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A B S T R A C T   

The development of single-cell omics tools has enabled scientists to study the tumor microenvi
ronment (TME) in unprecedented detail. However, each of the different techniques may have its 
unique strengths and limitations. Here we directly compared two commercially available high- 
throughput single-cell RNA sequencing (scRNA-seq) technologies - droplet-based 10X Chro
mium vs. microwell-based BD Rhapsody - using paired samples from patients with localized 
prostate cancer (PCa) undergoing a radical prostatectomy. 

Although high technical consistency was observed in unraveling the whole transcriptome, the 
relative abundance of cell populations differed. Cells with low mRNA content such as T cells were 
underrepresented in the droplet-based system, at least partly due to lower RNA capture rates. In 
contrast, microwell-based scRNA-seq recovered less cells of epithelial origin. Moreover, we 
discovered platform-dependent variabilities in mRNA quantification and cell-type marker anno
tation. Overall, our study provides important information for selection of the appropriate scRNA- 
seq platform and for the interpretation of published results.   

1. Introduction 

In the past decade a variety of high-dimensional single-cell omics tools have been developed and optimized at exponential pace, 
providing unprecedented opportunities to deconvolute tissue composition in various research fields including the tumor 
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microenvironment (TME). This enabled the discovery of novel cell types with previously unknown functions across different diseases 
including various malignancies [1–6]. In contrast to other single-cell technologies such as fluorescence-based or mass spectral flow 
cytometry, this enabled the unbiased discovery of novel cell types and distinct functional states across multicellular tissues. Since the 
first description in 2009 [7], several scRNA-seq platforms have been introduced to refine scRNA-seq throughput, sensitivity, precision, 
and costs. These advances paved the way to broadly apply the technology to map cellular and molecular complexity of the TME and to 
characterize diverse cell types in cancer [5,6,8,9]. ScRNA-seq is used to quantify the individual cell-specific transcriptome at single-cell 
level. Gene expression levels are denoted by the sequenced reads and the unique transcriptomes individual cell types express, which 
are then presented as a data matrix. Hence, a typical scRNA-seq workflow would encompass single-cell isolation and capture, sample 
barcoding, mRNA reverse transcription, cDNA amplification and cDNA library preparation, next-generation sequencing (NGS), and 
computational data processing. 

Different scRNA-seq strategies have been developed to generate either full-length cDNA (for full-length sequencing) or cDNA with a 
unique molecular identifier (UMI) at the 3′ or 5′ end (for 3′/5′ sequencing). Full-length sequencing protocols like SMART-seq [10], as 
well as the improved version SMART-seq2 [11], generate reads across the entire length of genes by template switching-based PCR. The 
high sensitivity to detect gene expression enables various downstream analyses of specific cell types, tissue composition, spliced 
transcript variants, isoforms, or allele-specific gene expression patterns [12]. Full-length sequencing is low-throughput, relatively 
expensive, and struggles with a gene length bias akin to bulk RNA-seq data. Genes with shorter lengths generally exhibit lower read 
counts and a higher drop-out rate [13]. “Molecular tagging” with UMIs [14] used in 3′/5′ sequencing mitigated biases from down
stream PCR amplification and enables digital counting of absolute numbers of each transcript per individual cell. In addition, UMIs 
allow sample multiplexing to improve gene expression quantification and throughput, and thus reduce overall costs [12]. Although the 
sensitivity is inferior to full-length sequencing, tag-based sequencing methods are more suitable for quantification purposes (e.g. cell 
typing), this is particularly true when considering the simultaneous sampling of tens of thousands of cells [12,15,16]. 

The technology used to capture a single cell for RNA sequencing determines the number of isolated cells, whether there is a biased 
or unbiased selection of cells, the integrity and purity of the cells, and lastly the costs of the experiment. For biological samples 
containing only few cells, manual low throughput methods, such as laser capture microdissection (LCM), limiting dilution of cell 
suspensions, or manual cell picking with micromanipulators are applicable. To increase throughput, FACS is suitable to analyze, sort, 
and enrich single cells. Still, cell numbers remain limited and downstream library preparation is laborious. Thus, distinctive small- 
volume microfluidic droplet-based 3′/5′ sequencing technologies are primarily applied as an ultra-high-throughput, unbiased solu
tion [17]. Currently, the prevalent droplet-based scRNA-seq systems are inDrop [18], Drop-seq [19], and the commercially available 
platform 10X Chromium (10X Genomics, USA) [20]. Each of these three technologies generates microfluidic droplets to capture single 
cells together utilizing on-bead primers with unique barcodes. Besides the droplet-based methods, Seq-well [21], Microwell-seq [22], 
Cyto-seq [23], as well as the commercialized platforms Singleron GEXSCOPE (Singleron Biotechnologies, China) and BD Rhapsody 
(Becton Dickinson, USA) [24] apply microwell arrays into which individual cells are loaded together with barcoded magnetic beads. 
Upon cell lysis, the mRNA content of each cell is captured, reverse transcribed into cDNA, and amplified for sequencing-library 
generation through oligo-dT priming procedures. 

These tools are helping scientists to sequence and study RNA in unprecedented detail, but each technique has its own strengths and 
inherent limitations as described in several comparative studies [17,25–32]. In addition, our recent scRNA-seq study on lung cancer, in 
which we integrated scRNA-seq data from 19 studies and 21 datasets, comprising 505 samples from 298 patients [33] revealed that 
low-mRNA content cells are frequently dismissed due to technical issues. The integrated datasets were generated using various 
scRNA-seq platforms, including 10X Chromium and BD Rhapsody. Lung cancer tissue resident neutrophils, characterized by excep
tionally low mRNA content, were predominantly detected in the dataset generated with BD Rhapsody, while they were underrepre
sented or even absent in datasets generated with 10X Chromium or other platforms [33]. Using this substantial advantage of 
microwell-based scRNA-seq, we recently also characterized previously unrecognized tissue resident low-mRNA content neutrophils 
in human livers [34]. 

These performance differences have been described using either rather artificial cell systems [25] or comparisons of data from 
different studies [33] but a rigorous side by side comparison of primary samples covering the complete cellular heterogeneity within 
the tissue has not been performed. Thus, we performed a systematic comparison of two commercially available high-throughput 
scRNA-seq technology platforms, i.e. the droplet-based 10X Chromium and the microwell-based BD Rhapsody platform, using 
paired surgically resected prostate cancer (PCa) and corresponding benign tissues, in order to derive the necessary information for the 
planning of scRNA-seq experiments and the interpretation of the results. 

2. Results 

2.1. Droplet- vs. microwell-based single-cell RNA sequencing of PCa and benign prostate tissues 

To directly compare the capability to deconvolute the TME and benign tissue composition at single-cell resolution of the most 
abundant cancer in men, we dissociated six freshly isolated tissue samples from treatment-naïve localized PCa patients undergoing a 
radical prostatectomy (3 tumor tissues samples and 3 corresponding benign prostate tissues samples) and subjected the obtained 
single-cell suspensions to 3′WTA scRNA-seq analysis using the 10X Chromium as well as the BD Rhapsody platforms, respectively (the 
experimental setup is illustrated in Fig. 1A; selection criteria of tissue samples obtained from fresh radical prostatectomy (RP) spec
imens to perform scRNA-seq analysis have been described previously [35]; the detailed scRNAseq workflow of both platforms is shown 
in Fig. S1). 
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To investigate the capability of the 10X Chromium protocol, we generated and sequenced six WTA index libraries from a total of 
48,000 cells, with 8000 cells per sample. After pre-processing the raw sequencing data using the 10X Chromium Cell Ranger software, 
we detected 29,484 cells (cells with >100 genes expressed in ≥3 cells), corresponding to a capture rate of ~60% (including multiplets; 
Fig. 1B). 

In the BD Rhapsody workflow, we used the BD Rhapsody Single Cell Multiplexing kit (SMK) to process multiple samples simul
taneously. Following the process of labeling single cells derived from both benign and tumor tissue using sample-tag antibody staining, 
we generated a separate sequencing library for each of the three individual patients. In contrast to 10X Chromium, the microwell-based 
BD Rhapsody workflow enables the quantification of single living cells captured together with a bead within the system. Hence, this 
detailed information about the quality and number of captured single cells, as well as the number of captured multiplets, enables a 
more precise calculation of the desired sequencing depth per cell, especially when multiple samples are combined in one sequencing 
run. Thus, it is possible to use a predefined number of cells for WTA index library preparation and to store remaining beads for later 
use. The capability of the BD Rhapsody platform for sample-multiplexing and the flexibility to adjust cell numbers significantly 
contribute to cost reduction in library preparation and optimization of subsequent sequencing expenses. From the 65,000 deployed 
single-cells, 32,000 living cells including 5.5% multiplets could be captured together with a bead. Sequencing resulted in 25,841 
detected cell barcodes. Still, just 21,196 cell barcodes with sample-tag information could be recovered during sample demultiplexing 
after pre-processing of the raw sequencing data using the BD Rhapsody WTA Analysis Pipeline app in the cloud-based Seven Bridges 
Genomics environment. Approximately 10–15% of “undetermined” cell barcodes with no sample-tag information had to be excluded 
from downstream analyses. Overall, we could depict 18,360 cells (cells with >100 genes expressed in ≥3 cells), resulting in an effective 
cell capture rate of ~30% (excluding multiplets, Fig. 1B). 

Fig. 1. Experimental setup. (A) Summary of the analysis workflow. (B) scRNA-seq datasets were generated from freshly isolated benign prostate (n 
= 3) and PCa (n = 3) tissues using the 10X Chromium and BD Rhapsody platforms, respectively. Cell numbers are shown for each step starting with 
number of isolated cells from each sample used for the two platforms. In the 10X Chromium dataset 29,484 cells (cells with >100 genes expressed in 
≥3 cells) were detected and subjected to quality control processing. In the BD Rhapsody dataset 25,841 cell barcodes were identified and 21,196 cell 
barcodes with sample-tag information could be recovered during sample demultiplexing. Thereof, 18,360 cells (cells with >100 genes expressed in 
≥3 cells) were subjected to quality control processing. 

S. Salcher et al.                                                                                                                                                                                                        



Heliyon 10 (2024) e28358

4

Fig. 2. QC metrics in datasets generated with 10X Chromium and BD Rhapsody. (A) Correlation of %MT with nCounts and nFeatures quality metrics 
in data generated with 10X Chromium and BD Rhapsody using cells expressing >100 genes (features). Applied cut-off values to filter for high quality 
cells are indicated (nCounts >2000, nFeatures >200 and < 8000, %MT < 30%). (B) nFeature, nCount, and %MT quality metrics in filtered cells 
derived from benign and PCa tumor tissues. (C) nFeature, nCount, and %MT levels in individual samples processed with 10X Chromium and BD 
Rhapsody (n = 6; benign n = 3, tumor n = 3). Paired t-test, **p ≤ 0.01, ****p ≤ 0.0001. (D) Expression of stress-related transcripts in 10X 
Chromium and BD Rhapsody data generated from benign prostate and PCa samples. (E) RNA quality (RIN) before (T1) and after (T2) the sample-tag 
staining procedure in freshly isolated lung cancer (NSCLC) tumor tissues (n = 6). Paired t-test, *p ≤ 0.05. 
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In summary, 29,484 cells (10,557 benign (~36%) and 18,927 tumor (~64%)) acquired with 10X Chromium as well as 18,360 cells 
(7145 benign (~39%) and 11,215 tumor (~61%)) obtained with BD Rhapsody (detected cells in each individual sample are detailed in 
Table S1), were subjected to quality control (QC) processing, a critical step during scRNA-seq data processing [36]. 

2.2. Microwell-based single-cell RNA sequencing results in elevated levels of mitochondrial transcripts 

During QC user-defined thresholds for different metrics computed for each individual cell are applied to filter for “high-quality” 
cells to yield biologically meaningful results in subsequent down-stream analyses [37]. The three commonly used QC thresholds are 
the number of different genes detected in each cell, the total transcript count per cell (also known as the library size), as well as the 
ratio of reads mapped to mitochondrial DNA-encoded genes to the total number of reads mapped. These metrics have to be adjusted 
individually depending on the analyzed cell or tissue type, respectively [38]. 

Here, we filtered for cells with >200 and < 8000 detected genes (nFeatures), total transcript counts >2000 (nCounts), and <30% of 
mitochondrial transcripts (%MT) (Fig. 2A). 16,111 cells sequenced with 10X Chromium and 10,155 cells sequenced with BD Rhapsody 
passed the quality control step (26,266 cells in total; Table S1). Although the overall cell recovery rates (cells passing QC) of the 
processed PCa and benign prostate samples were well comparable between both scRNA-seq platforms (BD Rhapsody: 55.3%, 10X 
Chromium: 54.6%; metrics for each individual sample are detailed in Table S1), we found substantial differences in individual QC 
metrics between the two platforms (Fig. 2B, shown are 26,266 filtered cells). In all six individual samples the microwell-based BD 
Rhapsody protocol resulted in significantly less genes (nFeatures), a higher number of transcript counts per cell (nCounts), as well as a 
higher proportion of mitochondrial transcripts post quality control (%MT; Fig. 2C, Fig. S2). 

The fraction of reads mapped to mitochondrial DNA-encoded genes (%MT) represents a general indicator for cell stress, and thus a 
high level of mitochondrial transcripts has been associated with stressed, apoptotic, low-quality cells [39–41]. Although the proportion 
of mitochondrial counts per cell was significantly higher in the dataset generated with BD Rhapsody (mean %MT: 20.2) compared to 
10X Chromium (mean %MT: 10.8), the expression of diverse stress-related transcripts did not markedly differ (Fig. 2D). Cell 
stress-related transcripts, such as IRE2, HSPB1, LMNA, and BAX, were even expressed to a lesser extent in the BD Rhapsody dataset, in 
both benign prostate and PCa tissues, compared to 10X Chromium, respectively (Fig. 2D). 

2.3. Sample-multiplexing by sample-tag antibody staining impairs RNA quality 

In contrast to the droplet-based protocol, where each sample is processed separately, we utilized sample-tag antibodies in the BD 
Rhapsody workflow to enable multiplexing of multiple samples, including benign and tumor samples. A graphical representation of the 
detailed workflow from cell preparation to library construction for both platforms is outlined in Fig. S1. 

Next, we investigated whether the overall lengthier protocol of the microwell-based platform including the additional sample- 
tagging procedure may affect RNA quality in freshly isolated cell suspensions. For RNA quality benchmarking we used an addi
tional cohort of freshly resected human lung tumors (n = 3) as well as benign lung tissues (n = 3). Following tissue dissociation, we 
subjected the obtained single-cell suspensions to the sample-tag staining procedure (20 min RT, 3x washing by 5 min centrifugation at 
400 rpm). The BD Rhapsody sample-tag protocol significantly impaired RNA quality (RNA Integrity Number (RIN)) in multiple single- 
cell suspensions (n = 6; Fig. 2E). Importantly, transcripts associated with RNA decay did not exhibit elevated expression levels in BD 
Rhapsody data (Fig. S3A), indicating that the RNA-degrading machinery is not actively induced during the scRNA-seq procedure. 
However, as the quality of RNA is a critical determinant of the reliability and accuracy of scRNA-seq data, any factors that compromise 
RNA quality may lead to biased results. Overall, these findings underscore the critical need for thorough evaluation and optimization of 
scRNA-seq protocols to ensure the reliability and validity of experimental results. 

2.4. The microwell-based platform captures significantly more mRNA molecules per cell 

The number of genes detected in each cell (nFeatures) is linked to the applied sequencing depth (mean reads per cell per gene) - a 
measure of the available sequencing capacity spent for a single sample. The three sequencing libraries generated with BD Rhapsody 
were sequenced on the NovaSeq S1 flowcell (1.6 billion single reads; Illumuna) resulting in a mean coverage of ~45,000 reads/cell. In 
contrast, the sequencing libraries prepared with the 10X Chromium system were sequenced on the NovaSeq S2 flowcell (4.1 billion 
single reads; Illumuna) resulting in a 1.6-fold higher mean coverage of ~72,000 reads/cell (samples obtained from four PCa patients 
(~64,000 cells) [35]; three out of these four patients (~48,000 cells) were processed in parallel with the BD Rhapsody platform and 
used for the comparative analysis). Consequently, the number of individual genes detected per cell was higher in the dataset obtained 
with 10X Chromium (Median nFeatures: BD Rhapsody ~1,100, 10X Chromium ~2,300, Fig. 2B and Table S1). The elevated number of 
transcripts detected per cell was consistent over individual samples (Fig. 2C, Fig. S2A and Table S1) but did not markedly affect the 
number of quality cells after filtering (nFeatures >200 and < 8000; Fig. 2A and Fig. S2B). 

Remarkably, despite the lower sequencing depth, the detected number of mRNA molecules per cell (nCount RNA) was markedly 
higher in BD Rhapsody data compared to 10X Chromium data (Median nCounts: BD Rhapsody ~15,500, 10X Chromium: ~7350), 
indicating a subtantially better mRNA capture performance of the microwell-based platform (Fig. 2B). We observed this siginficant 
difference in detected mRNA molecules per cell between the two platforms in individual samples derived from PCa and benign tissues 
(Fig. 2C, Fig. S2, and Table S1). Thus, filtering for cells with a defined number of mRNA molecules, markedly reduced the number of 
high-quality cells predominantly in the 10X Chromium dataset (nCounts >2000; Fig. 2A), indicating superiority of the BD Rhapsody 
platform in depicting cells with low-mRNA content. 
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2.5. Prostate cancer tumor microenvironment mapping by microwell- and droplet-based single-cell RNA sequencing 

Next, we performed an extensive assessment of the degree of technical biases and the efficacy of the protocols in accurately 
characterizing distinct cellular populations. Following quality control and filtering procedures, a total of 26,266 PCa and corre
sponding benign cells (10X Chromium: 16,111 cells; BD Rhapsody: 10,155 cells) were analyzed in terms of their transcriptomes. Using 
characteristic canonical cell markers, 11 cell clusters were annotated according to the respective cell type (Fig. 3A) in the 3 analyzed 
patients (Fig. 3B, individual samples are shown in Fig. S4A). We could delineate B cells (CD79A), CD4+ T cells (CD4), CD8+ T cells 
(CD8), NK cells (NKG7), plasma cells (JCHAIN), macrophages & monocytes (CD68), mast cells (KIT), myofibroblasts (MFB; ACTA2), 
endothelial cells (CDH5), basal/intermediate epithelial cells (KRT5 as well as KRT19, TP63 and low AR expression as defined pre
viously in PCa [42]), as well as luminal epithelial cells (KLK3, MSMB) (Fig. 3C and D). The cells were derived from both benign prostate 
and PCa tumor tissues (Fig. S4B). Both platforms yielded high-resolution tissue profiles of the analyzed tissues, as illustrated in Fig. 3E 
(see also Figs. S4C–F). However, we observed a cell type-specific bias in cell recovery between the two platforms (Fig. 3F), which we 
investigated in more detail as described further below. 

2.6. Molecule capture efficiency and sequencing library complexity 

The overall higher number of different transcripts detected per cell in the 10X Chromium dataset compared to BD Rhapsody 
(Fig. 2B and C) was consistent across individual cell types (Fig. 4A). In addition to the previously described differences in sequencing 
depth, we reasoned that impaired RNA quality/RNA degradation (Fig. 2E) might result in less diversity in gene expression due to the 
degradation of more unstable mRNAs and, subsequently, in lower complexity of transcriptome libraries generated with the BD 
Rhapsody platform compared to 10X Chromium, respectively. Despite the lower sequencing depth, the median expression level of 
housekeeping genes (EEF1A1, B2M, ACTB) was notably higher in the BD Rhapsody dataset both in normalized (Fig. 4B) and in raw 
sequencing data (Fig. S5A) in all individual samples (Figs. S5B and S5C). 

Using a depth-adjusted negative binomial model (DANB) we were able to correlate the frequency of dropout events (as a measure of 
dropout ratios) to the gene expression levels. Consistent with prior studies [25,29], genes exhibiting lower expression levels 
demonstrated higher dropout ratios (Fig. 4C). Due to variable library complexity, the dropout probability was found to be higher in the 
BD Rhapsody dataset (AUC = 5.19) when compared to the 10X Chromium dataset (AUC = 5.05). 

Contrary, in the 10X Chromium dataset we found significantly higher expression levels of the Metastasis Associated Lung 
Adenocarcinoma Transcript 1 (MALAT1, also known as NEAT2) and the Nuclear-Enriched Abundant Transcript 1 (NEAT1; Fig. 4D). 
This marked difference in MALAT1 and NEAT1 expression between the two platforms was visible in all individual cell types of the 
prostate TME (Fig. S6A). Concordantly, our recently published Non-Small Cell Lung Cancer (NSCLC) scRNA-seq atlas [33] revealed 
that MALAT1 and NEAT1 are highly abundant in various cells of the lung cancer TME (Fig. S6B) and noticeable higher expressed in 
datasets generated with 10X Chromium compared to BD Rhapsody (Fig. S6C), respectively. MALAT and NEAT1 are both nuclear 
retained long non-coding RNAs (lncRNAs). MALAT lacks a poly(A) tail [43], whereas NEAT1 does undergo some degree of poly
adenylation, which primarily applies to the NEAT1_1 isoform [44]. 

To further investigate the difference in the expression of MALAT1 and NEAT1 between the two platforms, we determined the gene 
body coverage using the IGV viewer (version 2.16.1) (Fig. 4E). BD Rhapsody exhibited an increased number of reads mapping to the 
gene body of both genes, which was exponentially higher than 10X Chromium. In the BD Rhapsody data, the reads mapped unevenly 
on the gene body of MALAT1, more specifically there appears to be a bias towards the genomic regions 65,498,957 - 65,506,516 with 
very few reads mapping to exon 1 of MALAT1 (RefSeq gene: NR_144568.1). In contrast, in the 10X Chromium data, the bias appears to 
be towards exon 1 with the majority of reads mapping on the genomic region 65,497,738 - 65,502,629 of Chromosome 11. These 
marked differences were visible in all individual patients. The distribution of reads towards exon 1 seems to capture the expression of 
MALAT1 with higher sensitivity, which may explain the observed difference in MALAT1 expression between the two platforms. In the 
case of NEAT1, the gene coverage followed a similar pattern in both platforms. More specifically most of the reads mapped on the 
genomic regions 65,422,798 - 65,426,543 and 65438091 - 65,445,540 of Chromosome 11. It is important to note that the genomic 
region 65,422,798 - 65,426,543 of Chromosome 11 overlaps with exon 13 of the FRMD8 gene (RefSeq gene: XR_007062512.1), which 
may lead to the reads appearing as “multi-mappers” in the downstream analysis. Of note, in the case of BD Rhapsody, there appears to 
be an increased percentage of mismatches in the nucleotide sequences of the reads mapping to the reference genome of NEAT1, which 
may possibly affect the gene counts in the downstream analysis. 

We next conducted a comparative analysis of the top 200 differentially expressed genes (DEGs) exemplarily in luminal epithelial 
cells and in endothelial cells, as identified in PCa and benign prostate tissues by 10X Chromium and BD Rhapsody (Fig. 5A). We 
observed a partially overlapping expression pattern of DEGs in both, luminal epithelial (139/200 overlapping DEGs) and endothelial 
cells (145/200 overlapping DEGs), between both platforms (Fig. 5B). To further assess the suitability of the protocols for characterizing 

Fig. 3. Prostate cancer tumor microenvironment revealed by 10X Chromium and BD Rhapsody. (A) Uniform manifold approximation and pro
jection (UMAP) plot of 26,266 high-quality cells, color-coded by cell type. (B) UMAP plot colored by cells derived from individual patients. (C) 
UMAP plots colored for the expression of indicated celltype-specific marker genes. (D) Gene expression levels of cell type-specific markers. (E) 
UMAP plot colored by cells derived from datasets generated with 10X Chromium or BD Rhapsody. (F) UMAP plots showing the cell-density in 
datasets generated with 10X Chromium or BD Rhapsody. (For interpretation of the references to color in this figure legend, the reader is referred to 
the Web version of this article.) 
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Fig. 4. Molecule detection efficiency and sequencing library complexity. (A) Number of genes detected per cell in individual cell types depicted by 
10X Chromium and BD Rhapsody. (B) Gene expression levels of indicated house-keeping genes in datasets generated with 10X Chromium and BD 
Rhapsody. (C) Dropout ratios as a function of log10 expression for 10X Chromium (left) and BD Rhapsody (right). Orange dots represent the 
significant features under the DANB model (at 1% FDR) while gray dots represent the non-significant features. Blue dots represent the expected 
dropout probabilities as returned from the DANB model. (D) Gene expression levels of MALAT1 and NEAT1 in datasets generated with 10X 
Chromium and BD Rhapsody. (E) Gene body read coverage of NEAT1 (left) and MALAT1 (right). BD Rhapsody samples are represented with green 
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cell types, we evaluated their sensitivity in detecting population-specific expression markers and uncovered a significant disparity in 
their ability to discern marker genes. The prostate-specific-antigen (PSA, KLK3) as well as other prostate epithelial markers such as 
KLK2, KLK4, or ACPP were highly expressed in luminal epithelial cells in data generated with 10X Chromium as well as BD Rhapsody 
(Fig. 5C). However, particularly endothelial cell population markers were detected with varying sensitivity (Fig. 5C–Table S2). Both, 
the interferon alpha-inducible protein 27 (IFI27), previously described as marker for capillary endothelial cells of the human lung [45], 
as well as the key endothelial cell marker von-Willebrand factor (VWF), exhibited markedly higher expression in the 10X Chromium 
dataset compared to the BD Rhapsody dataset, respectively (Fig. 5C). One explanation for this discrepancy is that specific RNAs that are 
more sensitive to RNA degradation are lost during the BD Rhapsody protocol. However, stability of mRNAs is influenced by various 
factors, such as the presence of stabilizing or destabilizing elements within the mRNA sequence, interactions with RNA-binding 
proteins, and the cellular context. The current literature does not provide clear evidence to support the notion that these particular 
mRNAs are inherently unstable or rapidly degraded. Conversely, we observed a trend towards elevated expression levels of CD34 (a 
well-known marker of progenitor cells of blood vessels) in endothelial cells depicted with the BD Rhapsody platform (Fig. 5C). The 
discrepancies in depicting endothelial cell population markers were visible in the raw sequencing data (Fig. S7A) as well as in the 
filtered and normalized data (Fig. 5D) in all individual samples (Fig. 5E). In concordance with the overall elevated expression levels of 
lncRNAs (Fig. 4D), the expression of MALAT1 and NEAT1 was also significantly higher in endothelial cells depicted with the 10X 
Chromium protocol (Fig. S7B, Table S2). 

In summary, the comparison of the 10X Chromium and BD Rhapsody platforms revealed similarities in detecting differentially 
expressed genes (DEGs), while also exhibiting platform-dependent variability in detecting specific RNAs, including lncRNAs and cell 
type-specific population markers. 

2.7. Platform-dependent cellular composition in single-cell RNA sequencing data 

The overall lower mRNA count in the 10X Chromium dataset (Fig. 2B and C) may particularly affect detection and characterization 
of cells with low-mRNA content, such as various immune cells. Concordantly, we observed that CD4+ T cells, CD8+ T cells, and to a 
lesser extend NK cells were primarily affected by filtering for cells above a minimum mRNA amount in the 10X Chromium dataset 
(Fig. 6A). 

Consequently, CD4+ T cells and CD8+ T cells were detected at significantly smaller proportions by 10X Chromium compared to BD 
Rhapsody (Fig. 6B and C), in all individual samples (Fig. 6D). Additionally, we noted a trend towards higher NK cell numbers in the BD 
Rhapsody dataset (Fig. S8A). Conversely, epithelial cells (Fig. 6E) and myofibroblasts (Fig. 6F), were substantially better represented in 
the 10X Chromium dataset. Particularly basal epithelial cells were significantly better depicted by the 10X Chromium platform in all 
six analyzed samples (Fig. 6E). Primary prostate epithelial cells are highly sensitive to anoikis and cell stress, which may lead to their 
loss. Consequently, we observe a substantial increase in %MT expression in basal epithelial cells compared to other cell types in the BD 
Rhapsody dataset, which might at least in part reduce the cell number after filtering (Fig. S8B). Overall, the leukocyte fraction was 
particularly represented in BD Rhapsody data, whereas non-leukocytes, including epithelial cells and myofibroblasts were depicted at 
higher proportions by 10X Chromium (Fig. 6G). 

PCa is generally deemed as immunologically ‘cold’ tumor with relatively low immune cell infiltration, as also demonstrated by IHC 
analysis showing a higher abundance of epithelial and stromal cells in all analyzed benign prostate and PCa tumor tissues compared to 
CD45+ leukocytes (Fig. 6H). Contrary, both scRNA-seq protocols resulted in an overrepresentation of immune cells and an under
representation of the epithelial/stromal compartment. This phenomenon may be mostly attributable to the process of tissue disso
ciation, nonetheless, the composite data propose that the microwell-based scRNA-seq technique preferentially enriches for immune 
cells, while the droplet-based protocol recovers epithelial/stromal cells at comparatively elevated proportions (Fig. 6H). 

3. Discussion 

We systematically compared two of the most broadly used high-throughput scRNA-seq technologies (i.e., 10X Chromium and BD 
Rhapsody) using paired samples from surgically resected PCa and the respective healthy prostate tissues. Contrary to previous 
comparative analysis [17,25–32], we simultaneously processed a sufficient number of samples derived from complex tissues for a 
statistically sound comparison. Our analysis revealed differences between the two platforms in converting RNA molecules into 
sequencing libraries, impacting the reliability and accuracy of the resulting scRNA-seq data (identified key characteristics and major 
differences of both platforms are listed in Table S3). This information is essential for scientists asking for the right technology platform 
for their experimental research question: which platform is indeed appropriate to reliably detect expression profiles of single cells for 
the posed question. 

First, our comparative analysis of QC metrics revealed that the droplet-based 10X Chromium platform yields a higher effective cell 
capture rate and allows a more sensitive detection of genes per cell, while the microwell-based BD Rhapsody protocol exhibits a 
substantially higher number of mRNA molecules detected per cell. We demonstrate that the BD Rhapsody platform captures a higher 

and 10X Chromium samples with purple colours. Data range is set to 0–250360 (the min - max read output of both platforms for the specific genomic 
regions) and a log scale is used to visualize the data and to allow comparisons. The blue and red bands indicate mismatches between the reads and 
the reference genome’s nucleotide sequences. (For interpretation of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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proportion of mitochondrial transcripts, typically associated with increased cell stress. However, we found no evidence of procedural 
stress as a contributing factor. A recent comparative analysis consistently reported elevated proportions of mitochondrial transcripts in 
BD Rhapsody, with no indications of cell damage [31]. One possible explanation for the elevated proportion of mitochondrial tran
scripts in the BD Rhapsody dataset could be a more efficient disruption of organelle membranes during the cell lysis step compared to 
the 10X Chromium protocol, which employs a markedly lengthier yet potentially weaker cell lysis procedure. Of note, each platform 
utilizes distinct bioinformatic approaches for pre-processing of the raw output files (i.e., barcode correction and UMI counting) that 
might influence QC metrics. Consequently, these observed variances emphasize the necessity for researchers to adapt QC filter metrics 
specifically to the datasets produced by different scRNA-seq platforms, ensuring accurate interpretation and data quality. 

Second, we demonstrate that the sample-multiplexing capability in the BD Rhapsody workflow using sample-tags, markedly im
pairs RNA quality in freshly isolated single-cell suspensions derived from complex tissues. On the plus side, sample-multiplexing re
duces technical bias caused by batch effects and substantially lowers sequencing library preparation costs. However, as RNA quality is 
a critical determinant of scRNA-seq data reliability and accuracy, the BD Rhapsody sample-tag staining procedure might compromise 
specific mRNAs, impair sequencing library complexity, and thus potentially affect the outcome of the scRNA-seq experiment. 

Third, we report that varying library complexities and the observed transcript-specific mRNA capture efficacy of both protocols 
affect their ability to quantify gene expression levels and identify cell-type markers. Overall, the BD Rhapsody protocol demonstrated a 
higher gene dropout probability. The relative high abundance of mitochondrial and house-keeping transcripts in the BD Rhapsody data 
may indirectly contribute to elevated dropouts of genes exhibiting lower expression levels. 

Although the vast majority of transcripts shows congruent expression pattern in different cell types with both platforms, our 
analysis also revealed substantial differences for certain genes, exemplarily shown for IFI27, VWF or CD34, putative marker genes of 
prostate endothelial cells. In turn, this discrepancy in amplifying certain types of RNA molecules, might significantly impact the 
underlying composition of depicted tissue profiles and affect the exploratory value of generated scRNA-seq datasets. Of note, we 
observed remarkably high expression levels of the lncRNAs MALAT1 and NEAT1 exclusively in 10X Chromium data. We could confirm 
this platform-specific differences in depicting lncRNAs in our recently published NSCLC scRNA-seq atlas. Gene coverage analysis 
revealed a pronounced 3′ end bias in BD Rhapsody read distribution for MALAT1, whereas the 10X Chromium platform exhibited a 
distinct bias towards exon 1 at the 5′ end of the gene. Thus, we speculate that a higher sensitivity of exon 1 read capture may account 
for the observed variation in MALAT1 expression between the two platforms. 

Overall, we advocate to consider potential platform-mediated gene expression bias when interpreting data or comparing results 
derived from different scRNA-seq protocols. 

Finally, our direct comparative analysis corroborates that the BD Rhapsody protocol excels in characterizing cells with low-mRNA 
content, capturing leukocytes more effectively. This important benefit of the microwell-based platform is based on a significantly 
better mRNA capture efficiency. In line with our recent observation in lung cancer [33], the detected number of mRNA molecules per 
cell was markedly higher in BD Rhapsody data compared to 10X Chromium, respectively. Conversely, the droplet-based protocol 
performed noticeably better in depicting epithelial cells, particularly prostate basal epithelial cells, as well as myofibroblasts. 
Considering that the microwell-based BD Rhapsody platform is validated for cells smaller than 20 μm, we hypothesize that the loss of 
epithelial cells or myofibroblasts may be attributable to their larger size relative to leukocytes. Hence, processing single-cell sus
pensions derived from complex tissues using microwell-based platforms might result in a bead-exclusion phenomenon that results in 
loss of larger cell types. In accordance, our recent scRNA-seq studies on liver tissues processed with the BD Rhapsody platform, resulted 
in an underrepresentation of hepatocytes (typical size >20 μM), the primary liver cells [34]. Overall, our findings propose that the 
choice of the scRNA-seq protocol might substantially influence the composition of captured cell types. 

In conclusion, our study emphasizes the importance of considering the distinct characteristics of scRNA-seq technologies. Re
searchers must carefully evaluate their research questions and select the most appropriate platform accordingly. Furthermore, we 
advocate to be cautious when comparing data generated by different platforms, as platform-dependent variability in detecting 
population-specific markers and distinctive cell subpopulations may lead to discrepancies in the interpretation of the results. In that 
direction, our results might lead to informed algorithms for better data integration of different platforms. Future research is necessary 
to elucidate the underlying reasons for these differences and to optimize scRNA-seq protocols for obtaining reliable and accurate data 
in various biological contexts. 

4. Limitations of the study 

While our results provide valuable insights into the performance of these scRNA-seq protocols, it is important to acknowledge 
several potential limitations. First, while our study is the first to use sufficient independent samples for a proper statistical analysis, the 
number is still not enough to validate smaller differences between both platforms such as the proportion of NK cells. Concomitant with 
decreasing sequencing costs, in the future, we may see comparative studies with more specimens. Second, as the field is advancing at a 

Fig. 5. Platform-specific gene quantification and cell-type marker identification. (A) UMAP blots of luminal epithelial cells and endothelial cells 
colored by cells derived from benign and PCa tumor tissues as well as by cells derived from datasets generated with 10X Chromium and BD 
Rhapsody. (B) VENN diagram of top 200 DEG detected by 10X Chromium or BD Rhapsody in luminal epithelial cells (upper panel) and endothelial 
cells (lower panel). (C) Top expressed genes in luminal epithelial cells and endothelial cells in datasets generated with 10X Chromium and BD 
Rhapsody. (D) Gene expression levels of IFI27, VWF, and CD34 detected in endothelial cells by 10X Chromium and BD Rhapsody. (E) Gene 
expression levels of IFI27, VWF, and CD34 in individual samples. Each dot refers to a sample (benign or tumor tissue) with at least 40 endothelial 
cells in both 10X Chromium and BD Rhapsody groups. Paired t-test, *p ≤ 0.05. 
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tremendous pace, newer versions of the two platforms with improved performance are already available. Still, we think that differ
ences intrinsic to the technologies persist. In addition, our work might lay the ground for updated comparisons and future studies with 
more diverse samples could further enhance our understanding of scRNA-seq platform performance. Lastly, researchers should account 
for potential biases during data analysis and ensure their methods suit the specific platform and research question. Despite these 
potential limitations, our findings offer valuable insights into the performance characteristics of the 10X Chromium and BD Rhapsody 
platforms in the context of scRNA-seq analysis of prostate cancer tissues. 

Ethics Declarations 

•This study was reviewed and approved by the Institutional Review Board at the Medical University Innsbruck, Austria, with the 
approval numbers: 1017/2018; 1072/2018; AN214-0293,342/4.5 
•All participants/patients (or their proxies/legal guardians) provided informed consent to participate in the study. 

Data availability statement 

Processed scRNA-seq data from this study has been deposited on Zenodo (https://zenodo.org/record/8063560) as listed in the key 
resources table. Raw data is not made available due to privacy concerns. 

Star methods 

Resource availability 

Further information and requests for resources and reagents should be directed to and will be fulfilled by corresponding authors, 
Sieghart Sopper (sieghart.sopper@i-med.ac.at) and Andreas Pircher (andreas.pircher@i-med.ac.at). 

Experimental model and subject details 

Human subjects 
The local ethics committee (study code:1017/2018; 1072/2018) approved the use of tissue samples obtained from fresh radical 

prostatectomy (RP) specimens. Written informed consent is available from all patients. As described by our group, the malignancy or 
benignity of the tissue was confirmed within 1 h after surgery. Subsequently, tissue dissociation and FACS sorting of freshly isolated 
cells was performed to obtain a FACS-sorted PCa and corresponding benign prostate single-cell suspension [35]. 

Samples of NSCLC tumor tissues and matched benign lung tissues were obtained from surgical specimens of patients undergoing 
resection at the Department of Visceral, Transplant and Thoracic Surgery (VTT), Medical University Innsbruck, Austria, and in 
collaboration with the INNPATH GmbH, Innsbruck, Austria, after obtaining informed consent in accordance with a protocol reviewed 
and approved by the Institutional Review Board at the Medical University Innsbruck, Austria (study code: AN214-0293,342/4.5). 

Method details 

10X Chromium library preparation and sequencing 
The droplet-based 10X Chromium system employs the GemCode technology, which utilizes gel beads in emulsion to achieve 

barcoding [46]. This involves combining a suspension of single cells with gel beads containing barcoded oligonucleotides and reagents 
for reverse transcriptase (RT) in an oil environment, resulting in the formation of nanoliter-scale droplets that facilitate cDNA syn
thesis. Subsequently, the droplets are pooled, dissolved, and used to create a sequencing library containing unique molecular iden
tifiers (UMIs). The microfluidic chips used in this system can accommodate up to eight samples simultaneously, each containing up to 
10,000 cells. Samples obtained from four PCa patients were converted to scRNA-seq libraries using the Chromium Next GEM 
Single-Cell 3′Kit v3.1 (10X Genomics) as described previously [35]. Three out of these four patients (~48,000 cells) were processed in 
parallel with the BD Rhapsody platform. 

BD Rhapsody library preparation and sequencing 
The BD Rhapsody platform uses a single cartridge with more than 200,000 microwells, wherein up to 30,000 individual cells are 

isolated together with UMI-barcoded magnetic mRNA capture-beads. Upon cell lysis the mRNAs are captured and retrieved together 

Fig. 6. Platform-dependent cellular composition in single-cell RNA sequencing data. (A) Number of captured transcripts (total counts) in individual 
cell types recovered with 10X Chromium (upper panel) and BD Rhapsody (lower panel). (B) Relative cell-type composition in benign prostate and 
PCa tissues from three individual patients in data generated with 10X Chromium and BD Rhapsody. (C) Detected proportion of cell-types in benign 
prostate and PCa tissues from three individual patients in data generated with 10X Chromium vs. BD Rhapsody. (D–F) The proportion of CD4 T cells 
and CD8 T cells (D), luminal and basal epithelial cells (E), and myofibroblasts (MFB) (F), depicted by 10X Chromium vs. BD Rhapsody in individual 
samples. Paired t-test, *p ≤ 0.05. (G) The proportion of leukocytes and non-leukocytes depicted by 10X Chromium vs BD Rhapsody. (H) Proportions 
of epithelial, stromal, and CD45+ immune cells in benign prostate and PCa tissues from three individual patients determined by IHC and by scRNA- 
seq using 10X Chromium or BD Rhapsody. 
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with the beads out of the microwells. All beads are pooled, and subsequently the RT step is performed within a single tube. Freshly 
isolated, FACS-sorted single-cells were immediately processed with the BD Rhapsody scRNA-seq platform (BD Biosciences). The BD 
Single-Cell Multiplexing Kit (BD Biosciences) was used to combine and load two samples (tumor tissue and corresponding benign 
tissue) onto a single BD Rhapsody cartridge (BD Biosciences). Sample-tag staining was performed according to the manufacturer’s 
protocol (sample-tag staining at room temperature for 20 min and washing by centrifugation at 400g for 5 min). Single-cell isolation in 
microwells (cell load: 20 min incubation at room temperature) with subsequent cell-lysis and capturing of poly-adenylated mRNA 
molecules with barcoded, magnetic captured-beads was performed according to the manufacturer’s instructions. Beads were 
magnetically retrieved from the microwells, pooled into a single tube before reverse transcription. Unique molecular identifiers (UMIs) 
were added to the cDNA molecules during cDNA synthesis. Whole transcriptome amplification (WTA) and sample-tag sequencing 
libraries were generated according to the BD Rhapsody single-cell whole-transcriptome amplification workflow. The quantity and 
quality of the sequencing libraries was analyzed with the Qubit dsDNA HS (High Sensitivity) assay kit (Invitrogen) and the 4200 
TapeStation (Agilent) system. Libraries were sequenced on the Novaseq 6000 system (Illumina) targeting a sequencing depth of 45.000 
reads/cell. 

Preprocessing and quality control of scRNA-seq data 

Bioinformatic pre-processing of the obtained FastQ sequencing files was performed via the cloud-based Seven Bridges Platform 
environment (Seven Bridges Genomics) using the BD Rhapsody WTA Analysis Pipeline app making use of the sample-tag workflow to 
achieve csv-files with cell codes and gene list for each individual sample. Fastq sequencing data derived from 10X Chromium were 
mapped to the human genome (build GRCh38) using the CellRanger software (10X Genomics, v3.1) to achieve mtx, barcodes and 
genes files for each sample as described previously by our group [35]. Sample files were imported in Scanpy version 1.9.1 running with 
Python version 3.8 [47] and loaded into AnnData [48] for further processing with scverse tools to perform removal of empty cell beats 
and cell barcodes without sufficient captured transcripts (>100 genes, gene occurrence in >3 cells). Thereafter, all samples were 
imported into a single anndata object (h5ad) by the concatenation “outer” join function to maintain all platform/sample specific genes 
since objects had differing variables. Empty genes (variables) for each sample were filled up with 0 values. 

Integration of scRNA-seq datasets 
Quality control was performed using scanpy, only retaining cells with (I) between 200 and 8000 detected genes, (II) between 1000 

and 50,000 transcripts, and (III) < 30% mitochondrial transcripts. The 2000 most highly variable genes (HVGs) were selected using 
scanpy’s highly_variable_genes function with the options flavor = ”seurat_v3″ and batch_key = ”sample”. Cell transcriptomes were 
embedded into a batch-corrected low-dimensional latent space using scVI [49,50] treating each sample as a separate batch. A 
neighborhood graph and uniform manifold approximation and projection (UMAP) embedding [51] were computed based on the scVI 
latent space. Cell types were annotated based on unsupervised clustering with the Leiden algorithm [52] and known marker genes 
specific for epithelial cells, endothelial cells, myofibroblasts and immune cell types. 

Differential gene expression testing 
For each cell type and patient, we summed up transcript counts for each gene that is expressed in at least 25% of cells and at least in 

3 samples using decoupler-py [53]. Pseudo-bulk samples consisting of fewer than 1000 counts or 40 cells were discarded. 
Pseudo-bulked data for endothelial and luminal epithelial cells were used for further differential gene expression testing between the 
two different platforms using DESeq2 [54] which has been demonstrated to perform well [55]. 

Dropout ratio analysis 
The dropout ratios were correlated to gene expression levels by using the depth-adjusted negative binomial model (DANB) from the 

R package M3Drop [56] in order to account for zeros resulting from insufficient sequencing depth. DANB assumes that each obser
vation follows a negative binomial distribution, where the mean is proportional to both the mean expression of the specific gene and 
the relative sequencing depth of the corresponding cell. 

Gene body coverage analysis 
In order to visualize the gene body coverage, the BAM files produced in the pre-processing step were directly loaded in the IGV 

viewer [57] (version 2.16.1) as different tracks. The viewing panel was centered around the NEAT1 and MALAT1 genomic regions. To 
account for the difference in sequencing depth the maximum data threshold was set to 250,360 (which is the maximum number of 
reads found to map on the genomic regions of NEAT1 and MALAT1) and the data were log transformed for comparison reasons. 

RNA quality of single-cell suspensions derived from NSCLC and normal lung tissue 
Surgically resected NSCLC tumor tissues and corresponding benign lung tissues were minced into small pieces (<1 mm) on ice and 

enzymatically digested with agitation for 30 min at 37 ◦C using the BD TuDoR™ dissociation reagent (BD Biosciences). The obtained 
single-cell solution was sieved through a 70 μM cell strainer (Corning) and red blood cells were removed using the BD Pharm Lyse™ 
lysing solution (BD Biosciences). Cells were counted and viability assessed with the BD Rhapsody scRNA-seq platform (BD Biosciences) 
using Calcein-AM (Invitrogen) and Draq7 (BD Biosciences). Immediately, >1 × 106 cells of the obtained single-cell suspensions were 
subjected to the sample-tag staining procedure (20 min RT, 3x washing by 5 min centrifugation at 400 rpm). Total RNA was isolated 
before (T1) and after (T2) the sample-tag staining procedure using the RNeasy Mini kit (Qiagen) and RNA quality (RNA integrity 
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number, RIN) was assessed with the High Sensitivity RNA ScreenTape assay (Agilent) and the 4200 TapeStation (Agilent) system 
according to the manufacturer’s instructions. 

Immunohistochemistry 
Immunohistochemical analysis with slides from the investigated 3 PCa patients was executed. Locations of interest on the slides 

were chosen based on slides from the same blocks stained with the markers P504s (clone SP116, Roche, #8035130001) and p63 (clone 
4A4, Roche, #5867061001) to identify tumor regions or benign prostate regions. CD45 was stained (clone 2B11&PD7/26, Roche, 
#5269423001) to identify immune cells. Antibody staining was detected with the ultraView Universal DAB Detection Kit (Roche, 
#5269806001). The slides were scanned with Hamamatsu NanoZoomer S210 (Hamamatsu, Shizuoka, Japan) with a 40x magnifi
cation. Representative regions were selected by an expert prostate pathologist (G.S.) and the proportions of stromal, epithelial, and 
CD45+ cells were calculated using the QuPath software for digital pathology image analysis [58]. 

Quantification and statistical analysis 
Statistical analysis was performed GraphPad Prism. Single cell-data were aggregated into pseudo-bulk samples by biological 

replicates. Significance levels on the statistical tests are indicated in the figure captions.  

REAGENT or RESOURCE SOURCE IDENTIFIER 

Biological samples 
Fresh resections of tumor tissue and corresponding 

benig tissue from PCa patients 
Heidegger et al., Molecular Cancer 
2022 

https://doi.org/10.1186/s12943-022-01597-7 

Fresh resections of tumor tissue and corresponding 
benig tissue from NSCLC patients 

This paper. N/A 

Critical commercial assays and reagents 
BD TuDoR™ dissociation reagent BD Biosciences Cat#: 661563 
BD Pharm Lyse™ BD Biosciences Cat#: 555899 
BD Rhapsody™ Cartridge Kit BD Biosciences Cat#: 633733 
BD Rhapsody™ Cartridge Reagent Kit BD Biosciences Cat#: 633731 
BD™ Human Single-Cell Multiplexing Kit BD Biosciences Cat#: 633781 
BD Rhapsody™ WTA Amplification Kit BD Biosciences Cat#: 633801 
BD Rhapsody™ cDNA Kit BD Biosciences Cat#: 633773 
AMPure XP Beckman Coulter Cat#: A63880 
Qubit™ dsDNA HS Assay Kit Invitrogen Cat#: Q32854 
High Sensitivity D1000 Reagents Agilent Cat#: 5067-5585 
High Sensitivity D5000 Reagents Agilent Cat#: 5067-5593 
High Sensitivity D1000 ScreenTape Agilent Cat#: 5067-5584 
High Sensitivity D5000 ScreenTape Agilent Cat#: 5067-5588 
High Sensitivity RNA ScreenTape Agilent Cat#: 5067-5579 
High Sensitivity RNA ScreenTape Sample Buffer Agilent Cat#: 5067-5580 
High Sensitivity RNA ScreenTape Ladder Agilent Cat#: 5067-5581 
RNeasy Mini Kit Qiagen Cat#: 74104 
BD Pharmingen™ 7-AAD BD Biosciences Cat#: 559925 
Calcein AM Invitrogen Cat#: C1430 
Draq7 BD Biosciences Cat#: 564904 
ultraView Universal DAB Detection Kit Roche Cat#: 5269806001 
Antibodies used for immunohistochemistry 
CD45 (clone 2B11&PD7/26) Roche Cat#: 5269423001 
P504s (clone SP116) Roche Cat#: 8035130001 
p63 (clone 4A4) Roche Cat#: 5867061001 
Deposited data 
BD Rhapsody dataset (in H5AD format) This study https://zenodo.org/record/8063560 
10X Chromium dataset Heidegger et al., Molecular Cancer 

2022 
GSE193337 

Software and algorithms 
Seven Bridges - BD Rhapsody™ WTA Analysis 

Pipeline 
Seven Bridges Genomics v1.7.1 

Cellranger v5.0.0 10X Genomics https://support.10xgenomics.com/single-cell-gene-expression/ 
software/pipelines/latest/what-is-cell-ranger 

QuPath Bankhead et al., Scientific Reports 
2017 

https://qupath.github.io 

M3Drop Andrews et al., Bioinformatics 2019 https://github.com/tallulandrews/M3Drop 
Integrative Genomics Viewer (IGV) Robinson JT et al., Nature 

Biotechnology 2011 
https://software.broadinstitute.org/software/igv/ 

GraphPad Prism Graphpad v9 
scanpy Wolf et al., Genome Biology 2018 https://github.com/scverse/scanpy 
scVI Gayoso et al., Nature Biotechnology 

2022 
https://github.com/scverse/scvi-tools 

decoupler-py Badia-i-Mompel P et al., 
Bioinformatics Advances 2022 

https://github.com/saezlab/decoupler-py 

DESeq2 Love et al., Genome Biology 2014 https://github.com/thelovelab/DESeq2 
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Georg Schäfer: Validation. Zlatko Trajanoski: Writing – review & editing. Dominik Wolf: Writing – review & editing, Resources, 
Funding acquisition, Conceptualization. Sieghart Sopper: Writing – review & editing, Validation, Supervision, Funding acquisition, 
Formal analysis, Conceptualization. Andreas Pircher: Writing – review & editing, Supervision, Investigation, Funding acquisition, 
Formal analysis, Conceptualization. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to 
influence the work reported in this paper. 

Acknowledgments 

This work was supported by by the Austrian Science Fund FWF (Grant-No. TAI-697) (DW), the “In Memoriam Gabriel Salzner 
Stiftung” (DW), the FFG grant of the Austrian Research Promotion Agency (Grant-No. 858057, HD FACS) (SSo), and the Austrian TWF 
grant (Grant-No F.16733/5–2019) (IH). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.heliyon.2024.e28358. 

References 

[1] D. Lambrechts, E. Wauters, B. Boeckx, S. Aibar, D. Nittner, O. Burton, et al., Phenotype molding of stromal cells in the lung tumor microenvironment, Nature 
medicine 24 (2018) 1277–1289. 

[2] X. Guo, Y. Zhang, L. Zheng, C. Zheng, J. Song, Q. Zhang, et al., Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing, Nature 
medicine 24 (2018) 978–985. 

[3] Q. Zhang, Y. He, N. Luo, S.J. Patel, Y. Han, R. Gao, et al., Landscape and dynamics of single immune cells in hepatocellular carcinoma, Cell 179 (2019) 829–845 
e820. 

[4] J. Goveia, K. Rohlenova, F. Taverna, L. Treps, L.C. Conradi, A. Pircher, et al., An integrated gene expression landscape profiling approach to identify lung tumor 
endothelial cell heterogeneity and angiogenic candidates, Cancer Cell 37 (2020) 421. 

[5] E. Azizi, A.J. Carr, G. Plitas, A.E. Cornish, C. Konopacki, S. Prabhakaran, et al., Single-cell map of diverse immune phenotypes in the breast tumor 
microenvironment, Cell 174 (2018) 1293–1308 e1236. 

[6] H. Li, A.M. van der Leun, I. Yofe, Y. Lubling, D. Gelbard-Solodkin, A.C.J. van Akkooi, et al., Dysfunctional CD8 T cells form a proliferative, dynamically 
regulated compartment within human melanoma, Cell 176 (2019) 775–789 e718. 

[7] F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, et al., mRNA-Seq whole-transcriptome analysis of a single cell, Nat. Methods 6 (2009) 377–382. 
[8] C. Zheng, L. Zheng, J.K. Yoo, H. Guo, Y. Zhang, X. Guo, et al., Landscape of infiltrating T cells in liver cancer revealed by single-cell sequencing, Cell 169 (2017) 

1342–1356 e1316. 
[9] J. Goveia, K. Rohlenova, F. Taverna, L. Treps, L.C. Conradi, A. Pircher, et al., An integrated gene expression landscape profiling approach to identify lung tumor 

endothelial cell heterogeneity and angiogenic candidates, Cancer Cell 37 (2020) 21–36 e13. 
[10] D. Ramskold, S. Luo, Y.C. Wang, R. Li, Q. Deng, O.R. Faridani, et al., Author Correction: full-length mRNA-Seq from single-cell levels of RNA and individual 

circulating tumor cells, Nat. Biotechnol. 38 (2020) 374. 
[11] S. Picelli, A.K. Bjorklund, O.R. Faridani, S. Sagasser, G. Winberg, R. Sandberg, Smart-seq2 for sensitive full-length transcriptome profiling in single cells, Nat. 

Methods 10 (2013) 1096–1098. 
[12] P. See, J. Lum, J. Chen, F. Ginhoux, Corrigendum: a single-cell sequencing guide for immunologists, Front. Immunol. 10 (2019) 278. 
[13] B. Phipson, L. Zappia, A. Oshlack, Gene length and detection bias in single cell RNA sequencing protocols, F1000Res 6 (2017) 595. 
[14] T. Kivioja, A. Vaharautio, K. Karlsson, M. Bonke, M. Enge, S. Linnarsson, et al., Counting absolute numbers of molecules using unique molecular identifiers, Nat. 

Methods 9 (2011) 72–74. 
[15] E. Hedlund, Q. Deng, Single-cell RNA sequencing: technical advancements and biological applications, Mol. Aspect. Med. 59 (2018) 36–46. 
[16] T. Kalisky, S. Oriel, T.H. Bar-Lev, N. Ben-Haim, A. Trink, Y. Wineberg, et al., A brief review of single-cell transcriptomic technologies, Brief Funct Genomics 17 

(2018) 64–76. 
[17] X. Zhang, T. Li, F. Liu, Y. Chen, J. Yao, Z. Li, et al., Comparative analysis of droplet-based ultra-high-throughput single-cell RNA-seq systems, Molecular cell 73 

(2019) 130–142 e135. 
[18] A.M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, et al., Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell 

161 (2015) 1187–1201. 
[19] E.Z. Macosko, A. Basu, R. Satija, J. Nemesh, K. Shekhar, M. Goldman, et al., Highly parallel genome-wide expression profiling of individual cells using nanoliter 

droplets, Cell 161 (2015) 1202–1214. 
[20] G.X. Zheng, J.M. Terry, P. Belgrader, P. Ryvkin, Z.W. Bent, R. Wilson, et al., Massively parallel digital transcriptional profiling of single cells, Nat. Commun. 8 

(2017) 14049. 

S. Salcher et al.                                                                                                                                                                                                        

https://doi.org/10.1016/j.heliyon.2024.e28358
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref1
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref1
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref2
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref2
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref3
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref3
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref4
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref4
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref5
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref5
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref6
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref6
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref7
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref8
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref8
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref9
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref9
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref10
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref10
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref11
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref11
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref12
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref13
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref14
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref14
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref15
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref16
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref16
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref17
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref17
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref18
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref18
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref19
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref19
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref20
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref20


Heliyon 10 (2024) e28358

17

[21] T.M. Gierahn, M.H. Wadsworth 2nd, T.K. Hughes, B.D. Bryson, A. Butler, R. Satija, et al., Seq-Well: portable, low-cost RNA sequencing of single cells at high 
throughput, Nat. Methods 14 (2017) 395–398. 

[22] X. Han, R. Wang, Y. Zhou, L. Fei, H. Sun, S. Lai, et al., Mapping the mouse cell atlas by microwell-seq, Cell 173 (2018) 1307. 
[23] H.C. Fan, G.K. Fu, S.P. Fodor, Expression profiling. Combinatorial labeling of single cells for gene expression cytometry, Science (New York, NY) 347 (2015) 

1258367. 
[24] E.Y. Shum, E.M. Walczak, C. Chang, H. Christina Fan, Quantitation of mRNA transcripts and proteins using the BD Rhapsody single-cell analysis system, 

Advances in experimental medicine and biology 1129 (2019) 63–79. 
[25] E. Mereu, A. Lafzi, C. Moutinho, C. Ziegenhain, D.J. McCarthy, A. Alvarez-Varela, et al., Benchmarking single-cell RNA-sequencing protocols for cell atlas 

projects, Nat. Biotechnol. 38 (2020) 747–755. 
[26] C. Ziegenhain, B. Vieth, S. Parekh, B. Reinius, A. Guillaumet-Adkins, M. Smets, et al., Comparative analysis of single-cell RNA sequencing methods, Molecular 

cell 65 (2017) 631–643 e634. 
[27] K.N. Natarajan, Z. Miao, M. Jiang, X. Huang, H. Zhou, J. Xie, et al., Comparative analysis of sequencing technologies for single-cell transcriptomics, Genome 

Biol. 20 (2019) 70. 
[28] T.M. Yamawaki, D.R. Lu, D.C. Ellwanger, D. Bhatt, P. Manzanillo, V. Arias, et al., Systematic comparison of high-throughput single-cell RNA-seq methods for 

immune cell profiling, BMC Genom. 22 (2021) 66. 
[29] X. Wang, Y. He, Q. Zhang, X. Ren, Z. Zhang, Direct comparative analyses of 10X genomics Chromium and smart-seq2, Dev. Reprod. Biol. 19 (2021) 253–266. 
[30] W. Chen, Y. Zhao, X. Chen, Z. Yang, X. Xu, Y. Bi, et al., A multicenter study benchmarking single-cell RNA sequencing technologies using reference samples, Nat. 

Biotechnol. 39 (2021) 1103–1114. 
[31] Y. Colino-Sanguino, LRdl Fuente, B. Gloss, A.M.K. Law, K. Handler, M. Pajic, et al., Systematic comparison of high throughput Single-Cell RNA-Seq platforms in 

complex tissues, bioRxiv 2023 (2023), 2004.2004.535585. 
[32] C. Gao, M. Zhang, L. Chen, The comparison of two single-cell sequencing platforms: BD Rhapsody and 10x genomics Chromium, Curr Genomics 21 (2020) 

602–609. 
[33] S. Salcher, G. Sturm, L. Horvath, G. Untergasser, C. Kuempers, G. Fotakis, et al., High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident 

neutrophils in non-small cell lung cancer, Cancer Cell 40 (2022) 1503–1520 e1508. 
[34] T. Hautz, S. Salcher, M. Fodor, G. Sturm, S. Ebner, A. Mair, et al., Immune cell dynamics deconvoluted by single-cell RNA sequencing in normothermic machine 

perfusion of the liver, Nat. Commun. 14 (2023) 2285. 
[35] I. Heidegger, G. Fotakis, A. Offermann, J. Goveia, S. Daum, S. Salcher, et al., Comprehensive characterization of the prostate tumor microenvironment identifies 

CXCR4/CXCL12 crosstalk as a novel antiangiogenic therapeutic target in prostate cancer, Mol. Cancer 21 (2022) 132. 
[36] B. Hwang, J.H. Lee, D. Bang, Single-cell RNA sequencing technologies and bioinformatics pipelines, Exp. Mol. Med. 50 (2018) 1–14. 
[37] M.D. Luecken, F.J. Theis, Current best practices in single-cell RNA-seq analysis: a tutorial, Mol. Syst. Biol. 15 (2019) e8746. 
[38] F. Ji, R.I. Sadreyev, Single-cell RNA-seq: introduction to bioinformatics analysis, Curr. Protoc. Mol. Biol. 127 (2019) e92. 
[39] Q. Zhao, J. Wang, I.V. Levichkin, S. Stasinopoulos, M.T. Ryan, N.J. Hoogenraad, A mitochondrial specific stress response in mammalian cells, The EMBO journal 

21 (2002) 4411–4419. 
[40] T. Ilicic, J.K. Kim, A.A. Kolodziejczyk, F.O. Bagger, D.J. McCarthy, J.C. Marioni, et al., Classification of low quality cells from single-cell RNA-seq data, Genome 

Biol. 17 (2016) 29. 
[41] D. Osorio, J.J. Cai, Systematic determination of the mitochondrial proportion in human and mice tissues for single-cell RNA-sequencing data quality control, 

Bioinformatics 37 (2021) 963–967. 
[42] S. Chen, G. Zhu, Y. Yang, F. Wang, Y.T. Xiao, N. Zhang, et al., Single-cell analysis reveals transcriptomic remodellings in distinct cell types that contribute to 

human prostate cancer progression, Nat. Cell Biol. 23 (2021) 87–98. 
[43] J.E. Wilusz, C.K. JnBaptiste, L.Y. Lu, C.D. Kuhn, L. Joshua-Tor, P.A. Sharp, A triple helix stabilizes the 3’ ends of long noncoding RNAs that lack poly(A) tails, 

Genes & development 26 (2012) 2392–2407. 
[44] A. Naveed, J.A. Cooper, R. Li, A. Hubbard, J. Chen, T. Liu, et al., NEAT1 polyA-modulating antisense oligonucleotides reveal opposing functions for both long 

non-coding RNA isoforms in neuroblastoma, Cell. Mol. Life Sci. : CMLS 78 (2021) 2213–2230. 
[45] J.C. Schupp, T.S. Adams, C. Cosme Jr., M.S.B. Raredon, Y. Yuan, N. Omote, et al., Integrated single-cell atlas of endothelial cells of the human lung, Circulation 

144 (2021) 286–302. 
[46] M. Eisenstein, Startups use short-read data to expand long-read sequencing market, Nat. Biotechnol. 33 (2015) 433–435. 
[47] F.A. Wolf, P. Angerer, F.J. Theis, SCANPY: large-scale single-cell gene expression data analysis, Genome Biol. 19 (2018) 15. 
[48] I. Virshup, S. Rybakov, F.J. Theis, P. Angerer, F.A. Wolf, anndata: annotated data, bioRxiv 2021 (2021), 2012.2016.473007. 
[49] C. Xu, R. Lopez, E. Mehlman, J. Regier, M.I. Jordan, N. Yosef, Probabilistic harmonization and annotation of single-cell transcriptomics data with deep 

generative models, Mol. Syst. Biol. 17 (2021) e9620. 
[50] A. Gayoso, R. Lopez, G. Xing, P. Boyeau, V. Valiollah Pour Amiri, J. Hong, et al., A Python library for probabilistic analysis of single-cell omics data, Nat. 

Biotechnol. 40 (2022) 163–166. 
[51] E. Becht, L. McInnes, J. Healy, C.A. Dutertre, I.W.H. Kwok, L.G. Ng, et al., Dimensionality reduction for visualizing single-cell data using UMAP, Nat. Biotechnol. 

37 (2019) 38–44. 
[52] V.A. Traag, L. Waltman, N.J. van Eck, From Louvain to Leiden: guaranteeing well-connected communities, Sci. Rep. 9 (2019) 5233. 
[53] I.M.P. Badia, J. Velez Santiago, J. Braunger, C. Geiss, D. Dimitrov, S. Muller-Dott, et al., decoupleR: ensemble of computational methods to infer biological 

activities from omics data, Bioinform Adv 2 (2022) vbac016. 
[54] M.I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol. 15 (2014) 550. 
[55] J.W. Squair, M. Gautier, C. Kathe, M.A. Anderson, N.D. James, T.H. Hutson, et al., Confronting false discoveries in single-cell differential expression, Nat. 

Commun. 12 (2021) 5692. 
[56] T.S. Andrews, M. Hemberg, M3Drop: dropout-based feature selection for scRNASeq, Bioinformatics 35 (2019) 2865–2867. 
[57] J.T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, et al., Integrative genomics viewer, Nat. Biotechnol. 29 (2011) 24–26. 
[58] P. Bankhead, M.B. Loughrey, J.A. Fernandez, Y. Dombrowski, D.G. McArt, P.D. Dunne, et al., QuPath: open source software for digital pathology image analysis, 

Sci. Rep. 7 (2017) 16878. 

S. Salcher et al.                                                                                                                                                                                                        

http://refhub.elsevier.com/S2405-8440(24)04389-5/sref21
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref21
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref22
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref23
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref23
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref24
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref24
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref25
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref25
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref26
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref26
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref27
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref27
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref28
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref28
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref29
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref30
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref30
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref31
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref31
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref32
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref32
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref33
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref33
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref34
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref34
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref35
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref35
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref36
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref37
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref38
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref39
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref39
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref40
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref40
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref41
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref41
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref42
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref42
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref43
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref43
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref44
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref44
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref45
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref45
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref46
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref47
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref48
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref49
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref49
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref50
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref50
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref51
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref51
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref52
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref53
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref53
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref54
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref55
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref55
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref56
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref57
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref58
http://refhub.elsevier.com/S2405-8440(24)04389-5/sref58

	Comparative analysis of 10X Chromium vs. BD Rhapsody whole transcriptome single-cell sequencing technologies in complex hum ...
	1 Introduction
	2 Results
	2.1 Droplet- vs. microwell-based single-cell RNA sequencing of PCa and benign prostate tissues
	2.2 Microwell-based single-cell RNA sequencing results in elevated levels of mitochondrial transcripts
	2.3 Sample-multiplexing by sample-tag antibody staining impairs RNA quality
	2.4 The microwell-based platform captures significantly more mRNA molecules per cell
	2.5 Prostate cancer tumor microenvironment mapping by microwell- and droplet-based single-cell RNA sequencing
	2.6 Molecule capture efficiency and sequencing library complexity
	2.7 Platform-dependent cellular composition in single-cell RNA sequencing data

	3 Discussion
	4 Limitations of the study
	Ethics Declarations
	Data availability statement
	Star methods
	Resource availability
	Experimental model and subject details
	Human subjects

	Method details
	10X Chromium library preparation and sequencing
	BD Rhapsody library preparation and sequencing

	Preprocessing and quality control of scRNA-seq data
	Integration of scRNA-seq datasets
	Differential gene expression testing
	Dropout ratio analysis
	Gene body coverage analysis
	RNA quality of single-cell suspensions derived from NSCLC and normal lung tissue
	Immunohistochemistry
	Quantification and statistical analysis


	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix A Supplementary data
	References


