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Abstract

BACKGROUND—Group 1 pulmonary arterial hypertension (PAH) is a progressive fatal
condition characterized by right ventricular (RV) failure with worse outcomes in connective
tissue disease (CTD). Obstructive sleep apnea and sleep-related hypoxia may contribute to RV
dysfunction, though the relationship remains unclear.

OBJECTIVES—The aim of this study was to prospectively evaluate the association of the
apnea-hypopnea index (AHI) and sleep-related hypoxia with RV function and survival.

METHODS—Pulmonary Vascular Disease Phenomics (National Heart, Lung, and Blood
Institute) cohort participants (patients with group 1 PAH, comparators, and healthy control
participants) with sleep studies were included. Multimodal RV functional measures were
examined in association with AHI and percentage of recording time with oxygen saturation
<90% (T90) per 10-unit increment. Linear models, adjusted for demographics, oxygen, diffusing
capacity of the lungs for carbon monoxide, pulmonary hypertension medications, assessed

AHI and T90, and RV measures. Log-rank test/Cox proportional hazards models adjusted for
demographics, oxygen, and positive airway pressure were constructed for transplantation-free
survival analyses.

RESULTS—Analysis included 186 participants with group 1 PAH with a mean age of 52.6 +
14.1 years; 71.5% were women, 80.8% were Caucasian, and there were 43 events (transplantation
or death). AHI and T90 were associated with decreased RV ejection fraction (on magnetic
resonance imaging), by 2.18% (-2.18; 95% CI: —4.00 to —0.36; £=0.019) and 0.93% (-0.93;
95% ClI: —-1.47 to —-0.40; P< 0.001), respectively. T90 was associated with increased RV systolic
pressure (on echocardiography), by 2.52 mm Hg (2.52; 95% CI: 1.61 to 3.43; A< 0.001);
increased mean pulmonary artery pressure (on right heart catheterization), by 0.27 mm Hg (0.27;
95% ClI: 0.05 to 0.49; £=0.019); and RV hypertrophy (on electrocardiography), 1.24 mm (1.24;
95% CI: 1.10 to 1.40; £<0.001). T90, but not AHI, was associated with a 17% increased 5-year
risk for transplantation or death (HR: 1.17; 95% ClI: 1.07 to 1.28). In non-CTD-associated PAH,
T90 was associated with a 21% increased risk for transplantation or death (HR: 1.21; 95% CI:
1.08 to 1.34). In CTD-associated PAH, T90 was associated with RV dysfunction, but not death or
transplantation.

CONCLUSIONS—Sleep-related hypoxia was more strongly associated than AHI with measures
of RV dysfunction, death, or transplantation overall and in group 1 non-CTD-associated PAH

but only with RV dysfunction in CTD-associated PAH. (Pulmonary Vascular Disease Phenomics
Program [PVDOMICS]; NCT02980887)

Keywords

connective tissue disease—associated pulmonary arterial hypertension; obstructive sleep apnea;
pulmonary arterial hypertension; pulmonary hypertension; right ventricular dysfunction; sleep-
related hypoxia
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World Symposium on Pulmonary Hypertension group 1 pulmonary arterial hypertension
(PAH) is a progressive, ultimately fatal condition characterized by elevated pulmonary
vascular resistance leading to right ventricular (RV) failure.1® Given high PAH-related
morbidity and mortality, the identification of risk factors contributing to its pathophysiology
and progression remains a high priority. Obstructive sleep apnea (OSA) and sleep-related
hypoxia, via pathways of upregulation of systemic inflammation, vascular remodeling, and
vasoconstriction,”8 may represent key targets to mitigate PAH-associated morbidity and
mortality.%10

OSA results in cyclic increases in intrathoracic pressure due to repetitive forced
inspiration against a closed airway, thereby leading to repeated increases in pulmonary
arterial and right atrial pressure.11:12 OSA and sleep-related hypoxia are prevalent in
pulmonary hypertension.13-21 Hypoxia promotes pulmonary arterial fibroblast production
and proliferation and release of chemokines and cytokines that contribute to pulmonary
vascular remodeling.8:22-27 Although a general association of OSA and sleep-related
hypoxia relative to pulmonary hypertension has been reported,17-21.28.29 the contribution
of OSA and intermittent hypoxia to PAH evolution and impact on mortality remains unclear.
Moreover, although connective tissue disease (CTD)-associated PAH is the second most
common etiology of group 1 PAH after idiopathic PAH and has a higher mortality rate,3°
it is unknown if OSA-induced up-regulation of inflammation and sleep-related hypoxia
contribute further to adverse outcomes in patients with CTD-associated PAH.

The association between OSA defined by the apnea-hypopnea index (AHI) and the severity
of pulmonary hypertension is unclear. Reports favor an association between sleep-related
hypoxia and severity of pulmonary hypertension more consistently than with AHI, but
study limitations preclude definitive conclusions. For example, a small study involving
different etiologies of precapillary pulmonary hypertension identified an association of
AHI and percentage of time spent at oxygen saturation (SpO,) <90% (T90) relative

to mean pulmonary artery pressure (mPAP) and right atrial pressure.28 However, other
studies of overall precapillary pulmonary hypertension and group 1 PAH showed an
association of nocturnal hypoxia (mean SpO, <90% or T90), but not AHI, with pulmonary
hypertension severity.17:19.29 These studies were mainly retrospective with small sample
sizes, incompletely accounting for confounding variables. These reports were also not
specific to group 1 PAH and did not assess group 1 PAH subgroup differences, particularly
CTD-associated PAH.

We prospectively investigated the relationship of OSA and sleep-related hypoxia with RV
dysfunction and transplantation-free survival in patients with group 1 PAH. We leveraged
data from the PVDOMICS (Pulmonary Vascular Disease Phenomics Program), involving
rigorous phenotyping of multimodal RV measures, prospective design, and data collection
in comparator and control groups, thereby overcoming the limitations of existing studies
and offering unique insights. We hypothesized that: 1) RV structural, hemodynamic, and
electrophysiological measures are associated with OSA defined by AHI and sleep-related
hypoxia defined by T90 as primary predictors independent of confounding influences; 2)
AHI and T90 predict group 1 PAH transplantation-free survival; 3) the associations of
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AHI and T90 with survival are modulated by RV functional and structural alterations;
and 4) the associations of AHI and T90 with transplantation-free survival are stronger for
CTD-associated PAH than non-CTD-associated PAH.30

SCRIPTION.

The PVYDOMICS clinical research network is a National Heart, Lung, and Blood Institute—
funded, prospective, longitudinal cohort study (NCT02980887) that enrolled participants
from November 30, 2016, to October 18, 2019. Protocol details have previously been
published.10:31-34 The protocol was approved at each institution by the local Institutional
Review Board, and informed consent was obtained from all participants.

Enrolling centers recruited persons =18 years of age in groups 1 to 5, referred for right heart
catheterization (RHC) for clinical purposes, who were able to complete diagnostic testing
(see the Supplemental Appendix for full eligibility criteria). The present study involved

3 groups: patients with group 1 PAH according to the World Symposium on Pulmonary
Hypertension guidelines with mPAP =25 mm Hg, pulmonary artery wedge pressure <15
mm Hg, and pulmonary vascular resistance >3.0 WU3%:36; a comparator group with mPAP
<25 mm Hg and group 1 risk factors or exercise-induced pulmonary hypertension; and
healthy control subjects with normal cardiopulmonary findings and without end-organ
disease (Supplemental Appendix).

Participants underwent a comprehensive clinical phenotyping protocol including review
of their medical history, demographics, and, when not contraindicated, transthoracic
echocardiography, cardiac magnetic resonance imaging (CMR), RHC and 12-lead
electrocardiography (ECG) (Supplemental Appendix). Healthy control subjects underwent
the same evaluation except that they did not undergo RHC.

Overnight sleep monitoring was performed upon enrollment with the NOX-T3 (CareFusion)
portable home sleep study system (type 3 sleep study). If patients were already using
nocturnal supplemental oxygen and/or positive airway pressure, or were prescribed oxygen,
this was documented and used during the sleep study. Similar sleep studies performed within
1 year of enrollment were accepted if there were no significant changes in weight, nocturnal
oxygen, or sleep-disordered breathing therapy. Sleep studies, apnea, and hypopnea were
scored according to the American Academy of Sleep Medicine guidelines, with hypopnea
defined by a 230% reduction in peak signal excursion lasting =10 seconds and associated
with =3% oxygen desaturation.37-39 Interscorer and intrascorer reliability was >90% for all
sleep study measures (intraclass correlation coefficients, 0.92 [95% CI: 0.80-0.97] for AHI
and 1.00 [95% CI: 0.99-1.00] for T90).

STATISTICAL ANALYSIS.

The primary predictors of right heart measures were sleep-related hypoxia and OSA
defined by T90 and AHI, respectively. For comparisons across World Symposium on
Pulmonary Hypertension group 1, comparator, and healthy control patients, analysis of
variance or the Kruskal-Wallis test was performed for continuous variables and the Pearson
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chi-square test or Fisher exact test for categorical variables. Logistic and linear regression
models adjusted for age, sex, race, body mass index, pulmonary hypertension medications,
supplemental oxygen were used to assess the associations of OSA and sleep-related hypoxia
cardiac indexes. Additional models were adjusted for diffusing capacity of the lungs for
carbon monoxide (DLcp) and left ventricular diastolic dysfunction by lateral E/e” ratio.
DLco was included to account for sleep-related hypoxia due to ventilation-perfusion
mismatch and barriers to gas exchange specific to the pathobiology of PAH and chronic
intermittent daytime hypoxemia not captured by a single SpO, measurement.%0 Adjustment
for lateral E/e’ ratio was performed to account for left-sided diastolic dysfunction. Given
existing literature and biologic plausibility, T90 and the AHI are presented per 10-unit
increase.1921.28.29 \We considered alternate measures of sleep-related hypoxia (ie, mean

and minimum SpO,). The primary cardiac measure outcomes in each structural and
physiological domain were RV systolic pressure (on echocardiography), RV ejection fraction
(on CMR), mPAP (on RHC), and RV hypertrophy (on ECG). We also examined secondary
RV function measures yet to be reported in relation to OSA and sleep-related hypoxia but
recognized to hold prognostic value in pulmonary hypertension (Supplemental Appendix).

Time-to-event analysis was performed using Cox proportional hazards models to evaluate
associations of OSA and sleep-related hypoxia with transplantation-free survival. The
proportional hazards assumption was met for all models. Cox models were adjusted for
age, sex, body mass index, supplemental oxygen, DLco, unrepaired shunt, and positive
airway pressure. Kaplan-Meier survival curves and log-rank tests were used to assess

the associations of sleep indexes with death or transplantation (lung and/or heart). In
sensitivity analyses, we excluded those without intracardiac shunt repair. In secondary
analyses, we evaluated the associations of T90 and AHI with right heart measures in
CTD-associated and non-CTD-associated PAH and transplantation or death. In exploratory
analyses, we examined the statistical interaction of OSA indexes and RV function in relation
to transplantation-free survival. Analyses were performed using SAS version 9.4 (SAS
Institute).

OVERALL PARTICIPANT CHARACTERISTICS.

Figure 1 shows the distribution of study participants (patients with group 1 PAH,
comparators, and healthy control subjects). Demographics of the final analytical sample
compared with those who did not have sleep studies were similar except for higher body
mass index (30.3 = 7.6 kg/m? vs 27.4 + 7.1 kg/m?; P< 0.001) (Supplemental Table 1).
Age at the time of enrollment was greatest among the comparators (approximately 60
years) and similar in the PAH group and healthy control subjects (approximately 50 years),
and participants were predominantly women. Ethnicity, race, and functional class (healthy
control subjects excluded) did not differ significantly. The proportion of patients with CTD
was higher in the comparator group than the PAH group (78% vs 25%), as group 1 PAH
comparators were identified by the presence of group 1-associated conditions, including
CTD (Table 1, Supplemental Table 2).
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SLEEP STUDY CHARACTERISTICS.

Ninety-two participants with PAH (49.7%), 31 control subjects (39.7%), and 17 comparators
(54.8%) had OSA (AHI =5), whereas 41 participants with PAH (22.2%) had AHI =15,
similar to comparators and more than healthy control subjects (Table 2). Central respiratory
events were infrequent. Median resting awake SpO, was lower in patients with PAH vs
healthy control subjects vs comparators: 96% (Q1-Q3: 93.0% to 98.0%) vs 98% (Q1-Q3:
97.0% to 99.0%) vs 98% (Q1-Q3: 98.0% to 99.5%), respectively (P< 0.001). Percentage
predicted DLco was lower in patients with PAH vs healthy control subjects and comparators:
57.6% =+ 21.1% vs 90.3% * 16.5% and 75% = 20.4%, respectively. Median T90 was

37.0% (Q1-Q3: 2.2% to 87.3%) of recording time in participants with PAH vs 0.12%
(Q1-Q3: 0.00% to 2.8%) in healthy control subjects and 2.8% (Q1-Q3: 0.19% to 13.1%) in
comparators (£ < 0.001), despite the use of nocturnal oxygen or positive airway pressure

in nearly 39.8% of participants with PAH vs 5.1% in healthy control subjects and 6.3%

in comparators during the sleep study. In PAH, daytime awake SpO5 and sleep-related
oxygenation (T90) were inversely correlated (Spearmen correlation coefficient = —0.34; 95%
Cl: -0.48 to —0.19; < 0.001).

RIGHT-SIDED CARDIAC STRUCTURAL, HEMODYNAMIC, AND ELECTROPHYSIOLOGICAL
MEASURES.

RV imaging measures had expected differences between participants with PAH and
comparators, including by echocardiography (higher RV systolic pressure, greater RV wall
thickness, lower tricuspid annular plane systolic excursion, greater global RV free wall
peak longitudinal strain [3 and 6 segments]) and by CMR (lower RV ejection fraction,
increased RV end-systolic volume index, and increased RV mass) (Table 3) in those with
PAH. RHC revealed expected differences between participants with PAH and comparators
(mPAP 44.2 mm Hg vs 16.6 mm Hg, pulmonary vascular resistance 7.1 WU vs 1.7 WU) and
lower cardiac output and cardiac index (Table 3). Comparators and healthy control subjects
showed similar imaging results, but the latter did not undergo RHC. RV hypertrophy, right
bundle branch block, and right-axis deviation on ECG were more evident among patients
with PAH than other groups.

SLEEP-DISORDERED BREATHING INDEXES AND RIGHT-SIDED CARDIAC FUNCTION
MEASURES.

Of the primary RV structural and physiological measures assessed in patients with PAH,
only RV ejection fraction (on CMR) was associated with increasing AHI (Table 4,
Supplemental Table 3). Secondary RV measures associated with an increase in AHI included
increased RV peak global longitudinal systolic strain (on echocardiography), decreased
cardiac output (on RHC), and increased mean right atrial pressure and pulmonary vascular
resistance (both on RHC).

In contrast to AHI, T90 in the PAH group was significantly associated with all primary
structural, hemodynamic, and electrophysiological right heart measures. Specifically, for
every 10% increment in T90, RV systolic pressure assessed by echocardiography increased
by 2.49 mm Hg (95% CI: 1.58 to 3.40; £< 0.001), RV ejection fraction assessed by CMR
decreased by 0.94% (95% CI: -1.47 to —0.40; £< 0.001), mPAP on RHC increased by
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1.86 mm Hg (95% ClI: 1.29 to 2.42; P< 0.001), and the odds of RV hypertrophy assessed
using ECG were 26% higher (OR: 1.26; 95% CI: 1.11 to 1.44; P< 0.001). Secondary RV
measures were associated with T90, including tricuspid annular plane systolic excursion
(on echocardiography), global RV free wall peak longitudinal strain (3 and 6 segments,

on echocardiography), RV fractional shortening (on echocardiography), and pulmonary
vascular resistance (on RHC) (Table 4, Figure 2). Similar findings were observed when: 1)
adjusted for supplemental oxygen or positive airway pressure use during the sleep study; 2)
left heart diastolic dysfunction was characterized by lateral E/e” ratio; and 3) participants
with unrepaired intracardiac shunts (n = 14) were excluded (Supplemental Tables 4 to 6).

SLEEP-DISORDERED BREATHING AND TRANSPLANTATION-FREE SURVIVAL.

There were 34 deaths and 9 transplantations, with a median follow-up duration of 48.3
months (Q1-Q3: 36.9-60.0 months). Sleep-related hypoxia (T90) was associated with
transplantation-free survival. For each 10% increment in T90, the risk for transplantation

or death increased by 12% (HR: 1.12; 95% CI: 1.04-1.22; = 0.005) in unadjusted models
and 17% (HR: 1.17; 95% CI: 1.07-1.28; P< 0.001) when adjusted for age, sex, body

mass index, DLcq, and supplemental oxygen use, with similar findings when adjusted for
overnight oxygen, unrepaired shunt, positive airway pressure, and lateral E/e” ratio (Table

5, Supplemental Tables 7 to 9). Neither AHI nor oxygen saturation nadir was associated
with transplantation-free survival, but mean SpO, of >90% vs <90% was associated with

a lower occurrence of transplantation or death (unadjusted HR: 0.43 [95% CI: 0.22-0.82;
P=0.010]; adjusted HR: 0.41 [95% CI: 0.20-0.83; £=0.13]) (Table 5). A median T90
threshold >37% (= 0.010) and mean SpO, < 90% (P = 0.008) were associated with
decreased transplantation-free survival (Figure 3). The linear trend of risk for transplantation
or death by T90 quartile was significant with adjusted (2= 0.04) and unadjusted (= 0.012)
models, with T90 > 87.3% (Figure 4) associated with increased risk for transplantation or
death (Table 5, Supplemental Tables 7 to 9). There was no statistically significant interaction
of transplantation-free survival and sleep-related hypoxia or AHI and RV measures.

SLEEP-DISORDERED BREATHING AND CONNECTIVE TISSUE DISEASE SUBGROUP OF
WORLD SYMPOSIUM ON PULMONARY HYPERTENSION GROUP 1.

Forty-four participants with group 1 PAH had CTD (Table 1), with 14 of 34 deaths

overall and 1 transplantation. Of the primary RV measures, only electrocardiographic RV
hypertrophy was different between patients with CTD-associated PAH and those with
non-CTD-associated PAH (4.5% vs 22%, respectively; 2= 0.008) (Supplemental Table
10). None of the adjusted associations of AHI or sleep-related hypoxia with primary RV
measures showed differences between the CTD and non-CTD groups. However, positive
associations of AHI and T90 with cardiac output in CTD-associated PAH and an inverse
association with cardiac output in non-CTD-associated PAH (AHI: 0.21 [95% CI: -0.19 to
0.61] vs —0.23 [95% CI: —0.41 to —0.05] [P = 0.041]; T90: 0.12 [95% CI: -0.01 to 0.24]
vs —0.04 [95% CI: -0.11 to 0.03] [P = 0.030]) was observed. A positive association with
T90 and mean right atrial pressure in non-CTD-associated PAH but an inverse relationship
in CTD-associated PAH was observed (0.29 [95% CI: 0.07 to 0.51] vs —0.20 [95% CI: -0.60
to 0.21]; A= 0.036) (Supplemental Table 11). In CTD-associated PAH, a trend toward an
association of T90 in 10% increments (P = 0.058), dichotomized at 37% (P = 0.051), with
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transplantation-free survival was observed (Supplemental Table 12). The number of events
(transplantation or death) was too few to perform adjusted models.
DISCUSSION

We leveraged a richly phenotyped cohort, PVDOMICS, which enabled for the first time

a prospective examination of the associations between OSA and sleep-related hypoxia in
group 1 PAH and in-depth structural, hemodynamic, and electrophysiological assessments
of RV dysfunction as well as survival. We observed that: 1) increasing severity of sleep-
related hypoxia was consistently associated with a range of RV dysfunction measures; 2)
the frequency of respiratory events (AHI) was associated only with reduced RV ejection
fraction and some secondary RV dysfunction measures; 3) increasing sleep-related hypoxia
severity (10% increment in T90) was associated with a 17% increase in adjusted risk for
transplantation or death over a median 4-year follow-up period; 4) OSA and sleep-related
hypoxia were differentially associated with cardiac output and mean right atrial pressure in
CTD and non-CTD groups; and 5) in the non-CTD group, sleep-related hypoxia portended
worse transplantation-free sur vival (Central Illustration).

Our key finding that sleep-related hypoxia is associated with a range of measures of

RV dysfunction as well as mortality in group 1 PAH is consistent with the concept

that hypoxia contributes to pulmonary hypertension severity, increasing RV afterload

and impairing RV function, hence predisposing to worse outcomes.19:28 Sleep-related
hypoxia, a repetitive overnight stressor, can cause sustained pulmonary hypertension via
pulmonary vasoconstriction and remodeling.841-47 Hypoxia promptly increases pulmonary
arterial pressure, which is fully reversible with reoxygenation,28.29:47.48 a5 oxygen-sensing
mechanisms and mediation of hypoxic pulmonary vasoconstriction reside in the pulmonary
arterial smooth muscle cells.*2~46 Moreover, hypoxic pulmonary vasoconstriction limits
exercise capacity via increases in RV afterload.843:4546 profound hypoxia also results in
dysregulation of metabolic pathways in the RV, leading to greater RV hypertrophy or fibrosis
and pulmonary vascular remodeling.49:50

Persistence of the association of sleep-related hypoxia and measures of RV dysfunction even
after accounting for DLco suggests a hypoxic etiology independent of ventilation-perfusion
mismatch, anemia, and circulatory or diffusion barriers.% Furthermore, in our cohort, mean
baseline awake SpO5 was normal in group 1 PAH (96%), in contrast to the high degree

of sleep-related hypoxia. Only 11% of participants with group 1 PAH had been prescribed
long-term supplemental oxygen for daytime oxygen needs. By controlling for nocturnal
oxygen and positive airway pressure use during the sleep study as well as DL, a reflection
of reduced gas exchange, we demonstrated a persistent association with nocturnal hypoxia
and compromised RV function and worse survival. Results also persisted after accounting
for left heart diastolic dysfunction, thereby substantiating a unique association with sleep-
related hypoxia and RV dysfunction. Our results support the hypothesis that nocturnal
hypoxia during sleep exerts clinically important pathophysiologic effects on the pulmonary
arteries and RV without evidence of day-time awake hypoxia.
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Although the associations of sleep-related hypoxia and an array of measures of RV
dysfunction (echocardiography, CMR, ECG, and RHC) were more consistent than with
AHI, AHI was significantly associated with greater reductions in RV ejection fraction and
RV peak global longitudinal strain by CMR. These associations may reflect the negative
influence of repetitive apneas and hypopneas on hemodynamic measures (cardiac output and
pulmonary vascular resistance) (eg, from wide swings in intrathoracic pressure or autonomic
nervous system fluctuations during respiratory events). These specific pathophysiologic
consequences may operate independent of or synergistic to hypoxia leading to specific
subtypes of RV cardiac structural alterations.

Our prospective findings provide needed confirmation and enhancement of prior
retrospective work1® showing a stronger association of sleep-related hypoxia than OSA

with survival, but in a larger cohort, better taking into consideration confounding factors

not previously addressed and, for the first time, providing analysis of right-sided cardiac
measures reported to influence survival, such as tricuspid annular plane systolic excursion
and echocardiographic RV free wall peak longitudinal strain in relation to OSA and sleep-
related hypoxia. Tricuspid annular plane systolic excursion serves as a readily attainable
marker of RV systolic function by echocardiography®1:52 and is associated with worse
survival in patients with group 1 PAH when <1.8 cm.53 Additionally, echocardiographic RV
free wall peak longitudinal strain (3 segments) <—19% was associated with a >3-fold risk for
all-cause mortality across an array of pulmonary hypertension etiologies.>* Our finding of
an association with sleep-related hypoxia and both tricuspid annular plane systolic excursion
and RV strain is novel and underscores the potential pathophysiological significance and
clinical prognostic value of sleep-related hypoxia in group 1 PAH.

Current guidelines recommend nocturnal oximetry or a sleep study in patients with
pulmonary hypertension if there is a suspicion of OSA.>® Although many patients undergo
polysomnography as part of pulmonary hypertension evaluation, management guidelines
do not provide recommendations regarding systematic screening of sleep-related hypoxia,
as there are no long-term data suggesting that long-term supplemental nocturnal oxygen
therapy has sustained benefits on mitigating disease progression. Our findings, particularly
that greater duration of hypoxia portended worse transplantation-free survival, suggest
potential utility of routine screening of sleep-related hypoxia to inform risk stratification.

Finally, contrary to our a priori hypothesis, OSA and sleep-related hypoxia were associated
with worse cardiac output and survival in non-CTD-associated PAH but not CTD-associated
PAH. The smaller sample size and number of transplantations and deaths in the CTD

group may have limited the ability to detect an association with sleep-related hypoxia and
transplantation-free survival. However, our findings are consistent with reports of improved
survival in systemic sclerosis group 1 PAH diagnosed after 2010 compared with prior years,
presumably because of earlier recognition and improved treatments.>®

STUDY STRENGTHS AND LIMITATIONS.

This study has several strengths that overcame prior studies’ limitations. The proximate
timing of the collection of sleep-disordered breathing indexes along with a range of
rigorously collected, multimodal RV indexes (overcoming challenges with measurement
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variability of imaging and physiological measures in prior clinical cohorts) provides a
unique opportunity to elucidate influences of sleep-related hypoxic stresses on RV function,
structure, and physiology. These findings are clinically significant, as RV failure is the
primary contributor to pulmonary hypertension mortality. This work uniquely allowed the
prospective investigation of the influence of OSA and sleep-related hypoxia on survival in
group 1 PAH over an approximately 4-year period. We also had the advantage of examining
OSA and hypoxic associations with RV indexes across comparator and healthy control
groups with data collection concurrent with participants with group 1 PAH. We accounted
for confounding factors including demographics, pulmonary hypertension medications,
positive airway pressure, and supplemental oxygen. Finally, we examined PAH subgroups to
elucidate sleep-disordered breathing relationships across PAH subtypes.

Although a relatively large number of participants with group 1 PAH were recruited,
approximately 50% were missing sleep study data, with results more generalizable to obese
individuals. Although a subset of participants used supplemental oxygen and/or positive
airway pressure therapy, results were robust to statistical adjustment of this use. Residual
confounding by this therapy remains possible, but this would be expected to bias findings
toward the null. To account for confounding by obesity, intracardiac shunt, left cardiac
diastolic dysfunction, and oxygen gas exchange barriers, models were adjusted for body
mass index, lateral E/e” ratio, positive airway pressure, shunt repair status, and DLc,
respectively, without substantive changes in findings. Although median daytime SpO, was
normal in our PAH cohort, we cannot exclude the possibility that continuous daytime
oximetry could have detected hypoxic episodes that may contribute to the overall hypoxic
burden.

Using type 3 home testing rather than attended polysomnography may have resulted in

an underestimation of the true severity of OSA. This, combined with the small number

of death and transplantation events, may have limited our ability to detect a statistically
significant interaction of OSA with RV measures and survival. Additionally, event numbers
in the analysis of transplantation-free survival in CTD-associated PAH may have been too
few to fully characterize an association between sleep-related hypoxia and transplantation-
free survival, which was observed in non-CTD-associated PAH. Finally, use of pulmonary
hypertension medications may have increased the overall survival within the entire cohort,
and although use of medications was controlled for in our analyses, the true association with
sleep-related hypoxia may be underestimated.

CONCLUSIONS

In this multicenter, prospective cohort study, we show that increased sleep-related

hypoxia was associated with worse right-sided cardiac structural, hemodynamic, and
electrophysiological measures in group 1 PAH, even after adjustments for confounding
factors, suggesting that hypoxia specific to sleep contributes to the pathogenesis of group

1 PAH. AHI was also associated with some specific measures of RV dysfunction, such as
RV ejection fraction, recognized to hold prognostic significance in pulmonary hypertension,
but overall findings were less consistent than with hypoxia. Sleep-related hypoxia was

also independently associated with death or transplantation in non-CTD-associated group
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1 PAH but not in CTD-associated PAH, possibly related to the smaller sample size and
number of outcome events in the latter. These results are hypothesis generating and prompt
further investigation to better elucidate underlying mechanisms of the association between
sleep-related hypoxia and RV dysfunction, expound physiological contributors to sleep-
related hypoxia (eg, ventilation-perfusion mismatch, sleep apnea—specific hypoxic burden),
and clarify whether routine screening for sleep-related hypoxia and whether nocturnal
supplemental oxygen can improve PAH outcomes. As continuous monitoring of daytime
awake oxygenation was not performed, future studies should also examine the differential
contributions of nocturnal and daytime hypoxia.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS AND ACRONYMS

AHI apnea-hypopnea index
CMR cardiac magnetic resonance imaging
CTD connective tissue disease
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DLco diffusing capacity of the lungs for carbon monoxide
ECG electrocardiography
mPAP mean pulmonary artery pressure
OSA obstructive sleep apnea
PAH pulmonary arterial hypertension
RHC right heart catheterization
RV right ventricle/ventricular
SpO, oxygen saturation
T90 percentage of time spent at oxygen saturation <90%
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PERSPECTIVES
COMPETENCY IN MEDICAL KNOWLEDGE:

Sleep-related hypoxia may contribute to RV dysfunction, increasing mortality in patients
with Group 1 PAH.

TRANSLATIONAL OUTLOOK:

Future studies should focus on the pathophysiological links between sleep-related
hypoxia and RV dysfunction and whether supplemental nocturnal oxygen improves
outcomes in patients with Group 1 PAH.
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Participants Recruited
Overall

N =1,193

Healthy Controls Group 1 PAH* Comparatorss for
N = 96 N = 353 Group1 PAH
N =58

Healthy Controls with Group 1 PAH with Comparators with
Sleep Studies sleep studies Sleep studies
N=78 N =186 N =32

With CTD Without CTD

N = 44 N =142

FIGURE 1. Participant Enrollment
Diagram depicting patient enrollment in PVDOMICS (Pulmonary Vascular Disease

Phenomics Program), including all recruited participants with group 1 pulmonary arterial
hypertension (PAH), healthy control subjects, and comparators who underwent sleep study
testing. *Mean pulmonary artery pressure =25 mm Hg with pulmonary vascular resistance
>3.0 WU. 8Mean pulmonary artery pressure <25 mm Hg and group 1 risk factors or
exercise-induced pulmonary hypertension. CTD = connective tissue disease.
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FIGURE 2. Association of Primary RV Measuresand Sleep I ndices
Scatterplot depiction of linear regression analysis of the association of primary right

ventricular (RV) measures and apnea-hypopnea index (AHI) and the percentage of
recording time at oxygen saturation <90% (T90): (A) echocardiographic RV systolic
pressure (RVSP) and AHI, (B) RVSP and T90, (C) echocardiographic RV ejection fraction
(RVEF) and AHI, (D) echocardiographic RVEF and T90, (E) right heart catheterization
(RHC) mean pulmonary artery pressure (mPAP) and AHI, (F) RHC mPAP and T90, (G)
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electrocardiographic (ECG) RV hypertrophy and AHI, and (H) ECG RV hypertrophy and
T90. The gray area indicates the 95% CI. PA = pulmonary artery.
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FIGURE 3. Sleep I ndexes and Transplant-Free Survival in Group 1 PAH
Kaplan-Meier survival curves for transplantation or death in group 1 PAH depicted with

months to heart or lung transplantation or death as associated with (A) T90, dichotomized at
oxygen saturation (Sa0,) of 37%, and (B) mean SaO,, dichotomized at 90%. Abbreviations
as in Figures 1 and 2.
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FIGURE 4. T90 and Transplantation-Free Survival in Group 1 PAH
Kaplan-Meier survival curves for transplantation or death in group 1 PAH depicted with

months to heart or lung transplantation or death as associated with T90 in quartiles with a
significant linear adjusted trend (£ =0.0004). Abbreviations as in Figures 1 to 3.
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Conceptual Model
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u . Sleep-Related Hypoxia (not AHI) Is Associated
Sl:::o::li:taetdesvli-:)'/‘p;\);ls;;ﬂ:cl-tlilol:re With Increased Risk of Death or Transplant
(Heart/Lung)

RV Systolic Pressure
f RV Hypertrophy
{ TAPSE

| Global RV Free Wall Peak
Longitudinal Strain

{ RV Ejection Fraction

For every 10% 1 in T90, risk of death or
transplant t 17%
HR: 1.17, 95% CI: 1.07-1.28, P <0.001

In CTD-PAH, trend toward significantly
increased risk of death/transplant with
increasing T90

HR: 0.98, 95% CI:0.88-1.17, P = 0.058

CENTRAL ILLUSTRATION. Sleep-Related Hypoxia, Right Ventricular Dysfunction, and
Survival in Group 1 Pulmonary Arterial Hypertension

Among participants with group 1 pulmonary arterial hypertension (PAH), sleep-related
hypoxia defined by the percentage of recording time at oxygen saturation <90% (T90) was
associated with worsening markers of right heart dysfunction and increased risk for death or
transplantation. This association was not seen in sleep-disordered breathing defined by the
apnea-hypopnea index (AHI). CTD = connective tissue disease; Echo = echocardiography;
mPAP = mean pulmonary arterial pressure; MRI = magnetic resonance imaging; RHC =
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right heart catheterization; RV = right ventricular; TAPSE = tricuspid annular plane systolic
excursion.
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