute to spontaneous mutagenesis and carcinogenesis1. Damaged DNA cannot be 

replaced and must therefore be repaired to remain intact2–3. In human cells, one such 

approach is base excision repair (BER) that actively removes non-bulky DNA lesions4–7. 

This approach has several basic steps, including lesion recognition, excision of the damaged 

nucleotide, and resynthesis using error-free DNA polymerases8–10. The BER pathway 

processes around 30,000 damaged base lesions per cell per day and defects in the pathway 

can lead to various diseases, including cancer11–12. Therefore, identifying the impact of 

BER proteins in disease progression is of paramount importance13.

DNA glycosylases recognize and remove the specific base damages to produce an apurinic/

apyrimidinic site. These molecules can thus be seen as the first barricade in the BER 

pathway for fending against cellular mutations that may lead to increased mutagenesis or 

genomic alterations14–15. Within this class of molecules, NTHL1 is a bifunctional DNA 

glycosylase that is important for the removal of oxidative pyrimidine damage16. The loss 

of NTHL1 can create high lifetime risks for adenomas and other types of tumors, such as 

colorectal cancer or adenomatous polyposis11, 17–19. It has been shown that some variants of 

NTHL1 have defective repair activities for BER20–21. Additionally, NTHL1 is upregulated 

in some cancers22 and when the balance between NTHL1 expression and other DNA repair 

pathways is upset, the dysregulation could impact cancer progression16, 23–24. Identifying 

mechanisms of how this protein functions and what mutations or inhibitors may impact its 

functions, can lead to improved modulation of the BER pathway.

Efforts to understand the functions of human NTHL1 have been hampered by a lack of 

available crystal structures that have only recently been discovered25. The structure of 

human NTHL1 shows similarities to its bacterial homologs26 with two globular helical 

domains: a six-helical bundle domain containing a helix-hairpin-helix DNA-binding motif, 

and a helical domain containing a [4FE-4S] cluster, referred to hereafter as the hairpin 

and cluster domains. During DNA binding in bacterial homologs, a lysine (K220) and 

aspartate (D239) in the hairpin domain and cluster domain, respectively, are involved in 

catalytic reactions with damaged DNA26. However, the human NTHL1 was crystallized in a 

significantly different conformation than other homologs26–27. Other homologs were found 

in a closed conformation where the distance between catalytic residues was around 5 Å 

while the human NTHL1 structure was captured in a novel open conformation with the 

catalytic residues at a distance of around 23 Å. The human NTHL1 needs to undergo large 

scale conformational changes in order for catalysis to occur and Carroll et al.25 discovered 

that a flexible linker (residues 110-125) between the two domains is necessary for this 

conformational change. When the flexible linker was substituted with a shorter sequence 

from a homolog EcoNth (residues 21-28), the mutated NTHL1 (NTHL1m) crystallized in 

a closed conformation and had reduced activity in lesion-containing DNA. Since the large 

scale interdomain rearrangements in NTHL1 are unprecedented and are necessary for proper 

functioning, insights into the molecular mechanisms could prove beneficial for identifying 

and mitigating possible NTHL1-related health risks.
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Experimental methods for investigating the dynamics of proteins can be expensive and 

resource intensive. Molecular Dynamics (MD) is an effective tool for investigating the 

underlying dynamics of proteins that cannot be captured in experiments. But traditional MD 

simulations cannot resolve many protein processes, occurring over timescales of hundreds 

of nanoseconds to even seconds. Enhanced sampling techniques have been developed to 

accelerate MD simulations by biasing the molecular system to reduce energy barriers along 

reaction pathways28–29. However, the identification of these reaction pathways – typically 

described in terms of a low-dimensional variable referred to as a reaction coordinate – 

can be difficult due to a chicken-and-egg problem: obtaining a useful reaction coordinate 

requires knowledge of the reaction pathway, but the reaction pathway can only be explored 

by accelerating sampling along the reaction coordinate. Machine learning can be leveraged 

to identify reaction coordinates30–33 but these machine learning methods often rely on the 

observation of the reaction before predicting a reaction coordinate, which can be impractical 

if there is a large ensemble of conformations or large energy barriers for the molecular 

system. Our recently developed approach Log-Probability Estimation via Invertible Neural 

Networks for Enhanced Sampling (LINES)34–35 circumvents this issue by learning the 

free energy surface (FES) based on molecular coordinates using a Normalizing Flow36–37 

machine learning model and then predicts reaction coordinates based on the FES gradients 

with respect to each molecular coordinate. LINES has foundations in local optimization 

methods, thus presenting an attractive alternative to other machine learning methods because 

LINES strives to predict reaction pathways before reactions completely occur, speeding up 

sampling in simulations and the convergence of reaction coordinate predictions.

In this work, we design and implement the LINES method to identify a reaction coordinate 

that can accelerate the sampling of complicated NTHL1 conformations during the DNA 

repair. An iterative process of running biased MD simulations to explore conformations, 

training a machine learning model to learn the FES, and then extracting a reaction 

coordinate is performed. The process will predict a reaction coordinate that describes and 

accelerates motions of the linker region and the two domains of NTHL1. Next, long biased 

MD simulations are run to explore the conformational spaces of NTHL1 and to identify 

a distinct “open”, “closed”, and “bundle” conformational state in the FES. The stability 

of these conformations is evaluated with unbiased MD simulation and finally the closed 

conformation is compared to the stable NTHL1m conformation to elucidate the importance 

of the linker region in NTHL1. The overall algorithm flow is depicted in Fig. 1, numerical 

details and simulation setup can be found in Supporting Information.

The first step for accelerating sampling of NTHL1 conformations is to identify a reaction 

coordinate using LINES. With (un)biased MD simulations of 60 ns and the normalizing flow 

model as described Method section, LINES converges to the reaction coordinate within just 

7 iterations of LINES. Fig. 2(a) shows the converged coefficients for all the molecular 

coordinates. As indicated in Figure S2, the reaction coordinate converges to > 95% 

similarity between iterations 5 and 6, but an additional iteration of LINES is run to ensure 

a consistent prediction. The converged reaction coordinate is able to improve the rate of 

sampling along reaction pathways, potentially between the open and closed conformations 

based on the cleft distance in Figure S3, demonstrating that LINES is able to identify and 

accelerate slow reactions involving the linker region of NTHL1. As shown in Fig. 2(a), 
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the important molecular coordinates in the reaction(s) are MC10 ≫ MC9 > MC1 > MC4. 

Inspection of the reference groups associated with these molecular coordinates reveals that 

MC10, MC9, and MC1 describe both linker-cluster and linker-hairpin domain interactions. 

These interactions stabilize the linker region in the “open” conformation identified by the 

crystal structure. The last molecular coordinate MC4 describes an interaction stabilizing the 

middle region of the linker near the center of the DNA-binding cleft of NTHL1.

With the predicted reaction coordinate, several long, biased MD simulations are run to 

obtain a FES. In these simulations, three simultaneous replicas are run for 600 ns each and 

all share the same biasing potential. The shared biasing potential accelerates the convergence 

of the biasing potential, leading to improved sampling. The 600 ns simulations prove 

sufficient in sampling based on comparisons of the FES predictions, as demonstrated in 

Figure S4. The converged FES, shown in Fig. 2(b), identifies 3 distinct conformations that 

are all separated by energy barriers of at least 3-5 kBT . In these energy basins, representative 

conformations from each cluster are randomly selected and shown in Fig. 2(c). A 

comparison of these conformations reveals that there is an open, closed, and “bundle” 

conformation. The open conformation, centered around a cleft distance of 39 Å and RC 

value of −2, has the lowest energy, showing consistency with the experimental structure 

of NTHL1 that was crystallized in an open conformation25. In the open conformation, the 

linker region is nestled between the cluster and hairpin domains of NTHL1. For the closed 

conformation, the catalytic residues are within 5 Å of each other and the linker region is 

no longer in the cleft between the two domains. In this conformation, the values of MC4
change significantly, showing the importance of this molecular coordinate. Intriguingly, our 

simulations also identified a stable “bundle” conformation, which was unexpected by us 

initially. Through the cluster domain rotation, helices in this domain collapse into the DNA-

binding cleft, leading to a structure very similar to the helical “bundles” with the linker 

region exposed to the solvent as illustrated in Fig. 2(c). In this conformation, the values of 

MC10, MC9, and MC1 have drastically changed, demonstrating that the reaction coordinate 

identified by LINES distinguishes between the open, bundle, and closed conformations. The 

relative free energy difference between the three energy basins and the open conformation 

are also calculated by integrating the FES as ΔFEo
i = kBT ∗ log ∬ exp − V bias

kBT dxdy ,38 to 

demonstrate the relative stability of each conformation.

To demonstrate how the reaction coordinate predicted by LINES can identify reaction 

pathways, another set of three simultaneous replica simulations are run for 600 ns and all 

share the same biasing potential computed with OPES. However, the biasing potential used 

in these simulations is a function of the root mean square deviation (RMSD) compared to 

the open and closed conformations. After 600 ns of simulations, no noticeable sampling 

of reaction pathways was revealed. The simulations are unable to sample alternative 

conformations besides the open conformation shown in Fig. 2(c) and cannot capture any 

energy barriers between conformations, as shown in Figure S5. This indicates that RMSD 

reaction coordinates cannot improve sampling, but the LINES-predicted reaction coordinate 

greatly accelerates simulations and leads to conformation exploration.
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The stabilities of each of the conformations in Fig. 2(c) were then evaluated with 100 

ns unbiased MD simulations. As shown in Fig. 2(d), the time evolution of the root-mean-

square-deviation (RMSD) of the Cα backbone atoms revealed that both the open and bundle 

conformations are stable while the closed conformation is unstable. Closer inspection of 

the trajectories reveals that the linker region in the open conformation, shown in Figure 

S6, is stabilized by a variety of polar and hydrophobic interactions. For example, Y119 

experiences hydrophobic interactions with V228 but also forms hydrogen bonds with E277; 

E116 forms salt bridges with R103, K106, and Q145. These interactions, illustrated in 

Figure S7, along with other interactions hold the linker in place throughout the duration 

of the 100 ns MD simulations. The bundle conformation, shown in Figure S8, removes 

the interactions of the linker region with the cluster and hairpin domains, and allows for 

strong interactions between the two domains to form directly. As illustrated in Figure S9, 

Q94 forms strong interactions with D144 and R155, R128 forms a salt bridge with E277, 

and hydrogen bonds occur between the backbone atoms of K105 and Y119. Attempts were 

made to create a stable closed conformation, such as applying backbone restraints to induce 

a similar conformation to NTHL1m and create stabilizing interactions identified by Carroll 

et al.25, or running multiple replicas, but no stable closed conformation has been achieved. 

The findings from our simulations are consistent with the experiments25, where the lowest 

energy conformation for human NTHL1 had been determined as the open rather than a 

closed conformation. It is possible that the presence of damaged DNA in the binding cleft 

would increase the stability of the closed conformation of NTHL1 and prevent a collapse of 

the cluster domain into the binding cleft.

Since the open and bundle conformations are very stable from our simulations, capturing 

the conformational transitions among open, closed, bundle or other conformations would 

be computationally infeasible. These conformations can be identified and accessed 

through enhanced sampling along a reaction coordinate predicted by our LINES method, 

demonstrating the power of the method for accelerating MD simulation.

In the experiments from Carroll et al.25, the wild type human NTHL1 was crystallized in 

an open conformation. However, mutating the linker region with a shorter sequence from 

a homologous structure into NTHL1m altered the dynamics of the enzyme, preventing 

an opening of the DNA binding cleft and causing the mutant to crystallize in the 

closed conformation. Similar to the unbiased MD simulations previously used to evaluate 

conformational stabilities, the NTHL1m conformation crystal structure was simulated for 

100 ns and compared to the wild type closed conformation obtained from the FES in Fig. 

2. As shown in Fig. 3(a), simulations started from very similar structures for both wild 

type and mutant NTHL1. After 100 ns, though, the wild type structure fails to stabilize, 

as indicated in Fig. 3(b), whereas the mutant structure is stabilized by the formation of 

salt bridges between D107m and E112m in the linker region with R289m and R148m in the 

cluster and hairpin domains, respectively.

Even though the wild type NTHL1 linker region contains the same residues needed for 

the salt bridge formation as the mutant, the wild type residues are dispersed over a longer 

segment of the linker. As a result, wild type NTHL1 does not create a dense positively 

charged region to attract the cluster and hairpin domains together that would otherwise cause 
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NTHL1 to favor the closed conformation. Attempts were made to artificially impose this 

salt bridge formation for the wild type NTHL1 by applying harmonic restraints between the 

linker residues D111 and E116 with R153 and R296 using PLUMED39. For the restraints, 

a spring constant of 20 kJ/mol was used and the target equilibrium distance was set to 8 

Å. The restrained system was simulated for 100 ns to ensure that the protein had reached 

an equilibrium, at which point the restraints were released. A subsequent 100 ns unbiased 

MD simulation revealed that imposing the restraints to create a salt bridge caused the 

flexible linker region to interact with the DNA binding cleft, and drove the NTHL1 system 

towards the open conformation where the catalytic residue distance was 15 Å, as shown in 

Figure S10. Our results indicate that genetic mutations of NTHL1 that create closely packed 

clusters of positively charged residues in the linker would likely shift the equilibrium from 

the open to the closed conformation and decrease the effectiveness of NTHL1 for identifying 

damaged DNA bases and initiating the BER pathway.

To determine if there are any other conformations in NTHL1m, a machine learning analysis 

analogous to the wild type NTHL1 is performed. The molecular coordinates and reaction 

coordinate coefficients are shown in Figure S11(a–c). The molecular coordinates were 

created from an analogous subset of the molecular coordinates used in the wild type NTHL1 

analysis. For example, the preserved residues in the mutated linker region T111m, E112m, 

and S116m are also present in the wild type NTHL1 structure as T115, E116, and S121. 

Since some of the reference groups in the wild type NTHL1 are not present in NTHL1m, the 

number of molecular coordinates is reduced from 14 to 8. The LINES simulations converge 

very rapidly and show >95% similarity across 5 iterations of LINES, as shown in Figure 

S11(d). A set of three replica simulations with an OPES bias potential is also performed, 

with the resulting FES from 600 ns of simulation shown in Figure S11(e). The FES shows 

two stable conformations at cleft distances of 1 nm and 2.4 nm – which correspond to the 

closed and open conformations, respectively. The closed conformation has the lowest free 

energy. There is a clear absence of the “bundle” conformation in the FES, that was observed 

for the wild type NTHL1 structure. Carroll et al.25 proposed that a conformation change 

occurs in the wild type following lesion recognition yet this conformation change was not 

observed in the NTHL1m system; the increased closed conformation stability and absence 

of a “bundle” conformation from these NTHL1m simulations demonstrate the impact of 

the linker region on the energetics and dynamics of the NTHL1 system for shifting the 

equilibrium towards the closed conformation.

Based on the increased stability of the mutated closed conformation and the wild type 

open/bundle conformations, a possible mechanism for the reaction pathway of NTHL1 is 

proposed. In this mechanism, as illustrated in Fig. 4, the low energy open conformation is 

stabilized by charged, polar, and nonpolar interactions between the linker region and the 

cluster/hairpin domains. Among them, E116 forms salt bridges and Y119 experiences polar/

nonpolar interactions. During the first part of the reaction, the linker region leaves the DNA 

binding cleft between the cluster and hairpin domains, causing the cleft to narrow and the 

catalytic residue distance to decrease as the domains come together. While the interactions 

with DNA were not explicitly modeled in this work, it would be during this conformation 

change that the damaged DNA enters the binding cleft, allowing the catalytic residues to 

react and bind to oxidative damage to the DNA (e.g., pyrimidine).
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Due to the stability of the “bundle” conformation and instability of the closed conformation, 

we propose an additional conformational change to occur. As shown in Fig. 4, the cluster 

domain rotates to form a “bundle” conformation, separating the catalytic residues and 

leaving the D239 residue exposed to the solvent. The “bundle” conformation is stabilized 

by an abundance of helix-helix interactions as shown in the figure: Q94 in the cluster 

domain forms polar interactions with residues in the hairpin domain. The exact function 

of the “bundle” conformation is not clear currently, but the presence of this conformation 

could rationalize findings by Carroll et al.25 Based on the experiments, it was proposed that 

a large, conformational change occurs at some point after lesion recognition to possibly 

protect undamaged bases from being erroneously cleaved. It is worth noting that our 

comparison of wild type and mutated linker systems can draw similar conclusions: the 

mutated system of NTHL1m has a shortened linker that stabilizes the closed conformation 

with salt bridges and prevents the transition to the “bundle” conformation. Experiments 

also reported that conformation changes following lesion recognition were not observed 

for NTHL1m but were observed for NTHL1. Therefore, further studies on NTHL1 that 

unravel reactions following lesion recognition should be beneficial for better understanding 

the functions and dynamics of NTHL1.

During the various stages of the BER pathway for DNA repair, a better understanding of 

each process and the proteins involved can lead to better modulation of the pathway and 

help protect against carcinogenesis1. NTHL1 is a glycosylase involved with the recognition 

and initial processing of DNA damage, but the structure of the protein was recently captured 

in a very stable open conformation that is novel for its sub-group of helix-hairpin-helix 

glycosylase proteins. The functionalities of NTHL1 during BER pathway rely on the 

conformational changes of the protein and associated molecular interactions. Unbiased 

MD simulations revealed that the open conformation is stable, indicating that traditional 

simulations of a long enough duration to observe transitions between the open and closed 

states would be computationally unrealistic. In this paper, we design and implement the 

machine-learning based LINES method to identify a reaction coordinate to accelerate 

conformational sampling of NTHL1. The predicted reaction coordinate was proven to 

improve sampling of the open-closed conformation pathway. Also, we were able to identify 

an unexpected, intriguing but stable “bundle” conformation. This bundle conformation was 

characterized by a removal of the linker region from the DNA binding cleft, such that the 

cluster domain rotates and collapses into the binding cleft. A comparison of the wild type 

and mutant closed NTHL1 conformations revealed that the closed mutant conformation 

was stabilized through the formation of salt bridges between the linker region and the 

cluster/hairpin NTHL1 domains. The shortening of the linker due to the mutation created a 

densely packed cluster of positively charged residues that could close the DNA binding cleft. 

Therefore, a shortening between the positively charged residues could be a factor to search 

for in the genes encoding NTHL1 when screening for genetic abnormalities that increase the 

mutagenesis and carcinogenesis in cells. Additional work remains to be done for discovering 

the functions of the bundle conformation, but one potential function could be to protect 

undamaged DNA from being erroneously cleaved.

In this work, the learned reaction coordinate was composed of a linear combination of 

distances between pseudo-randomly chosen residues in or around the linker region. The 
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reaction coordinate predicted by LINES improved the rate of sampling of conformations, 

but the reaction coordinate and sampling could be further improved by refining the reaction 

coordinate to isolate specific strong interactions that correspond to the reaction pathways. 

This could be accomplished by identifying residues associated with large coefficients in 

the reaction coordinate definition and then adding new molecular coordinates incorporating 

residues in the vicinity of the large-coefficient residues. The refinement process could 

be performed iteratively through a series of reaction coordinate predictions via LINES, 

isolating large-coefficient residues, and expanding the list of molecular coordinates to 

include residues close to those important residues. The optimality of the new reaction 

coordinates can be evaluated through calculations of the cut-based free energy profiles, as 

suggested from Refs.40–41 In another direction for improvement, LINES could be combined 

with collective variable-free enhanced sampling methods to help with sampling reactions 

orthogonal to the reaction coordinate42. For example, Gaussian Accelerated Molecular 

Dynamics can be used to identify distinct low-energy states of biomolecules43 and could 

theoretically help LINES converge to a reaction coordinate more rapidly by expanding the 

ensemble of sampled conformations during a simulation and is thus a promising direction 

for future research. While these types of enhanced sampling methods do not require a 

reaction coordinate, their sampling is typically not as efficient as if an accurate reaction 

coordinate would be used to bias simulations; a combination of these collective variable-free 

and reaction coordinate-based techniques could work together synergistically to improve the 

convergence rate during machine learning and accelerate sampling in MD simulations.
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Fig. 1: Algorithmic flow.
In the reaction coordinate discovery phase, cycles of biased MD simulations and machine 

learning are performed to iteratively improve reaction coordinate (RC) predictions. 

The MD simulations save molecular coordinates (MCs). During RC discovery, the RC 

data distribution is transformed with a quadratic transformation and a reshuffling of 

the data dimensions. The transformation is a piecewise-quadratic function of the form 

y(x; a, b, c) = ax2 + bx + c, where the parameters a, b and c are vector outputs from the neural 

network. The outputs are vectorized so that a different transformation can be applied to 

partition B (MCB) based on the value of MCB – hence the piecewise component of the 

transformation. After the reaction coordinate has converged, a long, biased MD simulation 

is run to estimate the converged free energy surface (FES). The reaction coordinate 

identifies slow reaction pathways and accelerates the pathway by amplifying the protein 

motions through the biasing potential. Following the FES convergence, distinct protein 

conformations are identified, and the stability of each conformation is evaluated with 

unbiased MD simulations.
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Fig. 2: NTHL1 conformations.
(a) The magnitude (weight) of the molecular coordinate coefficients in the reaction 

coordinate predicted from the 7th iteration of LINES. (b) The converged free energy 

surface (FES) from the 600 ns biased MD simulation. Three distinct conformations are 

identified: open (O), closed (C), and a bundle (B) state. (c) The molecular structures of 

the three distinct conformations. The circles mark the locations of the catalytic residues 

K220 (red) and D239 (black). Compared to the closed conformation, the open conformation 

has the residues located farther apart with the DNA-binding cleft open, while the bundle 
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conformation has the cluster domain rotated and several helices collapse into the binding 

cleft to leave D239 expose to the solvent. The free energy differences between the 

three energy basins and the open conformation are calculated and shown below each 

conformation. (d) The stability of each distinct conformation was evaluated with the root 

mean square deviation (RMSD) of the Cα backbone atoms from 100 ns unbiased MD 

simulations. The open and bundle conformations are stable but the closed conformation 

becomes unstable after 40 ns.
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Fig. 3: Comparison of closed conformation stabilities between wild type and mutant NTHL1.
(a) Starting from very similar initial conformations, both the wild type (gray) and mutant 

(cyan) NTHL1 were subjected to 100 ns of unbiased MD simulations. The wild type 

linker region is shown in yellow and the mutant linker region in orange. The catalytic 

residues K220 and D239 are located by the red and black circles, respectively. The mutant 

conformation is stabilized by salt bridges in the purple circle. (b) The stability of the 

conformations is evaluated using the root mean square deviation (RMSD) of the Cα atoms 

during the 100 ns simulations. The mutant conformation stabilizes once the salt bridges 

between the linker and the protein domains form while the wild type protein fails to 

stabilize.
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Fig. 4: NTHL1 conformations and interactions.
The general features of the conformation changes from the open to the closed, and to 

the bundle states. Increasing levels of detail are shown from the top to the bottom in 

the form of a proposed schematic representation (top), entire protein structure (middle), 

and the stabilizing interactions (bottom) for the open (left), closed (center), and bundle 

(right) conformations. For the schematic representations, the hairpin domain (green), 

cluster domain (orange), and linker region (yellow) are shown. The catalytic residues are 

represented by the pink stars in each domain. Damaged DNA is represented by the red helix, 
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with the oxidative damage (i.e., pyrimidine) indicated by the blue hexagon. In the open 

conformation (left), the catalytic residues K220 and D239 are separated (pink arrow); the 

inset shows how a salt bridge containing E116 (blue) and polar/nonpolar interactions with 

Y119 (green) stabilize the open conformation. Between the open and closed conformation, 

the linker region (yellow backbone) exits the DNA binding cleft and the DNA binds to 

NTHL1. In the closed conformation (middle), the catalytic residues are close together (pink 

star) and the pyrimidine on the damaged DNA can react with the catalytic residues. Between 

the closed and bundle conformations, the cluster domain rotates and may halt catalysis. For 

the system with the mutated linker region, the inset illustrates a salt bridge forming that 

stabilizes the closed conformation and prevents the transition to the bundle conformation. In 

the bundle conformation (right), the catalytic residue D239 is exposed to the solvent (pink 

curved arrow); the inset shows how Q94 polar interactions (orange) are one example of a 

stabilizing interaction.
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