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Abstract

Alzheimer’s disease (AD) is the most common cause of dementia, accounting for an estimated 

60–80% of cases, and is the sixth-leading cause of death in the United States. While considerable 

advancements have been made in the clinical care of AD, it remains a complicated disorder that 

can be difficult to identify definitively in its earliest stages. Recently, mass spectrometry (MS)-

based metabolomics has shown significant potential for elucidation of disease mechanisms and 

identification of therapeutic targets as well diagnostic and prognostic markers that may be useful 

in resolving some of the difficulties affecting clinical AD studies, such as effective stratification. 

In this study, complementary gas chromatography- and liquid chromatography-MS platforms 

were used to detect and monitor 2080 metabolites and features in 48 postmortem tissue samples 

harvested from the superior frontal gyrus of male and female subjects. Samples were taken from 

four groups: 12 normal control (NC) patients, 12 cognitively normal subjects characterized as high 

pathology controls (HPC), 12 subjects with nonspecific mild cognitive impairment (MCI), and 12 

subjects with AD. Multivariate statistics informed the construction and cross-validation (p < 0.01) 

of partial least squares-discriminant analysis (PLS-DA) models defined by a nine-metabolite panel 

of disease markers (lauric acid, stearic acid, myristic acid, palmitic acid, palmitoleic acid, and 

four unidentified mass spectral features). Receiver operating characteristic analysis showed high 

predictive accuracy of the resulting PLS-DA models for discrimination of NC (97%), HPC (92%), 

MCI (~96%), and AD (~96%) groups. Pathway analysis revealed significant disturbances in lysine 

degradation, fatty acid metabolism, and the degradation of branched-chain amino acids. Network 

analysis showed significant enrichment of 11 enzymes, predominantly within the mitochondria. 

The results expand basic knowledge of the metabolome related to AD and reveal pathways that 

can be targeted therapeutically. This study also provides a promising basis for the development of 
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larger multisite projects to validate these candidate markers in readily available biospecimens such 

as blood to enable the effective screening, rapid diagnosis, accurate surveillance, and therapeutic 

monitoring of AD. All raw mass spectrometry data have been deposited to MassIVE (data set 

identifier MSV000087165).

Graphical Abstract
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disorder marked primarily by cognitive 

decline and dementia,1,2 in addition to the accumulation of extracellular amyloid β (Aβ) 

plaques and intracellular neurofibrillary tau tangles.3,4 AD is the most common cause of 

adult dementia, accounting for 60–80% of cases worldwide5 and is the sixth-leading cause 

of death in the United States.6 Currently, AD affects more than 5.8 million Americans,5,7 

with prevalence expected to triple by 2050.8 In the United States, total payments in 2020 

for healthcare, long-term care, and hospice services are estimated to be $305 billion.6 

Consequently, AD represents a significant threat to human health and exerts a substantial 

financial and societal impact.

Considerable advancements have been made in the ability to accurately diagnose AD, 

largely owing to the development of positron emission tomography (PET) scans for 

detection of plaques and tangles, as well as cerebral spinal fluid (CSF) and plasma tests 

for AD-associated biomarkers.9 However, treatment of patients and appropriate evaluation 

of the outcomes of clinical studies remain complicated by the many unknowns involved in 

AD. Individuals with mild cognitive impairment (MCI) may be in the early stages of AD or 

may be affected by an unrelated disease process, confounding studies of early interventional 
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treatments. In addition, some individuals with intermediate to high levels of AD-associated 

pathology (plaques and tangles) do not display cognitive deficits,10 indicating at least a 

partial disconnect between those specific pathologies and cognitive function. These resilient 

individuals, known as high pathology controls (HPC), can sustain AD-consistent pathology 

such as high amyloid loads, synaptic and neuronal demise, demyelination, and atrophy while 

simultaneously remaining cognitively intact.10,11 Although critical to our understanding 

of pathology- and cognition-specific metabolic alterations underlying AD,10-12 this group 

remains understudied. It is also common for AD to be found in conjunction with other 

pathologies such as synucleinopathy, TDP-43, or microinfarcts.13 Therefore, the ability to 

more effectively stratify and subgroup individuals would likely produce clearer and more 

actionable results. Furthermore, provisional diagnosis relies on a combination of mental 

status testing, neuropsychological tests, interviews with friends and family, laboratory 

tests, and various brain imaging techniques such as magnetic resonance imaging (MRI), 

computerized tomography (CT), and PET.14-16 These conventional diagnostic methods 

show low specificity against other dementias (70%) and only moderate sensitivity (80%).17 

Additionally, these criteria are unable to capture early brain pathology that may predate 

symptoms by as much as 30 years;18 without timely diagnosis, patients are less likely to 

access appropriate treatment options that may slow disease progression.19,20 Consequently, 

there is a critical need for highly sensitive and specific markers of AD that may enable early 

disease detection as well as identification of potential drug targets, improved prognosis, and 

monitoring of therapeutic response.

A growing body of evidence suggests that perturbations in various metabolic pathways 

play a significant role in AD.21-25 Most notably, the mitochondrial cascade hypothesis 

states that widespread mitochondrial metabolic dysfunction is a strong characteristic of AD 

and plays a role in the accumulation of Aβ plaques.9,24,26 Furthermore, studies have also 

shown long- and short-chain fatty acids to play an important role in AD pathology, exerting 

both protective and pathogenic effects.5,21,24,26-28 Alterations in glycerophospholipid29 and 

phosphatidylcholine metabolism2,5,26,27,29 have also been strongly linked to AD in previous 

studies utilizing metabolomics-based approaches. More recently, an emerging role of the gut 

microbiome in AD has been identified,30 and metabolic profiling studies have demonstrated 

the potential for bile acids in discriminating subclinical forms of AD.31,32 Indeed, with 

advanced deterioration of cortical vasculature as seen in late-stage AD, it is possible for 

bile acids to be found in the central nervous system.33-35 Metabolomics, the scientific 

study of metabolic composition and pathways present in biological systems,26,36-41 has 

facilitated the accurate characterization of various metabolomes for advances in disease 

classification, drug therapy, and biomarker discovery. More specifically, mass spectrometry 

(MS) is an analytical approach in metabolomics that allows for the accurate detection and 

quantification of metabolites in biological samples.12,42,43 Various forms of untargeted 

and targeted MS-based metabolomic assays have been implemented in an attempt to 

profile biochemical processes in AD pathology. Methods mainly include direct infusion-

MS,44 ultrahigh resolution-MS enabled by liquid chromatography (LC)-Orbitrap,45 and gas 

chromatography (GC)-time-of-flight-MS,24 which have been used in many previous studies 

for therapeutic drug targeting, disease characterization, and potential diagnostic biomarkers.
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The current study employs hyphenated MS-based assays that combine both targeted and 

untargeted metabolomics approaches to detect aqueous metabolites, lipids, fatty acids, 

and bile acids, in addition to profiling unidentified features. A total of 2080 metabolites/

features were detected in 48 samples of superior frontal gyrus tissue taken from four 

groups of patients: normal control (NC), HPC, MCI, and AD. Multivariate significance 

testing and model estimation constructed cross-validated partial least squares-discriminant 

analysis (PLS-DA) models confined to a highly predictive nine-metabolite panel of 

potential biomarkers capable of distinguishing each clinical group with high sensitivity 

and specificity. In conjunction with pathway and enrichment analyses, the current study 

corroborates findings of previous literature and adds to basic knowledge of the metabolome 

related to neurodegenerative decline as well as the behavioral symptoms of AD-induced 

dementia; this study offers a large-scale analysis of molecular alterations associated with 

AD pathogenesis and progression, potentially supporting future drug development and 

prevention efforts. Importantly, this study provides clinically relevant candidate biomarkers 

capable of accurate postmortem classification which may, eventually, prove useful to in vivo 

diagnosis and disease monitoring.

METHODS

Reagents

Acetonitrile (ACN), methanol (MeOH), ammonium acetate (NH4OAc), acetic acid 

(AcOH), and isopropanol (IPA), all LC–MS grade, were purchased from Fisher Scientific 

(Pittsburgh, PA). Ammonium hydroxide (NH4OH), methyl tert-butyl ether (MTBE), O-

methylhydroxylamine hydrochloride (MeOX), and N-methyl-N-(tert-butyldimethylsilyl) 

trifluoroacetamide (MTBSTFA) were bought from Sigma-Aldrich (Saint Louis, MO). 

High-performance LC grade chloroform (CHCl3) was obtained from VWR (Radnor, 

PA). Deionized water was provided in-house by a water purification system from EMD 

Millipore (Billerica, MA). Phosphate-buffered saline (PBS) was bought from GE Healthcare 

Life Sciences (Logan, UT). Standard compounds corresponding to measured aqueous 

metabolites/features were purchased from Sigma-Aldrich and Fisher Scientific. Lipid 

standards were purchased from Fisher Scientific, Sigma-Aldrich, and Avanti Polar Lipids 

(Alabaster, AL).

Clinical Samples

Frozen tissue from the superior frontal gyrus of male and female subjects was obtained from 

the Arizona Study of Aging and Neurodegenerative Disorders/Brain and Body Donation 

Program at the Banner Sun Health Research Institute (BSHRI) in Sun City, Arizona.12 

Samples were collected under a previously approved institutional review board (IRB) 

protocol with broad consent for the usage of biospecimens (WIRB Protocol #20120821). 

All research protocols were conducted in accordance with the principles expressed in 

the Declaration of Helsinki. Subjects were divided into four groups by clinical status (n 
= 12 for all groups) based on assessment of postmortem brain pathology and cognitive 

status before death. These groups were: normal control (NC) subjects with criteria not 

met for AD neuropathology, cognitively normal subjects with intermediate AD pathology 

characterized as high pathology controls (HPC), subjects with nonspecific mild cognitive 
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impairment (MCI) and intermediate AD neuropathology, and subjects with dementia and 

high neuropathology with criteria met for AD. For the definition of groups by AD pathology, 

the National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic 

assessment of Alzheimer’s disease were used.10 Relevant clinical characteristics were 

provided by BSHRI for each subject such as age, sex, APOE genotype, postmortem interval 

(PMI), Mini-Mental State Examination (MMSE), and Braak score. Additionally, measures 

of brain pathology including cerebral amyloid angiopathy (CAA), amyloid plaques, and 

neurofibrillary tangles were taken from either a frontal area of the brain or a compilation of 

sampling from various brain regions.

Targeted LC–MS/MS Aqueous Profiling

For tissue lysates, 400 μg pieces of frozen superior frontal gyrus were hand homogenized 

in 400 μL of ice-cold sterile PBS containing a protease/phosphatase inhibitor cocktail (Halt, 

Thermo Scientific). Three samples for which less tissue was available were homogenized in 

equal ratios (weight to volume) of the PBS/inhibitor solution. Homogenized samples were 

sonicated on ice in a biosafety cabinet at a 40% amplitude for a total time of 1 min, with 

alternating on/off sequences of 15 s. Samples were then centrifuged for 30 min at 14 000 

rpm at 4 °C. The supernatant and pellets were stored separately at −80 °C until analysis.

Prior to LC–MS/MS targeted measurement, frozen tissue supernatant samples were first 

thawed overnight under 4 °C. Afterward, 50 μL of each sample were placed in a 2 mL 

Eppendorf vial. The initial step for protein precipitation and metabolite extraction was 

performed by adding 500 μL of MeOH and 50 μL of internal standard solution (containing 

1810.5 μM 13C3-lactate and 142 μM 13C5-glutamic acid). The mixture was then vortexed 

for 10 s and stored at −20 °C for 30 min, followed by centrifugation at 14 000 rpm for 10 

min at 4 °C. The supernatants (450 μL) were collected into new Eppendorf vials and dried 

using a CentriVap Concentrator. The dried samples were reconstituted in 150 μL of 40% 

PBS/60% ACN and centrifuged again at 14 000 rpm at 4 °C for 10 min. Afterward, 100 μL 

of supernatant was collected from each sample into an LC autosampler vial for subsequent 

analysis. A pooled sample, which was a mixture of all experimental samples, was used as 

the quality control (QC) sample and injected once every 10 experimental samples.

The targeted LC–MS/MS method used here was modeled after that developed and used 

in a growing number of studies.46-51 Briefly, all LC–MS/MS experiments were performed 

on an Agilent 1290 UPLC-6490 QQQ-MS system. Each supernatant sample was injected 

twice, 10 μL for analysis using negative ionization mode and 4 μL for analysis using 

positive ionization mode. Both chromatographic separations were performed in hydrophilic 

interaction chromatography mode on a Waters XBridge BEH Amide column (150 × 2.1 

mm2, 2.5 μm particle size, Waters Corporation, Milford, MA). The flow rate was 0.3 mL/

min, autosampler temperature was kept at 4 °C, and the column compartment was set to 

40 °C. The mobile phase was composed of Solvents A (10 mM NH4OAc, 10 mM NH4OH 

in 95% H2O/5% ACN) and B (10 mM NH4OAc, 10 mM NH4OH in 95% ACN/5% H2O). 

After an initial 1 min isocratic elution of 90% B, the percentage of solvent B decreased to 

40% at t = 11 min. The composition of solvent B was maintained at 40% for 4 min (t = 

15 min), after which the percentage of B gradually went back to 90%, to prepare for the 
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next injection. The mass spectrometer was equipped with an electrospray ionization (ESI) 

source. Targeted data acquisition was performed in multiple-reaction-monitoring (MRM) 

mode. For targeted data acquisition, we monitored 118 and 160 MRM transitions in negative 

and positive mode, respectively (278 transitions in total). The whole LC–MS system was 

controlled by Agilent MassHunter Workstation software. The extracted MRM peaks were 

integrated using Agilent MassHunter Quantitative Data Analysis software.

Targeted LC–MS/MS Lipidomics

Tissue pellet samples were thawed under 4 °C. Then, 200 μL 10× diluted PBS and 80 μL 

of MeOH containing 50 μM PC (17:0, 17:0) and PG (17:0, 17:0) internal standards were 

added to 20 mg of each thawed sample. A half spoonful of stainless-steel micro beads was 

added to each sample, which was subsequently homogenized for 20 s. Afterward, 400 μL of 

MTBE was added to each sample (MTBE/MeOH/H2O = 10:2:5, v/v/v) and vortexed for 30 

s followed by sonication in ice bath for 20 min. Finally, samples were centrifuged at 14 000 

rpm to separate phases. The upper MTBE layer (300 μL) was extracted, transferred to new 

1.5 mL Eppendorf tubes, dried in a Vacufuge Plus Evaporator (Hamburg, Germany), and 

then reconstituted with 100 μL 1:1 CHCl3/MeOH. Each sample (80 μL) was then transferred 

to a LC–MS vial for LC–MS/MS targeted lipidomics analysis, while the remaining 20 μL 

was pooled to create a QC sample.

For lipidomic profiling, all mass spectrometry experiments were done on an Agilent 1290 

LC-6490 QQQ-MS (Santa Clara, CA), and 4 μL was injected for positive ionization, 

whereas 6 μL was used in negative ion mode injections. Both modes used reverse-phase 

chromatography with a Waters XSelect HSS T3 column (150 × 2.1 mm2, 2.5 μm particle 

size; Waters Corporation, Milford, MA). The flow rate through the column was maintained 

at 0.3 mL/min. The mobile phase Solvent A was composed of 10 mM NH4OAc in 60% 

H2O/40% ACN. Solvent B consisted of 10 mM NH4OAc in 90% IPA/10% ACN. An 

isocratic elution was used with 50% solvent B for 3 min before its percentage was gradually 

increased to 100% over the next 12 min. Following 10 min of continued 100% solvent B, 

at t = 25 min, the percent of B was decreased gradually back to 50% to prepare for the 

next sample injection. The set of lipids covered in our LC–MS/MS lipidomics assay were 

the same as those in our previous study,52 and 357 lipids were selected from various lipid 

classes including fatty acids, glycolipids, glycerophospholipids, sphingolipids, etc.52 Lipid 

standards were used to test the MRM and retention time (RT) for each individual lipid.

Untargeted GC–MS Aqueous Profiling

The aqueous bottom layer (180 μL) from the MTBE extraction described above was 

collected into a new Eppendorf tube for derivatization prior to untargeted metabolic profiling 

with GC–MS. The collected bottom layer was dried under vacuum at 37 °C for 4 h using a 

CentriVap Concentrator (Labconco, Fort Scott, KS). The residues were first derivatized with 

40 μL of 20 mg/mL MeOX solution in pyridine under 60 °C for 90 min. Next, 60 μL of 

MTBSTFA containing d27-mysristic acid were added, and the mixture was incubated at 60 

°C for 30 min. The samples were then vortexed for 30 s, followed by centrifugation at 14 

000 rpm for 10 min. Finally, 70 μL of supernatant were collected from each sample into new 

glass vials for GC–MS analysis.

Jasbi et al. Page 7

J Proteome Res. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GC–MS conditions used here were mainly adopted from previous studies.42,43 Briefly, GC–

MS experiments were performed on an Agilent 7820A GC-5977B MSD system (Santa 

Clara, CA) by injecting 1 μL of prepared samples. Helium was used as the carrier gas with 

a constant flow rate of 1.2 mL/min. The separation of metabolites was achieved using an 

Agilent HP-5ms capillary column (30 m × 250 μm × 0.25 μm). The column temperature was 

maintained at 60 °C for 1 min, increased at a rate of 10 °C/min to 325 °C, and then held 

at this temperature for 10 min. Mass spectral signals were recorded at an m/z range of 50–

600. Data extraction was performed using Agilent MassHunter Profinder software. A batch 

recursive feature extraction algorithm for small molecules was used, and peaks were filtered 

so that only peaks with absolute height ≥1000 counts were included. An RT tolerance of 

0.10 min was established, and extraction was limited to the largest 1000 compound groups. 

Results were filtered if the overall identification score was less than 75.

Long-Chain Fatty Acids (LCFAs)

Weighed 20 mg samples were added to separate Eppendorf tubes and prepared using the 

same protocol as that outlined for LC–MS/MS lipidomics. Derivatization was performed 

using the same protocol as that outlined for GC–MS untargeted profiling. For analysis of 

LCFAs, 60 μL of supernatant was transferred to a glass vial for GC–MS analysis, while 20 

μL was pooled from each sample for QC analysis. The GC–MS method was the same as that 

for GC–MS untargeted profiling.

Short-Chain Fatty Acids (SCFAs)

Frozen tissue pellet samples were first thawed overnight under 4 °C. Afterward, 20 mg of 

each sample was homogenized with 5 μL of hexanoic acid-3,3,3 (internal standard), 15 μL 

of sodium hydroxide (NaOH [0.5 M]), and 500 μL of methanol (MeOH). Following storage 

at −20 °C for 20 min and centrifugation at 14 000 rpm for 10 min, 450 μL of supernatant 

were collected and sample pH was adjusted to 10 by adding 30 μL of NaOH/H2O (1:4, v/v). 

Samples were then dried, and they were measured using the same protocol as that outlined 

for GC–MS untargeted profiling.53

Bile Acids

Sample preparation techniques used here are well established and described in the previous 

literature.54-58 Briefly, 50 mg of each tissue sample were homogenized with methanol (500 

μL) and then vortexed for 10 s. Samples were stored at −20 °C for 20 min, followed by 

sonication in an ice bath for 10 min and then centrifugation at 14 000 rpm for 15 min 

at 4 °C. Supernatants (450 μL) were vacuum-dried and then reconstituted in 100 μL of 

MeOH/H2O (1:1, v/v). Each prepared sample (2 μL) was injected into the LC–MS system 

(Agilent 1290 UPLC-6490 QQQ-MS) for analysis using negative ionization mode. The 

mobile phase was composed of 5 mM NH4OAc in H2O with 0.1% AcOH (A) and ACN with 

0.1% AcOH (B). After a 1 min of isocratic elution of 75% solvent A, the content percentage 

decreased to 5% A at t = 15 min. The composition of solvent A was then maintained at 

5% for 10 min, followed by an increase to 75% at t = 25 min. The MS parameters were 

the same as those reported for targeted LC–MS/MS aqueous profiling, except that 55 bile 

acids were included in the detection panel.57 Samples were spiked with mixtures of standard 

compounds to validate bile acid identities.
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Data Analysis

Following peak integration, metabolites were filtered for reliability and only those with QC 

coefficient of variation (CV) <20% and relative abundance of 1000 in >80% of samples 

were retained for analysis. Data were then normalized by tissue weight and lysate volume as 

appropriate. The data were log10-transformed and Pareto scaled prior to model construction. 

Univariate testing was performed using SPSS 22.0 (SPSS Inc., Chicago, IL). Multivariate 

statistical analyses were performed using open-source R software. Pathway and integrating 

enzyme enrichment analysis were performed and visualized using MetaboAnalyst v4.0.38

RESULTS

Clinical Characteristics

A total of 2080 metabolites and mass spectral features were reliably detected after signal 

and QC filtering. Of these, 728 were identified with retention times and/or fragment mass 

spectra using chemical standards, while 1352 were unidentified m/z values. All raw mass 

spectrometry data have been deposited to MassIVE (data set identifier MSV000087165). A 

total of 48 subjects were included in this study: NC (n = 12), HPC (n = 12), MCI (n = 

12), and AD (n = 12). Figure 1 shows a graphical schema of the analytical workflow. Table 

1 shows the clinical information of subjects, while Table 2 shows the neuropathological 

characteristics of study subjects. Subjects between all experimental groups were age- 

and sex-matched such that no statistically significant difference was observed between 

groups (p > 0.05). Principal component analysis (PCA) conducted with all reliably detected 

metabolites (i.e., filtered metabolites) between all groups and QC samples was performed, 

and 95% confidence intervals were evaluated for potential outliers. QC samples were highly 

clustered, suggesting good system performance. However, the initial PCA revealed one 

outlier (HPC subject) which, upon confirming extensive nonignorable missingness, was 

removed from subsequent analyses (Figure S1).

Case (MCI, AD) vs Control (NC, HPC)

To assess broad differences in metabolic profiles, groups were collapsed among case (MCI 

and AD) and control (NC and HPC). Initial t-testing between case and control revealed two 

highly significant and predictive metabolites with p < 0.001 and univariate area under curve 

(AUC) > 0.90: lauric acid and myristic acid. Box plots of these metabolites are given in 

Figure S2. In addition, a partial least squares-discriminant analysis (PLS-DA) model was 

constructed using levels of lauric and myristic acid, and receiver operating characteristic 

(ROC) analysis was conducted using model-implied values to assess performance. As 

shown in Figure 2, the resulting PLS-DA score plot showed appreciable separation between 

collapsed case and control groups, and ROC analysis by 100-fold leave-one-out cross-

validation (LOOCV) showed an overall accuracy of 95%, more than either metabolite 

individually.

NC/HPC vs Other Groups

To analyze differences among groups individually, we first compared metabolic profiles 

of NC vs HPC/MCI/AD, and HPC vs NC/MCI/AD. Multivariate analysis of variance 
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(MANOVA) testing and associated post-hoc comparisons were performed to identify 

significant metabolites, while PLS-DA was used to operationalize those metabolites for 

classification. Well-established risk factors (age, sex, and APOE status)59,60 were included 

in the MANOVA as covariates and all significance values adjusted accordingly. As outlined 

in Table 3, four metabolites (lauric acid, myristic acid, stearic acid, palmitic acid) showed 

significant main effects, as evidenced by LSD-controlled p < 0.05, and were mostly 

predictive of NC and HPC groups, irrespective of biological risk. Testing for group by 

age, group by sex, and group by allele interactions revealed no significant effects (p-values 

= 0.077–0.991). Further analysis of a full-factorial GLM showed no significant main 

effect of age, sex, or APOE allele nor any significant interactions among them (all p > 

0.05). Normalized box plots of these metabolites between all groups are shown in Figure 

3. A PLS-DA model was constructed using levels of these four significant metabolites, 

and internal validation was performed using a 100-iteration permutation test. More than 

98% of total variance between the four study groups was explained by the first two 

components, and permutation testing revealed the model to be statistically sound (observed p 
< 0.001). To assess the predictive performance of this unified biomarker panel, the resulting 

PLS-DA model was subjected to ROC analysis with 100-fold LOOCV. ROC curves for 

each comparison are provided in Figure S3. Evaluation of model accuracy showed high 

classification performance for discrimination of NC samples (96.6%, Figure S3A) and HPC 

samples (91.7%, Figure S3B). We further used a random forest (RF) classifier for group 

predictions (Figure S4) but found that the RF models exhibited poor generalization (OOB 

error = 0.511) and, therefore, suboptimal predictive performance of case and control (AUC = 

0.917), as compared to PLS classification (AUC = 0.95). One potential explanation for this 

may be the small sample size (48 subjects).

MCI vs Other Groups

To increase model performance for discrimination of the MCI subgroup (see Figure 

S3C), other groups were compared sequentially for identification of significant/predictive 

metabolites and model construction. Comparison of MCI and NC groups revealed lauric 

acid to be both highly significant (p < 0.001) and predictive (AUC = 0.993) (Figure S5). 

Comparison of MCI and HPC groups revealed four metabolites (myristic acid, palmitic 

acid, stearic acid, palmitoleic acid) to have AUC > 0.90 and FDR q < 0.05 (Figure 4), 

while the comparison of MCI and AD groups revealed four unidentified features (from 

untargeted GC–MS) with AUC > 0.80 and q < 0.05 (Figure 4). Candidate metabolites for 

the classification of MCI and HPC samples were used to construct an independent PLS-DA 

model, while candidate markers for MCI discrimination from AD samples were ported to 

construct a separate PLS-DA model. ROC analysis showed a predictive accuracy of 96.6% 

for the identification of MCI samples from high pathology controls (Figure 5A). Meanwhile, 

ROC analysis of the PLS-DA model constructed using levels of four unidentified features 

with an average AUC ~ 0.811 showed an appreciable improvement in accuracy relative to 

each univariate AUC; classification accuracy of the PLS-DA model exhibited an AUC = 

0.917 for discrimination of MCI and AD groups (Figure 5B).
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AD vs Other Groups

Relevant groups were also compared to AD samples for enhanced identification of disease. 

Univariate ROC analysis and independent samples t-testing of NC and AD samples showed 

lauric acid to be highly significant (p < 0.001) and predictive (AUC > 0.99) (see Figure 

S6). For classification of AD samples from high pathology controls, t-testing revealed the 

unified biomarker panel in Figure 3 as being significantly altered between groups (p < 

0.01) and to have high predictive potential (AUC > 0.90). Direct comparisons between 

AD and HPC groups for these metabolites are visualized as box plots in Figure S7. For 

discrimination of these groups, an additional PLS-DA model was constructed using the 

aforementioned candidate markers, and ROC analysis revealed high predictive accuracy 

(94.8%) for discrimination of AD and HPC samples (Figure 6).

Correlation Analysis of Candidate Markers and Clinical/Neuropathological 
Characteristics.—To assess relevant associations between the set of candidate markers 

and measures of brain pathology and disease progression, a correlation analysis was 

performed, and measures of association strength and significance were evaluated. A 

visualization of association strength between correlation variables is given in Figure 7. 

Full details regarding the magnitude of association (r) and significance of association (p) 

can be found in Table S1. In total, four associations had r > 0.5 or < −0.5 and p < 0.05. 

Lauric acid showed strong, significant associations with frontal plaque (r = −0.598, p < 

0.001), total plaque (r = −0.579, p < 0.001), total tangle (r = −0.507, p < 0.001), and Braak 

score (r = −0.539, p < 0.001). A PLS-DA model was articulated using this set of four 

neuropathological characteristics and significant between-group metabolites (lauric acid, 

myristic acid, stearic acid, and palmitic acid). With the inclusion of these clinical markers, 

a clear separation of AD, MCI, and HPC groups from normal controls was observed (see 

Figure S8). Furthermore, correlation analysis between age, sex, APOE allele, and all 2080 

reliably detected metabolites/features was also performed; no association was observed to be 

both strongly correlated (r > |0.5|) and statistically significant (p < 0.05).

Pathway and Enzyme Enrichment Analyses of Metabolic Data

Subjects were grouped as case (MCI and AD) and control (NC and HPC) for analysis 

of significantly impacted pathways in response to Alzheimer’s progression. Pathway 

and enzyme analysis was conducted using KEGG database searches and metabolite 

intensities (Figure 8). Pathways were mapped to the human metabolome and only identified 

metabolites confirmed with authentic standards (i.e., based on retention time and MS2 

fragmentation for LC–MS/MS and retention index for GC–MS) were included in the 

analysis. Three pathways were observed to have large impact coefficients (>0.5): (1) linoleic 

acid metabolism, (2) alanine, aspartate, and glutamate metabolism, and (3) arginine and 

proline metabolism. Importantly, three pathways were found to be significantly affected (p < 

0.05) as a result of increased AD pathogenesis. Namely, those were lysine degradation, fatty 

acid metabolism, and valine, leucine, and isoleucine degradation.

Subjects were dichotomously grouped as case/control, and enrichment analysis was 

conducted using a library containing 912 metabolic sets that are predicted to be changed 

in the case of dysfunctional enzymes using a genome-scale network model of human 
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metabolism (Figure S9). Eleven enzymes were found to be significantly enriched (p < 0.05). 

Notably, seven of those were mitochondrial enzymes indicated against the background of 

mitochondrial pathways. Full results of the enzyme enrichment analysis are displayed in 

Table S2.

DISCUSSION

For the last 2 decades, significant innovations in MS-based metabolic profiling and analysis 

of disease-related alterations have been made and, in doing so, these efforts have borne 

highly sensitive and valuable diagnostic information.61-63 In the current study, we explored 

a combination of targeted and untargeted metabolic profiling in addition to advanced 

multivariate statistical analysis for the discovery of sensitive and specific metabolite 

biomarkers for rapid AD classification postmortem. To capture the diversity of metabolites 

involved in AD pathobiology, we have used this method to detect 2080 metabolites of the 

superior frontal gyrus from many biologically relevant metabolic pathways. Our multistep 

biomarker selection, model construction, and cross-validation have demonstrated the robust 

diagnostic power of this metabolic profiling method in this study of 48 NC, HPC, MCI, 

and AD subjects. Additionally, we have applied complementary LC/GC–MS approaches for 

enhanced monitoring of the metabolome related to AD and, cumulatively, our results show 

clinically relevant disturbances in energy metabolism and substrate utilization.

The metabolite profiling approach presented in this study determined five fatty acids 

capable of discriminating AD patients from NC and HPC samples with an average AUC of 

97%. Recent metabolomics studies have also shown perturbations in fatty acid metabolism 

across differing Alzheimer pathologies. It was found that the dysregulation of sphingolipids 

and glycerophospholipids, long-chain fatty acids, and unsaturated fatty acids have been 

associated with AD.7,21,24 Similarly, significant disturbances in fatty acid metabolism were 

also observed in the current study (p = 0.008). More specific to our results, a recent serum 

profiling approach demonstrated the high predictive accuracy of palmitoleic acid, myristic 

acid, linoleic acid, and palmitic acid in differentiating central cognitive impairment in 

AD.64 Notably, these metabolites were also flagged as candidate markers in our profiling 

of neocortical tissue. Medium-chain fatty acids like lauric acid, which is found in high 

levels in coconut oil, have been proposed as possible nutritional therapies for the treatment 

of cognitive decline,65-67 and a significant difference in lauric acid was also observed in 

the AD and NC groups in this study. The markedly reduced levels of these fatty acids 

observed in our AD subjects could be linked to the impaired glucose metabolism that is 

well documented in AD patients.68-70 Declines in the levels of the identified fatty acids 

in conjunction with decreased glucose metabolism might suggest that β-oxidation of fatty 

acids, which is generally low in the brain, is being upregulated to support the energy 

needs of the brain in AD patients. Supplementation of the fatty acids that can be rapidly 

metabolized might help support the energy needs of the brain, potentially ameliorating 

symptoms. This might account for the data cited in the above-referenced reports, which 

suggest that the addition of lauric acid to the diet (via coconut oil) may improve some 

symptoms in AD patients. Lauric acid is known to cross the blood–brain barrier,71 and 

dietary lauric acid might therefore be accessible as an energy source for the brain.72 The 

Jasbi et al. Page 12

J Proteome Res. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



results of the current study warrant further investigation of the therapeutic potential of lauric 

acid for the treatment and prevention of AD.

Previous studies have shown evidence for brain glucose dysregulation in AD as 

characterized by higher brain tissue glucose concentration, reduced glycolytic flux, and 

lower GLUT3 expression as a function of increasing AD pathogenesis.22,68,73 Interestingly, 

the literature has shown the involvement of the Warburg effect in nontumor disease 

processes74 and, in the context of AD, loss of brain aerobic glycolysis as a function of 

normal human aging is associated with increased tau deposition in preclinical AD.75,76 

In addition, previous results have shown impaired hypothalamic insulin signaling to be 

associated with elevated BCAA levels in a mouse model of AD,77 while defects in BCAA 

metabolism have in-turn been shown to drive primary AD neuropathology.77 A prospective 

cohort study of over 22 000 participants found significant associations between circulating 

BCAAs and risk of incident dementia and AD.27 It has been shown that defects in BCAA 

metabolism, and subsequent accumulation, can lead to the phosphorylation of tau proteins 

and the incidence of AD.78 Other studies have found post-translational modifications to 

the stabilizing tau proteins, which were induced by lysine residues. It has been proposed 

that these modifications may play an integral role in the pathobiology of tau protein.79 Our 

pathway analysis also revealed similar results with a significant degradation of lysine (p = 

0.007) and BCAAs (p = 0.025), potentially signifying the underlying pathophysiology of 

AD. Given the recent failure of numerous billion-dollar clinical trials targeting traditionally 

hypothesized AD mechanisms such as reduced acetylcholine, Aβ plaques/neurofibrillary 

tangles, and tau protein,80 our enzyme and pathway enrichment results further corroborate 

previous evidence of widespread mitochondrial dysfunction concomitant with Aβ pathology 

and AD progression,80-82 providing compelling evidence for mitochondrial bioenergetics as 

a novel therapeutic target for preventing/slowing the onset/progression of AD.

Overall, our findings led to an integrated hypothesis describing the pathophysiology of AD 

in Figure 9 and are conceptualized with respect to the widespread mitochondrial dysfunction 

observed in our results. In Figure 9, the darker red areas (to the right) are more increased 

with AD pathology, and greater enrichment is observed in those pathways. As can be seen, 

with increased AD pathogenicity (darker red areas), significant metabolic reprogramming is 

observed. Specifically, a decrease in aerobic glycolysis (lighter red areas) is followed by a 

shift toward degradation of BCAA for energy production, mostly associated with HPC and 

MCI subgroups (darker red areas). With even greater disease progression, further metabolic 

reprogramming is observed; fatty acids are progressively utilized for the generation of 

ATP via increased β-oxidation activity and generation of FADH2 and NADH for oxidative 

phosphorylation in the electron transport chain (darker red areas). Preference for fatty acid 

substrates was most pronounced in the MCI and AD subgroups.

Additionally, we evaluated levels of four unidentified features with p < 0.05 and FC > 2, 

which informed the construction of independent PLS-DA models for enhanced classification 

of AD from MCI samples. The combination of these four features had a diagnostic 

sensitivity and specificity of 84.1 and 86.3%, respectively (AUC = 0.917). Although 

accurate tests for AD pathology with high severity are currently available (i.e., PET amyloid 

and tau, CSF amyloid and tau, plasma tau), diagnostic tests useful for intermediate (MCI) 
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and low (HPC) pathology levels are still lacking. In this study, diagnosis of HPC and MCI 

subgroups was achieved with more than 90% overall AUC. In addition to enabling mass 

screening, a realization of these findings in plasma or CSF may inform clinical trial selection 

via improved study stratification.

Strengths and Limitations

A major strength of the study lies in the well-characterized BSHRI cohort12 with 

measures of cognitive status and neuropathological examination at death. Furthermore, the 

inclusion of traditionally understudied HPC and MCI groups allowed for the metabolic 

characterization of asymptomatic individuals with AD-consistent pathology and non-AD 

individuals with cognitive decline, respectively. Cumulatively, our panel of candidate 

markers shows potential for the classification of individuals with early brain pathology 

and other dementias. Although this approach is not suited for in vivo diagnosis of AD 

given the impracticality of brain biopsy for living individuals, the putative metabolite 

markers/metabolic pathways and associated models reported herein serve as a strong proof-

of-principle for their use as therapeutic targets. Furthermore, if validated in readily available 

biospecimens with minimally invasive sample collection (i.e., from blood draw), this novel 

panel of candidate markers may enable AD diagnosis in living patients and subsequently 

enhanced treatment options. Additionally, we applied six distinct metabolomics assays 

encompassing complementary GC and LC techniques to ensure maximal coverage of the 

brain metabolome and were able to monitor more than 2000 metabolites and features. Given 

the known benefit of complementary MS platforms for elucidation of AD pathology,20,83,84 

our large-scale multiplatform metabolomics approach utilizing both targeted and untargeted 

profiling enables comprehensive pathway and enzyme analysis, a key strength of this study 

to previous literature.

The main limitation of this study is the relatively small sample size. Moreover, our samples 

were taken cross-sectionally and therefore cannot infer longitudinal changes in metabolite 

information over time. Also, samples were only taken from a single-brain region; inferences 

to other AD-associated brain structures are unknown. Nevertheless, conventional power was 

achieved for all biomarker analyses (β < 0.2), and models were internally validated (p < 

0.01). It should also be noted that, while the current study infers many proposed alterations 

in enzymes and pathways using metabolite-level data, the results cannot determine whether 

the purported markers and associated pathways are drivers of AD pathology or are 

themselves effects of other latent pathologies; future studies are warranted to investigate this 

relationship mechanistically. Additionally, of the 48 subjects considered in this study, there 

were none with APOE 4/4 genotype. There was only one subject with APOE 2/4 genotype 

and 15 subjects with APOE 3/4 genotype. As APOE 4/4 individuals have the highest risk 

for AD, it would be useful for future studies to consider subjects with this genotype and 

monitor metabolites in this group. Our results merit further investigation in a larger sample 

with serial cognitive assessments taken during life as well as tissue samples collected from 

distinct brain regions both resistant and vulnerable to AD pathology to monitor possible 

differential changes between tissue types.
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CONCLUSIONS

This study is part of a growing body of literature in which MS-based metabolomics methods 

have been utilized for disease biomarker discovery and accurate classification.38,49-51 We 

performed comparisons of brain tissue metabolites from AD patients, MCI samples, as well 

as high pathology and normal controls using both targeted LC–MS/MS metabolic profiling 

and an untargeted GC–MS approach.29 Our results demonstrate significant alterations in 

a variety of metabolites, mainly fatty acids, which are characteristic of different groups. 

Furthermore, we evaluated the performance of four unidentified metabolic features and, 

through multivariate model construction, achieved an overall classification performance 

of >90% for comparison of AD and MCI patients, which has the potential to fulfill 

critical clinical needs.85 Application of bioinformatic methods expanded basic knowledge 

of the metabolome related to AD and showed decreased glycolytic function with increased 

degradation of BCAAs and β-oxidation of fatty acids associated with increased AD 

pathogenicity. Results of our fold change analysis, significance testing, and pathway analysis 

indicate metabolites and pathways previously shown to be crucial in immune response 

inhibition86 and increased AD severity.87 Likewise, the metabolites and associated metabolic 

pathways and enzymes identified in this study may inform the development of new 

therapeutic treatments for AD. In addition, this study provides a strong basis for larger 

multisite projects to validate our findings across different population groups and further 

advances the development of improved clinical care for AD patients.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Funding

Support from the College of Health Solutions (Jumpstart) at Arizona State University to H.G. is gratefully 
acknowledged. This work was also supported by funding to G.J. from the Arizona Alzheimer’s Consortium 
(funded by the Arizona Department of Health Services, Grant no. CTR040636) and matching funds from 
Midwestern University. Support from the NIH to H.G. and G.J. is kindly appreciated (1R21AG072561-01). 
Human tissues used in this study were provided at no cost by the Banner Sun Health Research Institute (BSHRI) 
Brain and Body Donation Program (BBDP). Support for recovery of tissues by the BBDP and provision of 
subject data collected by the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) is provided 
by the following grants: National Institute of Neurological Disorders and Stroke, U24 NS072026 National 
Brain and Tissue Resource for Parkinson’s Disease and Related Disorders; National Institute on Aging, P30 
AG19610 Arizona Alzheimer’s Disease Core Center; Arizona Department of Health Services, Arizona Alzheimer’s 
Consortium; Arizona Biomedical Research Commission, Arizona Parkinson’s Disease Consortium; and Michael J. 
Fox Foundation for Parkinson’s Research. The funders had no role in study design, data collection and analysis, 
decision to publish, or preparation of the manuscript.

ABBREVIATIONS

AcOH acetic acid

ACN acetonitrile

NH4OAc ammonium acetate

NH4OH ammonium hydroxide

Jasbi et al. Page 15

J Proteome Res. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



AD Alzheimer’s disease

Aβ amyloid β

AUC area under curve

BSHRI Banner Sun Health Research Institute

BCAA branched-chain amino acid

CAA cerebral amyloid angiopathy

CSF cerebrospinal fluid

CHCl3 chloroform

CT computerized tomography

ETC electron transport chain

ESI electrospray ionization

GC gas chromatography

HPC high pathology control

IMM inner mitochondrial membrane

IRB institutional review board

IPA isopropanol

LOOCV leave-one-out cross-validation

LC liquid chromatography

LCFA long-chain fatty acid

MRI magnetic resonance imaging

MS mass spectrometry

MeOH methanol

MTBE methyl tert-butyl ether

MCI mild cognitive impairment

MMSE Mini-Mental State Examination

MRM multiple reaction monitoring

MANOVA multivariate analysis of variance

MTBSTFA N-methyl-N-(tert-butyldimethylsilyl) trifluoroacetamide

NC normal control
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MeOX O-methylhydroxylamine hydrochloride

OMM outer mitochondrial membrane

OXPHOS oxidative phosphorylation

PLS-DA partial least squares-discriminant analysis

PBS phosphate-buffered saline

PET positron emission tomography

PMI postmortem interval

PCA principal component analysis

QC quality control

ROC receiver operating characteristic

RT retention time
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Figure 1. 
Overview of the analytical workflow of the current study. Created with BioRender.com.
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Figure 2. 
PLS-DA and ROC analysis of case (MCI and AD) and control (NC and HPC) constructed 

using levels of lauric acid and myristic acid: (A) Score plot of the PLS-DA model (R2X 
= 0.593, R2Y = 0.814, R2Q = 0.701; 10-fold cross-validated Q2 = −0.183) and (B) ROC 

analysis by 100-fold leave-one-out cross-validation (LOOCV) of model-implied values 

showing AUC = 0.95.
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Figure 3. 
Relative abundances of four metabolites found to be significant between groups (LSD p < 

0.05) by MANOVA testing. Data were log10-transformed and Pareto scaled prior to plotting.
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Figure 4. 
Top row: Relative abundances of myristic acid, palmitic acid, stearic acid, and palmitoleic 

acid with high predictive accuracy (AUC > 0.90) and significance (FDR q < 0.05) in 

univariate ROC analysis and t-testing between HPC and MCI groups. Bottom row: Relative 

abundances of four unidentified features from untargeted GC–MS analysis with good 

predictive accuracy (AUC > 0.80) and significance (FDR q < 0.05) in univariate ROC 

analysis and t-testing between MCI and AD groups.
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Figure 5. 
ROC analysis of classification performance by 100-fold LOOCV: (A) PLS-DA model 

constructed using levels of myristic acid, palmitic acid, stearic acid, and palmitoleic acid 

(observed p = 0.005) for classification of MCI and HPC samples (AUC = 0.966) and (B) 

PLS-DA model constructed using levels of four significant unidentified features (observed p 
= 0.022) for classification of MCI and AD samples (AUC = 0.917).
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Figure 6. 
(A) PLS-DA model constructed using levels of myristic acid, lauric acid, palmitic acid, and 

stearic acid for classification of AD and HPC groups (observed p = 0.007) and (B) ROC 

analysis of the PLS-DA model by 100-fold LOOCV showing AUC = 0.948.

Jasbi et al. Page 28

J Proteome Res. Author manuscript; available in PMC 2024 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Correlation coefficients among the panel of candidate markers and clinical characteristics.
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Figure 8. 
Metabolome view of pathway analysis conducted using levels of all reliably detected 

metabolites showing significantly altered pathways (p < 0.05) and those with high impact 

(>0.50).
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Figure 9. 
Conceptual schema articulating observed changes in substrate utilization and energy 

production as a function of increasing AD pathogenesis. The darker red areas (to the 

right) are more increased with AD pathology, and greater enrichment is observed in those 

pathways. Results show reduced aerobic glycolysis and increased degradation of BCAA 

associated with HPC and MCI groups as compared to NC. Meanwhile, a preference for fatty 

acid substrates is seen in MCI and AD groups, with further reductions in aerobic glycolysis 

as compared to NC. ETC, electron transport chain; IMM, inner mitochondrial membrane; 

OMM, outer mitochondrial membrane; and OXPHOS, oxidative phosphorylation.
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Table 3.

Significant Between-Group Metabolites As Determined by MANOVA Testing, Focusing on NC and HPC 

Groups

metabolite F-value p-value LSD p
significant post-hoc

comparisons

lauric acid 23.360 3.98 × 10−9 8.29 × 10−6 HPC-AD; NC-AD; HPC-MCI; NC-HPC; NC-MCI

myristic acid 16.727 3.92 × 10−7 2.49 × 10−4 HPC-AD; NC-AD; HPC-MCI; HPC-NC; NC-MCI

stearic acid 9.911 4.34 × 10−5 0.036 HPC-AD; NC-AD; HPC-MCI; HPC-NC; NC-MCI

palmitic acid 9.133 8.56 × 10−5 0.036 HPC-AD; HPC-MCI; HPC-NC; NC-MCI
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