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Abstract

Infrared (IR) spectroscopic imaging is potentially useful for digital histopathology as it provides 

spatially resolved molecular absorption spectra, which can subsequently yield useful information 

by powerful artificial intelligence methods. A typical analysis pipeline in using IR imaging data 

for chemical pathology often involves iterative processes of segmentation, evaluation, and analysis 

that necessitate rapid data exploration. Here, we present a fast, reliable, and intuitive method 

based on a phasor representation of spectra and discuss its unique applicability for IR imaging 

data. We simulate different features extant in IR spectra and discuss their influence on the phasor 

waveforms; similarly, we undertake IR image analysis in the transform space to understand 

spectral similarity and variance. We demonstrate the potential of phasor analysis for biomedical 

tissue imaging using a variety of samples, using fresh frozen surgical prostate resections and 

formalin-fixed paraffin-embedded breast cancer tissue microarray samples as model systems that 

span common histopathology practice. To demonstrate further generalizability of this approach, 

we apply the method to data from different experimental conditions—including standard (5.5 μm 

× 5.5 μm pixel size) and high-definition (1.1 μm × 1.1 μm pixel size) Fourier transform IR (FTIR) 

spectroscopic imaging using transmission and transflection modes. Quantitative segmentation 

results from our approach are compared to previous studies, showing good agreement and quick 

visualization. The presented method is rapid, easy to use, and highly capable of deciphering 

compositional differences, presenting a convenient tool for exploratory analysis of IR imaging 

data.
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Graphical Abstract

INTRODUCTION

Infrared (IR) spectroscopic imaging has greatly advanced as a tool for examining tissues 

with the development of fast acquisition approaches using array detectors, laser sources, 

custom-built optical assemblies, and the emergence of lower-cost analytic and storage 

capabilities to handle big data.1–4 The differentiating feature of IR imaging from other 

tissue analysis techniques is that the imaging contrast arises from the relative proportions 

of different chemical species (proteins, lipids, DNA, etc.), which have rich and unique 

spectral signatures. Several studies have shown that different histologic classes in tissues 

(cell types, extracellular matrix, and deposits) are different in their IR spectral absorption 

patterns that arise from the inherent differences of chemical compositions. Hence, tissue 

organization and the presence of disease can potentially be detected without any extrinsic 

labeling. While the potential is exciting, one limitation to discovery and development of IR 

imaging for pathology arises from the size of IR imaging datasets. In order to meaningfully 

interpret IR images, analytical and machine learning (ML) methods have been developed, 

which have been reviewed elsewhere.1 A common feature of all these methods is the 

need for dimensionality reduction of IR images. Briefly, the hyperdimensional IR imaging 

dataset is reduced to a smaller set before training ML models for ease of data handling, 

to manage the size and diversity of samples, and for speed in evaluation. Often, these 

approaches are limited in their potential for discovery. Carefully curated spectral metrics 

by experts may miss some key features of the data, especially finer and more subtle 

features, whereas variance focused methods like principal component analysis (PCA) can be 

influenced by large changes such as scattering-induced baseline variations, limited diversity 

of samples, sample morphology, or artifacts. In addition to reducing the computational time 

and storage requirements, dimensionality reduction is also necessary to prevent overfitting 

or influencing the data by chance and biases when it is impractical to acquire large datasets 

(preclinical studies and histopathology of rare diseases). Herein, we describe a visual phasor 

representation approach and its utility for rapidly examining high-dimensional data.

The phasor-based approach was used to analyze AC circuits,5 adapted for fluorescence 

microscopy,6 and has subsequently been utilized to study a wide range of imaging data, 

namely, time-resolved and spectrally resolved fluorescence,7–9 stimulated Raman scattering 

microscopy,10 ultrafast pump–probe11 and MRI imaging.12 At the heart of this approach 

is a Fourier series representation of a signal which enables simple visual representation, 

such as fluorescence lifetime, pump–probe, or T1 T2  lifetimes in MRI. While originally 

related to explicit physical phenomena, namely, representing the magnitude and directional 
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relationship between two or more alternating quantities, the approach can be generalized 

to multiple species with individual characteristics. In particular, this approach is useful to 

rapidly identify clusters and locations of chemically similar regions in an image.7 Herein, we 

seek a similar phasor representation of IR spectra with the aim of dimensionality reduction 

of large-bandwidth IR images. Fourier transforms have been applied to IR spectra for 

deconvolution (Fourier self-deconvolution),13,14 calculating derivatives,15 and for scattering 

correction;16 however, they have not been reported for iterative exploratory analysis or 

image segmentation, which we seek to demonstrate in this study. Specifically, we seek to 

develop a pipeline for data visualization and assess whether the rapid insight afforded by this 

method can be useful for exploratory analyses in histopathology.

EXPERIMENTAL SECTION

The images used in this study are from fresh frozen (FF) prostate surgical resections (Mayo 

Clinic, Rochester, MN) and formalin-fixed paraffin-embedded (FFPE) breast cancer tissue 

microarray (TMA) sections obtained from US Biomax, Inc. (BR1003). The FF sections 

are from patients with various Gleason grades, typically 1.5 cm × 1.5 cm in size. The 

FFPE sample set consists of 101 cores of approximately 1 mm diameter each and sampled 

from 47 patients. All patient information was de-identified, and the study was approved 

by UIUC and Mayo Clinic institutional review boards. IR images were acquired either 

in transflection mode for prostate tissue thin sections deposited on low-e substrates17 or 

in transmission mode for breast tissue thin sections deposited on the BaF2 substrate. The 

imaging parameters for this dataset were either 5.5 or 1.1 μm pixel size and 4 cm−1 spectral 

resolution in the 0–3950 cm−1 (truncated to 900–3800 cm−1) range, which are typical for an 

FTIR imaging spectrometer (Cary 600 Series, Agilent). Data were averaged for 4 co-adds 

for 5.5 μm, 16 co-adds for 1.1 μm, and 120 co-adds for background. Rubber-band baseline 

correction and minimum noise fraction (MNF) de-noising18 were performed, and the effects 

of these will be discussed in detail under the Results and Discussion section and Supporting 

Information. For the methods described in this text, we used the inverse fast Fourier 

transform (IFFT) function in MATLAB (MathWorks) without any apodization function, 

and the spectral data were zero-padded by 4× (total points, N = 4096), as is routinely done in 

FT spectroscopy.15 For evaluation of our approach, we compared our results with published 

results on the same sample (BR1003).19 For the supervised classification results presented in 

this paper, the ground truth used in the original study for histologic classes (~70,000 pixels) 

annotated under the expert supervision of a pathologist was used.

RESULTS AND DISCUSSION

First, we provide the mathematical details and illustrate the salient aspects of our approach 

using synthetic IR spectra. The phasor transform involves calculating the real and imaginary 

parts of the inverse Fourier transform of the spectral data, which are defined in eqs 1 and 2, 

respectively:

u k, x, y = Re
−∞

∞

A v, x, y e2πikv dv

(1)
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v k, x, y = Im
−∞

∞

A v, x, y e2πikv dv

(2)

where x and y are the pixel indices, respectively, v is the frequency in wavenumber (cm−1), 

A v, x, y  is the absorbance at each pixel, and k is the conjugate variable of wavenumber, 

often referred to as the spatial frequency. 14 However, since we are looking at images, 

to avoid any confusion with spatial features of the images, we call these the “phasor 

frequencies” in all subsequent discussions (and do not label the units in cm to avoid 

confusion with the spatial dimensions of images). From these transformations, the phasor 

can be defined as the vector

P (k, x, y) = u(k, x, y)x̂ + v(k, x, y)ŷ

(3)

Although the phasor representation is a well-known concept, we present spectral 

components that can be considered building blocks for common biomedical IR spectra and 

whose inverse Fourier transform can be evaluated analytically (eqs 4–7) as these have direct 

implications for the development of our approach and spectral analyses. Underpinning our 

attempt to develop an understanding is that IR absorption is linear in the number of species, 

their interactions and environment; hence, complex spectral features can be understood as 

the linear combination of contributory IR absorption features of specific vibrational modes, 

and any spectrum can be expressed in terms of these elementary building blocks. Lorentzian 

and Gaussian band shapes20 are the elementary curves that characterize absorption bands 

in IR spectroscopy. Their line shapes and analytical phasor representations, respectively, are 

given by the pairs of expressions

A(ν) = A γ2

γ2 + 4 ν − ν0
2

(4a)

P (k) = γA
4 cos 2πkν0 e−(πγ k )x̂ + A sin 2πkν0 e−(πγ k )ŷ

(4b)

and

A(v) = Ae− ν − ν0
2/σ2

(5a)
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P (k) = Aσ π cos 2πkν0 e−(πkσ)2x̂ + Aσ π
sin 2πkν0 e−(πkσ)2ŷ

(5b)

where ν0 is the central frequency of the band, A is the peak absorbance, 2γ is the full 

width at half-maximum (FWHM) of the Lorentzian, and σ is the width of the Gaussian 

distribution. While both of these are symmetric frequency distributions, it is well known 

that biological macromolecules, especially in media such as aqueous solutions, show a 

distribution of vibrational frequencies that is asymmetric. Fortunately, the asymmetry can 

also be included in simple modifications to the standard Lorentzian and Gaussian band 

shapes. 21 The impact of instrumental line shape on spectral data and that of optical effects 

on IR spectra of morphologically heterogeneous samples measured in a microscope are also 

known to influence the band shapes. 22,23 Without loss of generality, our approach can be 

extended to these special cases with the appropriate perturbation functions. Lorentzian and 

Gaussian band shapes are shown in Figure 1A,D, where the chosen peak position of the 

amide I vibrational mode (~1650 cm−1 ) and an FWHM of 40 cm−1 are characteristic of 

protein absorption. As expected from the inverse Fourier transform formulae (eqs 4b and 

5b), u (and v) are oscillatory functions with an exponential or Gaussian envelope (Figure 

1B,E). Consequently, the trajectory of P (k) takes the form of a spiral decay, governed by 

the functional form of the band shape, its width, and central frequency (Figure 1C,F). Since 

the inverse Fourier transform of a real function has to be Hermitian, the negative k values 

carry no new information and are discarded without any loss of information content for all 

subsequent results presented in this paper.

A perturbation to the isolated band shape, for example, due to a subpopulation experiencing 

environmental interactions, can be represented by the Dirac delta function, and its phasor 

representation can be given as

A(ν) = Aδ ν − ν0

(6a)

and

P (k) = A cos 2πkν0 x̂ + A sin 2πkν0 ŷ

(6b)

The phasor transformation extends the influence of this sharp, isolated feature throughout 

the phasor frequency domain, thus providing a means to visualize small but influential 

changes (Figure 1G–I). Since biomedical spectroscopy is composed of small changes 

between cells and disease states, an increased ability to observe the impacts of small changes 

may be beneficial. Two Dirac delta functions lead to the familiar beat pattern. For example, 

the sum of two Dirac delta functions of equal intensity
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A(ν) = Aδ ν − ν1 + Aδ ν − ν2

(7a)

results in a waveform after the phasor transformation (shown in Figure 1J–L) as

P (k) = 2A cos(2πk⟨ν⟩) cos(2πkδν)x̂ + 2A sin(2πk⟨ν⟩)
cos(2πkδν)ŷ

(7b)

where ⟨ν⟩ = ν1 + ν2
2  and δν = ν1 − ν2 .

A model for the absorbance, A(ν), observed for biomedical spectra can be understood 

by ignoring scattering and assuming Lambert-Beer's law for weak absorption as 

A(ν) = ∑l clε1(ν)L, where cl is the concentration of the lth chemical species (proteins, lipids, 

nucleic acids, carbohydrates, etc.) in that pixel, εl(ν) is the molar extinction coefficient of 

the lth species, and L is the path length. For IR spectroscopy, we can write the following 

general expression for εl(v) = ∑m(l)
M(l) Am(l)g v − vm(l) , where Am(l) and g v − vm(l)  are the amplitude 

of the mth normal mode of the lth species (m(l)) and corresponding band shape function 

(Gaussian, Lorentzian, Voight, etc.), and the summation is over all IR active normal modes 

for the lth species (M(l)). In the Fourier domain, the same expression can be re-written 

as ∫−∞
∞ εl(v)e2πik0 ∼ dv = ∑m(l)

M(l) A′m(l)e2πikvm(l)gm(l)(k),  where A′m(l) is the amplitude function in 

the phasor domain (proportional to Am(l)  and gm(l)(k) is the line shape function (Gaussian, 

exponential, etc.). In summary, for any single chemical species, the entire IR spectra can 

be visualized in the phasor domain as a vector with a uniquely defined trajectory given by 

(a) relative intensities of the different vibrational modes, (b) their frequencies, and (c) their 

band shape functions. For any pixel belonging to a particular cell type or disease type in the 

IR data, the trajectory is ultimately governed by the concentration weighed summation of 

trajectories of the l species contributing to that pixel as given by eqs 8a and 8b:

u(k, x, y) = ∑
l

cl(x, y)L(x, y) ∑
m(l)

M(l)
Am(l)

cos(2πkvm(l))gm(l)(k)

(8a)

v(k, x, y) = ∑
l

cl(x, y)L(x, y) ∑
m(l)

M(l)
Am(l)sin(2πkvm(l))

gm(l)(k)

(8b)

These equations collectively show that the phasor components are linearly proportional 

to the concentration of the lth chemical species, just like the absorbance spectra, with 
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coefficients that have oscillatory contributions. Thus, the phasor representation contains 

essentially the same information and linear dependence of absorption spectra; however, with 

its transformation properties, it makes the spectral domain significantly more sensitive to 

small spectral changes in absorption spectra. These properties make it especially attractive 

for IR analysis of biomedical samples where small differences typically characterize 

differences between cells or disease states. Compared to methods like second derivative 

analyses that also seek to highlight small differences between broadly similar IR spectra, the 

phasor representation does not degrade the signal-to-noise ratio (SNR).

Carcinomas are the most common type of human cancer, arising in epithelial cells and 

accounting for more than 80% of all cancer diagnoses. As a consequence, there is interest 

in understanding the role of epithelial cells and the surrounding tissue that is known 

collectively as the stroma. Many studies using IR imaging have focused on examining 

these two broad classes of components in tissue, and we consider their representative spectra 

first. Baseline-subtracted and normalized spectra from a benign prostate tissue sample are 

presented in Figure 2A. Sloping baselines in IR spectra arise from scattering effects, and 

we will subsequently discuss the implications of it for the phasor approach. The spectra 

are largely similar, with a common set of features since most biological materials are 

composed of the same elementary building blocks (i.e., nucleic acids, lipids, carbohydrates, 

and proteins). The corresponding transform domain data are presented in Figure 2B with the 

absolute value of the inverse Fourier transform, where a decaying beat pattern arising out 

of multiple IR bands can be observed, which is also apparent in the phasor trajectory (inset 

of Figure 2B). To differentiate between any two spectra, the angle between the two phasor 

vectors at different spatial frequencies can be used, which is defined as

θ(k) = cos−1 (P1(k) ⋅ P2(k))
∣ P1(k) ∣ ∣ P2(k) ∣

(9)

which is presented in Figure 2C. From Figure 2C, a maximum separation between the 

epithelium and stroma is observed at k = 0.01091 with an angle of about 40 degrees between 

their phasor vectors. Figure 2D(i–iv) shows compass representations of the normalized 

phasor components for four different k values. Since the spectrum is a real function, at k = 0, 

v is identically zero for all spectra, and u is equal to the integrated intensity of the spectrum. 

Consequently, the normalized phasors align along the x axis at k = 0. They separate out 

at higher phasor frequencies, as seen in Figure 2D(ii–iv). These characteristics are the 

fundamental properties underlying the phasor approach to IR absorption spectra. Although 

the angle between the average epithelium and stromal phasors maximizes at k = 0.01091, the 

phasor values at higher k have lower values of SNR, which would not be obvious from the 

average spectra alone. Nonetheless, all the local maxima in the plot are good initial choices 

for the results demonstrated in the subsequent sections.

Although the application and interpretation seem relatively straightforward, there are 

additional complications in IR images from biomedical samples that arise due to the 

effects of mixed pixels,24 intraclass biological heterogeneity,25 scattering effects26–29 and 
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experimental noise.30–32 With these considerations, it is not immediately obvious whether 

the proposed approach can be useful for tissue segmentation. To evaluate its potential, 

we first consider the task of unsupervised classification that is common at the data 

exploratory and discovery stage of analyses. Briefly, in unsupervised methods, the goal is to 

segment data based on observed statistical patterns independent of any inputs from domain 

experts such as pathologists. Popular numerical methods include K-means,33 hierarchical 

clustering,34 or, frequently, manual thresholding on combinations of spectral indices. All 

these approaches are iterative and relatively slow for large biomedical datasets, presenting 

a data visualization challenge that is often required to examine the data for key features 

and outliers. The phasor technique, exploiting the speed of the FFT, can provide a fast 

alternative. The results of applying our approach are demonstrated in Figure 3 with a 

benign prostate tissue sample. Figure 3A shows the distribution of the absorption of the 

amide I band (1650 cm−1), without baseline subtraction. Although it highlights the tissue, 

absorbance at a single frequency is typically not enough for delineating the contrast between 

cell types, such as glands and the adjoining stroma in epithelial cancers. Analogous to 

fluorescence-based phasor approaches, we generate contour plots of a 2D histogram of 

normalized u and v values (normalized to u(k = 0)), which are typically known as the “phasor 

plots” and are shown in Figure 3B. Briefly, we bin the u(k) and v(k) values for all the 

pixels in the IR data to generate a 2D histogram of every u and v pair in the image. 

These “phasor plots” can be interpreted both as an abundance within the tissue, wherein the 

density (phasor count) is a measure of the prevalence of pixels with the same characteristics, 

and the diversity in composition, wherein the separation between two phasor points is a 

measure of the difference in their spectra. A region can be selected in phasor plots such 

as shown by the bounded selections shown in Figure 3B. Mapping phasor values inside 

those bounds to the image reveals clusters, as shown in Figure 3C, which correspond to 

epithelial (green) and stroma (pink) as well as outlier pixels (red) and highly scattering 

pixels (like the ones at the edge of the glands, blue). It is also important to point out that this 

segmentation provides spectro-chemically distinguishable classes (as opposed to histologic 

classes commonly identified by morphology), which may or may not have physiologic 

relevance. Hence, we examine the average spectra that are derived from each cluster (Figure 

3D). The spectra show differences in both the fine features associated with absorbance 

(which can arise from changes in concentration or path length) as well as broad, slowly 

varying variations (which arise from scattering).

To assess chemical changes, data preprocessing techniques are commonly applied to spectra, 

including those for denoising and baseline correction. A common method for biomedical 

analyses with IR spectra is to de-noise spectra based on the MNF transform.18 The effect of 

MNF de-noising on the phasor-based classification method is presented in Figure SI12. 

As expected, it leads to lower classification noise due to decreased variances in the 

phasor space, which manifests as minor changes in the shape of the phasor distribution. 

In principle, Fourier de-noising methods, which can de-noise spectra by application of 

apodization functions in the k domain, can be adapted for our approach. Scattering also, 

most prominently, leads to a non-zero baseline and can also affect finer features of the 

spectra. Typically, pixels at the edges of the tissue have large scattering contributions since 

the typical thickness of histologic sections are comparable to IR wavelengths (3−10 μm), 
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and cellular features have the same dimensions.35 Regardless of physical origin, scattering 

effects manifest as a broadband, slowly varying feature, whereas absorption modes result in 

relatively fine features corresponding to normal modes of chemical species. Consequently, it 

is expected that scattering effects will dominate the lower phasor frequencies, whereas the 

chemical contributions will dominate the higher phasor frequencies. This is demonstrated 

in Figure 4. While the effect of baseline subtraction (rubber-band baseline subtraction) is 

nominal in the higher phasor frequency (k = 0.032) (Figure 4A(i and ii)), the lower phasor 

frequency k = 7.94 × 10−4  is altered much more, and as can be seen in Figure 4B(iii and iv), 

previously unresolvable clusters can be resolved into two distinct “epithelial” and “stromal” 

clusters, as shown with the binary class maps in Figure 4C. An examination of the average 

normalized spectra from the above clusters reveals interesting spectral differences at 1740 

and 1080 cm−1, which correspond to ester carbonyl mode and phosphate vibrational modes, 

respectively. Collectively, Figure 4 demonstrates that with an appropriate choice of phasor 

frequency, it is possible to mitigate the effects of scattering in classification.

To demonstrate the generalizability and usefulness of the phasor approach, we apply it to 

a variety of samples and experimental conditions. First, we utilize measurements in both 

transmission and transflection modes.36 On the sample preparation side, there are also two 

possible tissue processing metho—sFF and FFPE. Furthermore, tissue imaging has been 

widely reported for different spatial pixel sizes. A full discussion of these parameters 

is beyond the purview of this study; however, here, we examine the generalizability 

of our approach. Figure 5 shows two representative example—slarge surgical sections 

of FF prostate tissue that contain native distributions of cells, imaged at 5.5 μm pixel 

size in transflection mode, and a carefully curated TMA of FFPE breast tissue that 

represents different cell types in normal and diseased tissue, imaged at 1.1 μm pixel size 

in transmission mode. Figure 5A shows the H&E-stained section of tissue with prostate 

cancer (PCa) of two Gleason grades (GS),37 GS = 3 (top) and GS = 5 (bottom), assessed 

by a board-certified pathologist. While the absorbance at the amide I mode (Figure 5B) 

does not display a significant contrast, the phasor distribution (Figure 5C, k = 0.0032) shows 

the presence of four clusters, whose projection back to the image allows an appreciation of 

the different domains in the sample (Figure 5D). Here, one cluster (labeled 3) corresponds 

largely to stroma and another (labeled 2) to epithelial cells that highlight benign and low-

grade cancer glands (GS ≤ 3) (zoomed-in ROI Figure 5(i and ii)). Importantly, a different 

cluster (labeled 1) highlights the clinically important GS = 5 pattern. Finally, the cluster 

labeled 4 highlights texture within the stroma, which is not immediately obvious from 

the H&E-stained image. Thus, the phasor approach holds the potential to relate to known 

tissue components as well as can aid in discovery of novel components. It is interesting 

to examine the spectral features that distinguish the clusters. Figure 5I shows the average, 

baseline-corrected, and normalized spectra belonging to the pixels of each class. There is a 

difference in average spectra between cluster 1 and cluster 2 in the ester carbonyl peak and 

the phosphate vibrational modes, which are characteristic of lipids and the phosphodiester 

bonds in DNA/RNA. Application of the approach to breast tissue is illustrated by the 

example of four TMA cores, with two benign (top left and bottom right) and two cancerous 

cores (top right and bottom left) (Figure 5E). Again, the amide I absorbance image (Figure 

5F) highlights some contrast between the morphological classes in the benign core but is not 
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very prominent in the others. The corresponding normalized phasor histogram is presented 

in Figure 5G for k = 0.0032. The shape of the phasor distribution and density are quite 

different from that of FF prostate, due both to the difference of tissue chemistry and the 

mode of imaging, but a clustering of phasor values can also be observed, revealing four 

clusters that largely correspond to benign and cancerous cells, stroma, and “other” classes of 

unknown origin, as shown in Figure 5H and zoomed-in figure (iii) and (iv).

Although Figure 5 is a simple means of visualizing and segmenting high-dimensional 

IR data, it is based only on the self-similarity of spectra, which might not always have 

histopathologic relevance. Furthermore, the choice of the phasor bounds can vary from user 

to user and may present difficulty in differentiating classes with very similar spectra. Hence, 

supervised analyses may be used on phasor data in a manner similar to that for absorption 

spectra. We trained a two-layer feed-forward artificial neural network with six histologic 

classes—alignant epithelium, benign epithelium, loose stroma, dense stroma, desmoplastic 

stroma, and others (necrosis and other entities). The class labels (~70,000) were assigned 

by consultation with expert pathologists and have been previously reported.19 Analogous 

to the previously published work, MNF de-noising and rubber-band baseline subtraction 

were done on the data. The input to the network were the u and v phasor values at 12 

different spatial frequencies (normalized to k = 0). The first layer consisted of 10 neurons 

with hyperbolic tan activation function, and the second layer had six neurons with softmax 

activation function. All the neurons in the network were fully connected, and training was 

achieved by optimizing the weights (W ) and biases (b) of all the layers by minimizing the 

cross-entropy between the prediction and the target. Scaled conjugate backpropagation was 

used for minimizing the loss function and updating training variables. The total number 

of annotated pixels was randomly divided into a 70–30 ratio for training and validation, 

respectively. The chief consideration in this method is choosing the spatial frequencies for 

phasor values. We have adopted the following procedure for selection of phasor frequencies 

for the supervised classification results, as shown in Figure 6. First, we calculate the Fourier 

transform of the average spectra of annotated pixels of IR data for each class (1–6). These 

are subsequently used to calculate the angle between the following vectors: (1) average 

of all the classes (1–5) and others class (6); (2) epithelium (average of 1 and 2) and 

stroma (average of 3, 4, and 5); (3) benign (1) and malignant epithelium (2); (4) normal 

stroma (average of 3 and 4) and desmoplastic stroma (5); and (5) loose stroma (3) and 

dense stroma (4). The class labels are the same as that of the main text, i.e., 1 = benign 

epithelium, 2 = malignant epithelium, 3 = loose stroma, 4 = dense stroma, 5 = desmoplasia, 

and 6 = others. Figure SI3 shows the θ vs k plots for the above. Twelve frequencies were 

chosen as marked by the asterisks and are tabulated in SI Table 1, all of which correspond 

to local maxima. IR spectra of tissues are generally similar as the building blocks of 

natural biological materials are largely similar. Variations in their relative intensities and 

line shapes provide critical differences that allow typing and subtyping of classes of cells 

or diseases. Similarly, compositional differences between cell types and tissues of origin 

reside in small spectral variations. The exact k values used in this paper will not necessarily 

generalize to any classification task in any tissue given these differences; nevertheless, the 

strategy provided here and the features themselves can serve as good initial guesses for 

exploratory analyses. As expected, higher spatial frequencies are generally more informative 
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(resolving overlapping phasors) but noisy. Smaller spatial frequencies are dominated by 

intensity variations due to overall spectral shapes (once scattering is removed) and lacking 

in chemical contrast since most biomedical spectra are relatively similar. The results for 

supervised classification are demonstrated in Figure 6 for the breast cancer TMA. Figure 

6A(i and ii), B(i and ii) shows the H&E-stained and classified images of a benign core that 

shows benign epithelial cells surrounded by loose stroma and intervening regions of dense 

stroma. Figure 6C(i and ii) shows the H&E and class images of malignant tumors with 

thin regions of intervening desmoplastic stroma, and Figure 6D(i and ii) shows the H&E 

and class images of thick regions of desmoplasia with localized cancer deposits from which 

the agreement between the H&E stains and IR classification can be visually appraised. The 

results are in good agreement with the previously published results, and we assessed its 

quantitative accuracy using receiver operator characteristic (ROC) curves for the six binary 

classifications (desired class vs all others) presented in Figure 6E (inset zoomed-in extreme 

left part). The accuracy of a classifier is quantified by the area under the curve (AUC), 

which is a measure of combined selectivity and specificity of a model (AUC = 1 is perfectly 

sensitive and specific, and AUC = 0.5 is a random predictor). The average AUC values 

for all the classes are equal to 0.9860, with the lowest value (0.9627) corresponding to 

desmoplastic stroma. The overall performance was also evaluated with a confusion matrix 

between the predicted class and the targeted class and is presented in Figure 6F. The 

accuracy can be evaluated with the values of off-diagonal elements, which in this case are 

low (highest confusion 1.1%). Comparing the results with figure 4 of ref 18 shows that the 

performance of our new algorithm is comparable to the results obtained with a random forest 

classifier trained with curated spectral metrics. A similar number of features (~25) were 

obtained in both these methods. This is not surprising since the information content of both 

these (quite different processing methods) is the same. We also caution that the accuracies 

reported here are not the accuracies for an IR imaging method applied to tissue but simply a 

test of our approach to understanding spectra against known values. A study that definitively 

provides diagnostic analyses would have to demonstrate the same on independent samples, 

samples that are of sufficient diversity25 and more reflective of clinical practice.38 Finally, 

other supervised classification methods like support vector machine or logistic regression 

can also be applied to phasor quantities.

The primary motivation for the current study was to achieve fast, automated dimensionality 

reduction of high-dimensional IR images. As shown, this can be useful for both 

unsupervised and supervised segmentation. The results presented in Figure 3 are similar 

in vein to the conventional phasor analysis of fluorescence lifetime data. However, unlike 

fluorescence lifetime data, IR spectral data are much richer in information and different 

in content. IR features arise from the frequencies, relative intensities, and band shapes of 

a large number of IR active modes together with the impacts of scattering. Therefore, it 

was not a priori obvious whether a phasor representation would be useful for IR data. In 

a typical workflow, a trained spectroscopist heuristically tries many combinations through 

an iterative, time-consuming process, which demands a lot of expertise and patience. Once 

the features have been identified, ML models can be trained, and the number and types 

of metrics can be fine-tuned. In this paper, we present a simpler, systematic procedure 

to achieve the same end goal. Unlike manual selection, PCA can also be employed for a 
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compact representation of the data. The phasor method can be advantageous over PCA. 

First, FFT algorithms are faster and scale favorably with large data sizes. Computations for 

PCA involve high-dimensional covariance calculations, for which the computational time 

can be very large for large datasets (TMAs). Second, phasor values can be independently 

calculated and combined because of the linearity of Fourier transforms. Third, principal 

components (PCs) may be dominated by scattering effects, which can be isolated into 

the low-frequency modes of the phasor representation. Unlike PCs, however, since the 

phasor components are oscillatory with complex contributions from the modes, it is not 

possible to identify what modes contribute the most to the separation in phasor space. 

Another aspect of both approaches is noise removal. Noise is distributed across the entire 

waveform. Therefore, selection of specific components (especially lower spatial frequency 

components) can lead directly to de-noising of data, which is similar to PCA-based noise 

rejection approaches and does not result in spatial compromises.39 As discussed in the 

example application, this approach is likely to be useful for exploring complex classification 

problems where subtle changes in disparate modes are needed. For simple analyses, for 

example, which can be achieved using intensity ratios of a few modes, this approach 

is redundant and time-inefficient. Although the phasor approach is applicable to discrete 

frequency IR imaging data as well, its usefulness is questionable. This is because low-

frequency resolution leads to a smaller phasor frequency range and thus poor resolution 

of features in the k domain (analogous to how higher retardance in FTIR is needed for 

higher resolution). The approach is similar in spirit to using a Gram–Schmidt approach for 

rapid change determination, as used for online FTIR spectroscopy and also proposed for 

imaging;40 however, the Gram–Schmidt approach is more useful for assessing differences 

and does not have an explicit dependence of the absorbance in the transformed frequency 

domains.

CONCLUSIONS

Here, we present an easy and pictorial technique for dimensionality reduction that allows 

visualization and exploratory unsupervised analyses and can be used as inputs for a 

supervised ML model. A simple examination of phasor images leads to unsupervised 

segmentation, and using phasor values for supervised classification of IR imaging data 

shows good agreement with prior classification results. Although the premise of the phasor 

approach is known, its use for IR vibrational spectral analyses is shown to be an effective 

application type for biomedical data exploration, where small differences can dominate over 

large spectral regions. Since this is a data representation technique, it should be broadly 

applicable to other types of micro-spectroscopic datasets (spontaneous Raman, nano-IR, or 

photothermal IR).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Mathematical formalism of the phasor approach with representative simulated IR spectra. 

(A–C) Lorentzian spectrum; (A) spectrum, (B) u, and (C) trajectory of the phasor in k space. 

(D–F) Gaussian spectrum; (D) spectrum, € u, and (F) trajectory of the phasor in k space. 

(G–I) Dirac delta spectrum; (G) spectrum, (H) u, and (I) trajectory of the phasor in k space. 

(J–L) Dirac delta pair; (J) spectrum, (K) u, and (L) trajectory of the phasor in k space.
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Figure 2. 
Key characteristics of phasor-based analyses and segmentation. (A) Average baseline-

subtracted spectra of two different histologic classes in prostate tissue-epithelial cells (green) 

and stroma (pink) normalized to amide I (1650 cm−1) and unnormalized background (black). 

(B) Absolute value of the inverse Fourier transform of the three spectra presented in (A). 

The epithelial and stromal data have been normalized to the k = 0 value. The background 

has been scaled 500 times for visual appraisal. Inset B shows the phasor trajectory. (C) θ
as defined in the main text. (D) Compass plots of the vectorial representation: (i) k = 0, (ii) 

k = 0.0002747, (iii) k = 0.003235, and (iv) k = 0.01091. All the vectors are normalized to u
(k = 0).
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Figure 3. 
Unsupervised classification of IR hyperspectral images using the phasor representation. (A) 

Single band IR image (1650 cm−1). (B) Phasor histogram plots with freeform selection areas 

(k = 0.0032). (C) Classified image obtained from each of the clusters (color coded). (D) 

Average spectra of each of the clusters.
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Figure 4. 
Effect of baseline removal using phasor processing. (A) (i) Phasor representation of 

k = 0.0032 without baseline subtraction and (ii) phasor representation of k = 0.0032 with 

baseline subtraction. (B) (i) Phasor representation of k = 0.0002747 without baseline 

subtraction and (ii) phasor representation of k = 0.0002747 with baseline subtraction. (C) 

Classified area from freeform selection of B (ii). (D) Average spectra of the selected clusters 

normalized to amide I intensity.
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Figure 5. 
Unsupervised classification results. (A–D) (i and ii), (I) Results for fresh frozen prostate 

tissue. (A) Adjacent H&E-stained section, (B) amide I (1650 cm−1) image, (C) phasor plot 

with the location of the clusters (color coded) highlighted, (D) classified image, (i) H&E 

image of ROI and (ii) classified image of ROI, and (I) average spectra of the different 

classes. (E–H) (iii and iv), (J) Results for FFPE breast cancer TMA cores. (E) Adjacent 

H&E-stained section, (F) amide I (1650 cm−1) image, (G) phasor plot with the location of 

the clusters (color coded) highlighted, (H) classified image, (iii) H&E image of ROI and (iv) 

classified image of ROI, and (J) average spectra of the different classes.
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Figure 6. 
Supervised classification of IR hyperspectral images using phasor representation. (A) (i) 

H&E and (ii) class image of benign. (B) (i) H&E and (ii) class image of benign, (C) (i) H&E 

and (ii) class image of cancer, (D) (i) H&E and (ii) class image of cancer with desmoplasia. 

(E) ROC curves of classification (AUC = area under the curve) with the inset showing the 

extreme left end of ROC. (F) Confusion matrix.
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