Table 1. Parameter values used in iterative optimization of classification models and final values used for each parameter for each country-specific model.
Parameter | Definition | Range Tested | Increments | Kenya | Tanzania |
---|---|---|---|---|---|
eta | Learning rate: shrinks feature weights after each round to reach the best optimum | 0.02–0.3 | 0.02 | 0.18 | 0.28 |
max_depth | Maximum tree depth: model complexity | 2–6 | 1 | 6 | 5 |
subsample | Subsamples: the number of observations supplied to a tree | 0.25–0.75 | 0.25 | 0.50 | 0.25 |
colsample_bytree | Feature samples: the number of features supplied to a tree | 1/3–2/3 | 1/3 | 2/3 | 2/3 |
scale_pos_weight | Positive weight scale: corrects for inbalances in response variable values | 1.2–5 | 0.2 | 1.6 | 1.2 |