Skip to main content
. 2024 Apr 30;19(4):e0301345. doi: 10.1371/journal.pone.0301345

Table 1. Parameter values used in iterative optimization of classification models and final values used for each parameter for each country-specific model.

Parameter Definition Range Tested Increments Kenya Tanzania
eta Learning rate: shrinks feature weights after each round to reach the best optimum 0.02–0.3 0.02 0.18 0.28
max_depth Maximum tree depth: model complexity 2–6 1 6 5
subsample Subsamples: the number of observations supplied to a tree 0.25–0.75 0.25 0.50 0.25
colsample_bytree Feature samples: the number of features supplied to a tree 1/3–2/3 1/3 2/3 2/3
scale_pos_weight Positive weight scale: corrects for inbalances in response variable values 1.2–5 0.2 1.6 1.2