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Abstract

Large DNA assembly methodologies underlie milestone achievements in synthetic prokaryotic and 

budding yeast chromosomes. While budding yeast control chromosome inheritance through ~125 

bp DNA sequence-defined centromeres, mammals and many other eukaryotes use large, epigenetic 

centromeres. Harnessing centromere epigenetics permits human artificial chromosome (HAC) 

formation but is not sufficient to avoid rampant multimerization of the initial DNA molecule upon 

introduction to cells. Here, we describe an approach that efficiently forms single-copy HACs. It 

employs a ~750 kb construct that is sufficiently large to house the distinct chromatin types present 

at the inner and outer centromere, obviating the need to multimerize. Delivery to mammalian 

cells is streamlined by employing yeast spheroplast fusion. These developments permit faithful 

chromosome engineering in the context of metazoan cells.
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A quarter century after the first human artificial chromosomes, a solution to their uncontrolled 

multimerization is achieved.

Yeast artificial chromosomes (YACs) (1–3) are typically 0.1-1 Mb and permitted triumphs 

of molecular biology including the cloning of large disease genes (4) and the generation 

of entire synthetic prokaryotic genomes (5, 6). They also provided the foundation for 

the generation of entirely synthetic budding yeast chromosomes (7). ‘Writing’ new 

chromosomes, or even entire genomes, is an aspiration for synthetic biologists working in 

diverse eukaryotes, including in mammalian and plant systems (8, 9), because it would 

enable applications of genome engineering across research, biotechnology, and health-

related landscapes (8).

Human artificial chromosomes (HACs) were developed ~25 years ago (10–12) and are on 

average 1-10 Mb in their functional form after their establishment in cells. They pave the 

way for advances and insights in eukaryotic systems where a specific key chromosomal 

locus, the centromere, is typically more than a thousand times larger than a budding yeast 

point centromere and is functionally defined not by a particular sequence but by an array 

of nucleosomes containing a histone H3 variant, CENP-A (13). Unlike YACs in yeast, an 

unintended byproduct of de novo HAC formation is multimerization of the initial input 

DNA construct—typically 100-200 kb bacterial artificial chromosomes (BACs)—creating 

functional HACs with a variable number of multimers (typically >40-fold) (14–16). The 

multimerization and the uncontrolled rearrangement of the input DNA that accompanies it 

during the early steps of HAC formation (often with equally unintended incorporation of 

portions of natural chromosomes) has severely hindered their development towards their 

broader promise for synthetic biology and therapeutic applications (17). We have now 

overhauled the design and delivery of HACs: instead of trying to control the multimerization 

process, we sought to bypass it completely by increasing the size of the input DNA. 

Here we report success in forming single-copy HACs at an overall efficiency of de novo 
establishment that surpasses all earlier versions.

Results

An overhauled platform for efficient HAC formation

We predicted that to remain single-copy and avoid multimerization, the initial construct 

would need to be larger than the BAC-based HAC constructs of earlier versions (14–16). 

This is based on the understanding that centromeres require multiple domains with distinct 

functions that are spatially separated at mitosis when cohered sister chromatids align 

on the microtubule-based spindle (18). While the centromeric region harboring CENP-A 

nucleosomes (the region for assembling the mitotic kinetochore) typically discontinuously 

spans ~75-300 kb (19–22), the inner centromere is another largely heterochromatic 

region that regulates sister chromatid cohesion and a quality control pathway (termed 

“error correction”) that monitors bipolar spindle attachment. We reasoned that BAC-

based HAC constructs, which typically start in the 100-300 kb size-range (14–16), can 

likely only form when multimerization occurs. The larger size is presumably required 

to accommodate formation of both distinct chromatin domains that define a functional 
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centromere. Conversely, we reasoned that starting with a larger initial construct will bypass 

this requirement, allowing HACs to form more frequently and without multimerization.

To test our prediction, we devised a scheme that employs three recent technical advances 

to build and test a single-copy HAC construct (fig. S1A). First, YAC constructs are 

readily generated in the 0.5-2 Mb size range (5, 23) through transformation-associated 

recombination (TAR) cloning (24). Second, bypassing the requirement for long (>40 kb) 

stretches of highly repetitive centromere DNA (α-satellite) for HAC formation (16) permits 

the use of non-repetitive DNA. This is critical since TAR cloning is not compatible with 

long repetitive sequences (25). Third, large YAC constructs can be efficiently delivered to 

mammalian cells via optimized fusion with yeast spheroplasts (23), potentially leading to a 

marked increase in independent HAC formation events relative to what has been achieved 

with low-efficiency transfection-based delivery of BAC-based HAC vectors in prior versions 

(14–16).

The HAC template was constructed through TAR assembly starting with a YAC harboring 

550 kb of M. mycoides genomic DNA (6), 4q21 BACLacO (16), and linkers for 

recombination that also include a yeast auxotrophic marker and a mammalian expression 

cassette for mCherry (fig. S1A). M. mycoides genomic DNA was chosen because it 

represents a heterologous DNA sequence that is known to be readily propagated in budding 

yeast (6). It serves as a non-coding sequence in the context of a eukaryotic cell and 

is not expected to elicit unintended or detrimental impact on HAC formation or cell 

function. It was also attractive because the AT richness of the M. mycoides DNA (~75%) 

is anticipated to support the heterochromatic nature of the inner centromere. Further, M. 
Mycoides DNA has already been efficiently delivered to cultured human cells (23), and it 

allows for unambiguous detection of HACs because it is comprised of unique, non-human 

sequence. 4q21 BACLacO was chosen because it is the only HAC construct comprised of 

non-repetitive DNA (182 kb of DNA from human chromosome 4 at the 4q21 locus) that has 

been demonstrated to form functional HACs, instead of the 40-200 kb of highly repetitive 

α-satellite-based BAC constructs that prior HAC studies have used (14–16, 26). The LacO 

array on 4q21 BACLacO permits subsequent targeting of mCherry-LacI-HJURP for initial 

seeding of CENP-A nucleosomes (16). We termed the new construct, YAC-Mm-4q21LacO.

For recipient cells, we used the HT1080Dox-inducible mCherry-LacI-HJURP line in which 

4q21 BACLacO-based HACs were seeded with CENP-A nucleosomes (16). The HT1080 

background, in general, was chosen because it is the one in which HAC formation 

has historically been performed (11, 12, 14–16, 26) due to its chromatin state that is 

permissive to occasional centromere formation (27). We also generated a second recipient 

line, U2OSDox-inducible mCherry-LacI-HJURP, since the U2OS background are established as 

an efficient recipient of YACs via spheroplast fusion (23). Both of our chosen recipient 

lines were first optimized for spheroplast fusion conditions (fig. S2) and then subjected 

to HAC formation assays with YAC-Mm-4q21LacO (Fig. 1; fig. S2; fig. S3). Following 

spheroplast fusion, we noted that, unlike prior HAC assays where only ~40 surviving 

colonies emerge in 2-3 weeks, a nearly confluent monolayer of G418-S-resistant cells was 

present after 8 days of selection. For both recipient cell types, a substantial proportion 

(42 +/− 9% and 46 +/− 5%) of the neomycin-resistant cells harbor HACs. Most or all 
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of these are substantially smaller in size (<1 μm) (Fig. 1, B–D) than the multimerized 

HACs of prior generations (~2 μm) (14–16). Without induction of mCherry-LacI-HJURP, 

there was only a very small proportion of HACs, with the majority of cells with detectable 

FISH signal coming from an integration into a natural chromosome of the recipient cell 

(Fig. 1C). Our initial findings, therefore, strongly indicate exceedingly high efficiency of 

YAC delivery, robust HAC formation rates upon seeding CENP-A nucleosome assembly, 

essentially uniform avoidance of the stochastic and highly unlikely multimerization that has 

accompanied prior systems for de novo HAC formation, and no restriction to the specific 

cell line (HT1080) to which prior generations of HACs were confined.

YAC-Mm-4q21LacO HACs harbor multi-domain centromeres for faithful 

inheritance

We next sought to test the degree to which the centromeres on the HACs could support 

mitotic function. Starting from the polyclonal population of cells that survived G418-S 

selection (Fig. 1), we screened 24 monoclonal isolates and identified 8 lines harboring 

HACs (the other lines included 2 in which YAC-Mm-4q21LacO had integrated into a natural 

chromosome and 14 with no detectable HAC) and measured the proportion of cells in 

each harboring a detectable HAC (Fig. 2, A and B). Sequencing analysis of four of the 

monoclonal isolates revealed the presence of the HAC, but no evidence of any integration of 

the endogenous yeast chromosomes that were also introduced during the initial spheroplast 

fusion step (fig. S4). Our findings are consistent with prior studies where yeast chromosome 

segregation after spheroplast fusion was only observed after strong selection for rare genome 

integration events (28). Overall, the majority of cells upon isolation of a clonal line harbor 

HACs, matching this property of our prior generations of HACs (11, 12, 14, 16). Four of 

the lines (colored data points in graph in Fig. 2B) were subjected to three independent HAC 

stability assays over a month of growth in the absence of antibiotic selection (Fig. 2C). 

The average daily HAC loss rate of 0.011 +/− 0.006 (Fig. 2C) was similarly low as prior 

generations of HACs (12, 16, 29).

To further interrogate our initial hypothesis that a larger initial HAC construct would 

confer full centromere function, we assessed the mitotic recruitment of a key component 

of the inner centromeric error correction mechanism, the Aurora B kinase (18). The inner 

centromere includes chromatin marked with H3T3phos and H2AT121phos modifications for 

recruiting the Chromosome Passenger Complex (CPC), containing Aurora B (30–32). 

Inner centromeric chromatin spans several Mb on natural chromosomes (33). The inner 

centromere in metazoans is not a single thread of chromatin but rather thought to be 

a densely packed region that spans a linear distance of 500-1000 nm between sister 

centromeres (34, 35). Given the high-fidelity transmission of our HACs (Fig. 2C), we 

predicted that they are sufficiently large to generate a robust inner centromere that recruits 

Aurora B. In order to have the necessary dispersion of chromosomes in the mitotic cell 

for robust detection of the HAC via expression of GFP-LacI, we induced the formation 

of monopolar spindles and assessed both the kinetochore forming part of the paired sister 

HACs (with anti-centromere antibodies; ACA) and the inner centromere (with antibodies to 

Aurora B) (Fig. 2, D and E; fig. S5). Aurora B was found in 33/35 HACs. Thus, our findings 
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suggest that the increased size of YAC-Mm-4q21LacO relative to prior HAC constructs 

permits a robust inner centromere without the need to undergo large-scale multimerization. 

This is critical since it endows YAC-Mm-4q21LacO HACs with the ability to segregate in 

mitosis at high fidelity alongside natural counterparts.

Single-copy HACs

The small physical size of HACs formed from YAC-Mm-4q21LacO (Fig. 1) raised the 

possibility that they can form without any multimerization at all. To test this notion, 

we sought a cytological approach that reports on copy number without the deformations 

that happen naturally when chromosomes are attached to and stretched by the spindle or 

otherwise confounded by mitotic chromosome condensation. Fortuitously, we found that 

nuclear envelope lysis during isolation of nuclei releases the small HACs formed with 

YAC-Mm-4q21LacO that are subsequently efficiently separated from the rest of the genome 

via centrifugation (Fig. 3A; fig. S6). We harvested the top gradient fractions in the 10% 

sucrose layer (i.e. above the visible cell debris), and determined the location of CENP-A 

and the LacO sequences (Fig. 3B). We anticipated a single CENP-A focus on interphase 

HACs, even after replication, since sister centromeres are not separated into distinct foci 

on natural chromosomes until just prior to nuclear envelope breakdown near mitotic onset 

(36). LacO arrays, on the other hand, when present on repeated HAC constructs do not 

coalesce into a single focus (16). HACs were readily identified in these fractions, permitting 

us to visualize an individualized and functional metazoan chromosome in its decondensed, 

interphase form (Fig. 3B). In the vast majority of HACs, CENP-A and LacO staining each 

produced a single focus (Fig. 3B). We did not observe any HACs with a single CENP-A 

focus and more than one LacO focus. A small number of HACs harbored two CENP-A foci, 

consistent with them coming from cells that were in late G2 or early mitosis (i.e. prior to 

sister chromatid separation) at the time of isolation. Each of these also had precisely two 

LacO foci (Fig. 3B). Unlike the single-copy YAC-Mm-4q21LacO HACs, prior generations of 

HACs are large multimers that do not separate from endogenous chromosomes during nuclei 

isolation (16). In these HACs, CENP-A and LacO arrays are readily visualized on mitotic 

HACs in chromosome spreads (Fig. 3C). For the prior generation of HACs, the paired, 

replicated centromeres are visible as ‘double dots’ of CENP-A, whereas the LacO arrays are 

visible as numerous foci (Fig. 3C). Taken together with the earlier detection from uniformly 

small-sized HACs from populations of cells with nascent YAC-Mm-4q21LacO HACs (Fig. 

1, B–D), our interphase HAC experiments (Fig. 3B) indicate that the new HACs are formed 

and maintained without multimerization.

We next assessed the size and topology of functional YAC-Mm-4q21LacO-based HACs 

(Fig. 4). This is important because earlier generations of HACs typically formed in a 

manner accompanied by large-scale DNA sequence multimerization and even acquisition 

of portions (>100 kb) of host cell chromosomal DNA (16, 37, 38). YAC-Mm-4q21LacO 

contains a single FseI site (fig. S1), and we found that two isolated HAC-containing cell 

lines required FseI digestion to enter a pulse-field gel (Figs. 4A; fig. S7). This is consistent 

with well-established topological trapping of circular chromosomes prior to digestion (39). 

The mobility of the linearized HAC suggests that it has not lost or gained large fragments of 

DNA (Fig. 4A; fig. S7). We compared this to a circular, multimerized BAC-based HAC (16) 
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that has one FseI site per repeating ~200 kb monomer (Figs. 4A; fig. S7). Along with our 

cytological data indicating the HACs are single copy (Fig. 3), their behavior on pulse-field 

gels (Figs. 4A; fig. S5) support the notion that they function and are inherited through cell 

divisions with the same single-copy circular nature in which they were initially constructed 

in yeast.

To cytologically examine YAC-Mm-4q21LacO as it exists in yeast and then after it forms 

a functional HAC in human cells, we employed a well-established chromatin stretching 

approach (34, 40) (Fig. 4, B–H; fig. S8). This permits us to monitor the 182 kb region of 

4q21 present on the HACs in comparison to the initial YAC construct or the endogenous 

locus on chromosome 4 (Fig. 4, B–H). The degree of stretching we achieved is about 3-fold, 

making the circle fold back upon itself (Figs. 4, B–D; fig. S8). Stretching maintains large 

blocks (roughly 40 kb) of chromatin linked by highly stretched regions with little or no 

detectable FISH signal (Fig. 4, C and D and G; fig. S8). The overall length of the HAC 

in human cells was greater than the YAC in yeast, but smaller than native 4q21 (Fig. 4E). 

The number of 4q21 foci produced by stretching of the YAC in yeast or at the native locus 

and HAC in mammalian cells is similar (Fig. 4F). We conclude that the similarity of YACs 

and HACs reflects the absence of rampant multimerization or other substantial molecular 

changes (Fig. 4, C–F; fig. S1; fig. S4), with relatively subtle changes in length and foci 

number likely reflecting differences in chromatin properties between budding yeast and 

human cells (41, 42).

The number of 4q21 foci observed on the HAC varied greatly, revealing the possible 

existence of two HAC populations (Fig. 4F). We reasoned that the HAC would be visualized 

as a single chromatid early in the cell cycle (G1 and early S phase) but would be visualized 

as paired chromatids later in the cell cycle (late S, G2, and M). On the other hand, the native 

4q21 locus would be visualized in stretching experiments as a single chromatid, even late in 

the cell cycle, since each natural chromosome arm location would make its own chromatin 

fiber. To test this notion, we enriched cells in mitosis, prior to sister chromatid separation, 

and found that the average number of 4q21 foci in the HAC increased from 4.9 (+/− 2.9) 

to 8.2 (+/− 2.1) (Fig. 4H) relative to those from asynchronous cell populations (Fig. 4F), 

whereas, the endogenous 4q21 locus has a similar number of foci after stretching in both 

instances (Fig. 4, F and H). We note that the M. mycoides chromatin appears to be relatively 

resistant to stretching, since there is a similar number of foci and length (Fig. 4, C and 

D; fig. S8) despite its three-fold greater length relative to 4q21 on YAC-Mm-4q21LacO. A 

likely explanation is that the AT-rich M. mycoides sequence has denser chromatin relative 

to the human 4q21 sequence, which could be rendered by histone modifications and/or AT-

hook protein-mediated compaction. Indeed, in addition to CENP-A-containing chromatin, 

a portion of the HAC DNA contains chromatin harboring H3K9me3 (Fig. S6), suggesting 

it harbors the heterochromatin typically found in pericentromeric regions and offering a 

means through which differences in chromatin stretching could be achieved (43, 44). HAC 

stretching supports the notion of a chromatinized circular topology supporting propagation 

and inheritance in dividing cells.
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Discussion

De novo HACs, like the ones we advance in this paper, are the only viable platform 

to generate a new mammalian chromosome where the entire DNA sequence can be 

designed in the lab. This presents an extremely wide horizon of possibilities for downstream 

biological and applied uses, and we report a system to create HACs that faithfully exist 

in their functional form as a single copy. The advances are centered on the portion of the 

chromosome, the centromere, that controls segregation of the HAC at cell division. Single-

copy HAC formation requires establishment of a high local density of CENP-A nucleosomes 

that can self-propagate alongside natural centromeres (16), but this is not sufficient for 

centromere function. Rather, an entirely different chromatin domain, the inner centromere, 

must function in mitotic quality control and control of sister chromatid cohesion. The HACs 

formed from the YAC-Mm-4q21LacO are large enough to harbor robust CENP-A arrays and 

inner centromeric chromatin (Fig. 2; Fig. 4I; fig. S9).

The overhauled HAC cell delivery approach via spheroplast fusion was necessary because 

the initial construct is too large to reliably purify. It further has the benefit of being far more 

efficient than HAC construct transfections. YACs from spheroplasts will be packaged into 

chromatin, which may also contribute to the high rate of HAC formation upon introduction 

into mammalian cells. The overall high efficiency of HAC delivery and formation upon 

moving to spheroplast fusion-based delivery has important practical implications for the 

development and testing of specific features of HACs. In prior generations of HACs, 

rigorous testing of a modest number of constructs or cell lines required the isolation and 

subsequent cytological assessment of hundreds of cell lines that are cloned weeks after 

initial HAC construct transfection (16, 27), since the initial selected cell populations are so 

sparse and HAC formation is so inefficient. With the YAC-Mm-4q21LacO platform, we can 

measure high HAC formation efficiency in rapidly generated cell populations, obviating the 

need to isolate clonal lines. To quantify the proportion of HACs with the replicates shown 

in Fig. 1D, we would have needed to generate a minimum of hundreds of cell lines with 

our prior approach (16). One can easily envision a multitude of HAC features –including 

their genetic cargo and recipient cell types—that are attractive to test in the future. There 

are many potential opportunities for further optimization: some common to prior generations 

of HACs and some that arise because of the single copy nature of YAC-Mm-4q21LacO. For 

instance, gene silencing on HACs is a known challenge (45) that confounds expression of 

selection markers, reporters, and eventually other useful genetic payloads. The instability 

of all generations of HACs, including YAC-Mm-4q21LacO HACs (Fig. 2C) relative to 

natural chromosome could be impacted by several modifiable factors. These include, 

but aren’t limited to, HAC topology (i.e., circular versus linear), size of pericentromeric 

heterochromatin (fig. S6), and the choice of stuffer DNA. For the latter, we note that while 

the extreme AT-richness in the stuffer M. mycoides DNA present in YAC-Mm-4q21LacO 

may positively contribute to forming a functional inner centromere (Fig. 2), it causes barriers 

to routine high-throughput sequence-based approaches (fig. S4) that could otherwise be 

employed to map distinct chromatin features. YAC-Mm-4q21LacO represents an attractive 

platform for HAC debugging—using synthetic budding yeast chromosomes as a model (46)

—and for gaining new insights into mammalian chromosome biology while doing so. The 
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central innovations with YAC-Mm-4q21LacO are that it avoids the rampant multimerization 

that has complicated past HAC efforts and that it permits rapid assessment of HAC function 

(Fig. 1). The latter is bound to accelerate the pace of future HAC debugging.

Artificial chromosomes, more broadly, could deliver useful cargos for biomedical and 

industrial applications in a variety of eukaryotes. Since both the CENP-A-based epigenetic 

centromere specification mechanism and the inner centromeric dimensions and molecular 

constituency (e.g. sister centromere cohesion components and CPC) are common to diverse 

eukaryotic species, including in many agriculturally important plants, we envision that 

YAC-Mm-4q21LacO-based artificial chromosomes will be readily modified and extended 

into many useful biological systems. For advancing the understanding of chromosomes, 

HACs can be used as testing grounds for designing what nature has evolved to ensure 

the stability of our genome, as well as designing the functional features that govern 

chromosome “outputs” in gene expression programs and epigenetic regulation. In summary, 

the advancements made in this study to HAC design, delivery, formation, and function will 

expedite both discovery-based and applied genome science.
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Fig. 1. 760 kb HAC constructs efficiently acquire centromeres and exist as autonomous 
chromosomes.
(A) Schematic of approach to generate a HAC. (B) Representative images of a single-copy 

HAC generated in HT1080 and U2OS cells. Insets: 5x magnification. Bar, 5 μm. See 

also Table S1. (C) Quantification of proportion of “small HACs” (FISH signal spans less 

than 1 μm), “large HACs” (FISH signal spans greater than 1 μm), “integrations” and “no 

signal” spreads generated from HAC formation assays. The mean (+/− SD) is shown. (D) 
Comparison of size of a HAC made from YAC-Mm-4q21LacO and a multimerized HAC 

made from 4q21 BACLacO. Both HACs are shown at the same scale. Coloring is identical to 

what is shown in the merged images in panel B. Bar, 1 μm.
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Fig. 2. YAC-Mm-4q21LacO-based HACs are inherited as autonomous chromosomes with 
functional kinetochores and robust CPC recruitment.
(A) Representative image of a single copy HAC that has been isolated in a monoclonal cell 

line. Inset: 5x magnification. Bar, 5 μm. (B) Quantification of fraction of spreads with a 

HAC in monoclonal cell lines. The mean (+/− SD) is shown. Colors indicate individual 

HAC lines that were assessed in HAC retention assays. Red, orange, green and blue 

correspond to HAC clones 1, 2, 3, and 5. (C) Quantification of HAC loss rate after culturing 

without selection for 30 days. The mean (+/−SD) is shown. Experiments are color coded to 

correspond to the clones shown in panel B. Grey shading indicates the range of loss rates 

for prior generations of HACs (12, 16, 29). (D) Representative image of HACs synchronized 

in mitosis showing Aurora B and ACA. The image shows 8 0.2 μm z-projected stacks (see 

also Fig. S4 for centromere delineation in the z-dimension). Inset: 5x magnification. Bar, 

5 μm. (E) The radial position of HACs was measured relative to endogenous centromeres. 

The position of 20 HACs, each endogenous centromere and the center of DNA mass was 

measured. The distance between HAC or endogenous centromere and the center of DNA 

mass was calculated. The distance of each HAC from the center was normalized based 

on the total length across (i.e. the diameter) of mitotic chromosomes. The inner black 

circle represents the mean radial position of endogenous centromeres, while the dotted line 

represents one standard deviation from the mean. An illustration is shown below the graph.
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Fig. 3. YAC-Mm-4q21LacO HACs are functional as single copy DNA.
(A) Schematic of approach used to enrich single copy HACs. (B) Representative image of 

HACs isolated by sucrose gradient with either a single or two foci of LacO. The proportion 

of HACs with a single or two foci is noted. HACs with two LacO foci also had two CENP-A 

foci suggesting that they are mitotic. Bar, 1 μm. (C) Representative image of a multimerized 

HAC (Clone 27 from (16)) from mitotic chromosome spreads. Bar, 1 μm.
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Fig. 4. YAC-Mm-4q21LacO-based HACs are intact 760 kb circles with similar chromatin 
stretching properties as natural chromosomes.
(A) Southern bot analysis of the indicated HAC lines using a LacO probe. The multimerized 

HAC line was diluted 20-fold in HT1080 cells to reduce signal relative to the YAC-

Mm-4q21LacO-based HAC so that they could be in a similar range of detection. (B) 
Schematic showing extent of stretching HACs in our experiments (panels D-H), with 

indicated regions detected by FISH. The number of foci shown is in the range predicted 

by prior stretching experiments with natural chromosomes, with actual outcomes measured 
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in panels C-G and fig. S6. (C) Representative images of a stretched YAC with both the 4q21 

and M. mycoides sequence labeled via FISH compared to endogenous 4q21 in asynchronous 

cells. Bar, 1 μm. (D) Representative images of an unstretched and stretched HAC with both 

the 4q21 and M. mycoides sequence labeled via FISH compared to endogenous 4q21 in 

asynchronous cells. Bar, 1 μm. (E) Quantification of the length of 4q21 FISH in the YAC, 

HAC and the endogenous chromosome after stretching chromatin in asynchronous cells. The 

mean (+/− SD) is shown. p< 0.001 and p < 0.05 based on an unpaired, two-tailed t-test. 

(F) Quantification of the number of foci from 4q21 FISH in the YAC, HAC and in the 

endogenous chromosome after stretching chromatin in asynchronous cells. The mean (+/− 

SD) is shown. p values > 0.05 based on an unpaired, two-tailed t-test and is marked as not 

significant (n.s.). (G) Representative images of a stretched HAC with both the 4q21 and 

M. mycoides sequence labeled via FISH after enriching for cells in metaphase. Bar, 1 μm. 

(H) Quantification of the number of foci from 4q21 FISH in the HAC and the endogenous 

chromosome after stretching chromatin and enriching for cells in metaphase. The mean (+/− 

SD) is shown. p < 0.0001 based on an unpaired, two-tailed t-test. (I) Model illustrating how 

construct size influences HAC formation outcomes. Single-copy BAC-based HACs have 

never been isolated and are shown as too small to harbor a functional inner centromere.
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