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Abstract
Purpose of Review Interfacial tissue exists throughout the body at cartilage-to-bone (osteochondral interface) and tendon-
to-bone (enthesis) interfaces. Healing of interfacial tissues is a current challenge in regenerative approaches because the 
interface plays a critical role in stabilizing and distributing the mechanical stress between soft tissues (e.g., cartilage and 
tendon) and bone. The purpose of this review is to identify new directions in the field of interfacial tissue development and 
physiology that can guide future regenerative strategies for improving post-injury healing.
Recent Findings Cues from interfacial tissue development may guide regeneration including biological cues such as cell 
phenotype and growth factor signaling; structural cues such as extracellular matrix (ECM) deposition, ECM, and cell align-
ment; and mechanical cues such as compression, tension, shear, and the stiffness of the cellular microenvironment.
Summary In this review, we explore new discoveries in the field of interfacial biology related to ECM remodeling, cellular 
metabolism, and fate. Based on emergent findings across multiple disciplines, we lay out a framework for future innovations 
in the design of engineered strategies for interface regeneration. Many of the key mechanisms essential for interfacial tissue 
development and adaptation have high potential for improving outcomes in the clinic. 

Keywords Osteochondral interface · Enthesis · Extracellular matrix · Mechanical loading · Cellular microenvironment

Introduction

Musculoskeletal disorders such as tendinopathy and osteo-
arthritis are some of the most prevalent nonfatal diseases. 
For example, in 2019, over 500 million people are afflicted 
with osteoarthritis worldwide [1]. Connective tissues like 
tendons, ligaments, and cartilage rely on integration into 
bone for their form and function. Despite the significant bur-
den associated with connective tissues, our ability to repair 
these tissues is limited by our ability to attach or repair them 
with bone. This is, in part, because of the major discrep-
ancy in mechanical properties between bone and soft con-
nective tissues. Additionally, repair strategies have primarily 
focused on individual tissues, overlooking the interface and 

its transitional and heterogeneous structure. Musculoskel-
etal interfaces (e.g., osteochondral interface and tendon/
ligament-bone enthesis) are transitional tissues that play an 
essential role in dissipating localized stresses and deforma-
tions that accumulate at sites where connective tissues meet 
bone. A transitional gradient from bone to connective tissue, 
which forms in response to applied mechanical loads during 
growth, is not recreated following injury and is challenging 
to develop in engineered constructs. A major goal of the 
field in interfacial biology and mechanics is to understand 
how these musculoskeletal interfaces can be functionally 
repaired and regenerated to regain their mechanical func-
tion and biological homeostasis with diminished pain post-
injury. Yet how these interfaces can regenerate is poorly 
understood, in part because of our limited understanding of 
how these tissues develop and heal following injury.

In this review, we highlight some of the current progress 
made in understanding the development of interfacial tissue 
and their adaptation during growth and following injury and 
share new innovations and approaches for interfacial tissue 
regeneration. We focus primarily on emerging challenges 
for studying the osteochondral interface and the enthe-
sis revolving around the cellular (e.g., differentiation and 
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metabolism) and extracellular matrix (ECM) processes (e.g., 
which contribute to its mechanical environment). We also 
discuss potential tools to advance knowledge in regenera-
tive approaches for interfacial tissue regeneration, primarily 
through interfacial tissue development.

Cues from Interface Development to Guide 
Regenerative Approaches

A major challenge of interface regeneration is re-estab-
lishing the cellular and structural heterogeneity of healthy 
interfaces. This challenge arises from complexities in 
structure and function, as each interface has unique cel-
lular and biomechanical demands [2]. Resident cells of tis-
sue interfaces contribute to the establishment, remodeling, 
and maintenance of the interface, such as the ECM gradi-
ent that defines an osteochondral or tendon-bone interface. 
Interfacial tissues lack the innate ability to regenerate, in 
part because of dense ECM, low cellular density, and poor 
vascular supply. Guided regeneration will require novel 
engineered approaches to promote integration of one tis-
sue with the other. For example, a cellular gradient exists 
at the tendon-bone enthesis (e.g., tenocytes, fibrochondro-
cytes, and osteocytes), and these cells remodel and deposit 
their local ECM (e.g., collagen types I, II, and X, and pro-
teoglycans), which contributes to their local mechanical 
environment (e.g., stiffness). Platform-based engineered 
tissues have emerged to evaluate these dynamics by exploit-
ing compressive boundary conditions in vitro [3•, 4]. Cells 
within interfacial tissues locally establish and remodel their 
surrounding environment by degrading or depositing new 
matrix. In the developing tendon-bone enthesis, cellular 
density is highest during its early growth phase, before 
which an organized, gradient ECM is established [5]. As 
the cells deposit ECM, a functional gradient forms at the 
tendon-to-bone insertion [6], and at the same time, cellu-
lar density decreases [5]. Interfacial tissue healing during 
enthesis development has recently shown that the tendon-
bone enthesis also has innate regenerative properties which 
are not modeled in adult animals [7–9].

Post-injury in the neonatal enthesis, the injured tissue is 
hypocellular and avascular [9]. In tendon, Grinstein et al. 
demonstrated that tendon cells shift from rates of high 
to low proliferation during postnatal growth in mice, and 
expression of genes associated with tendon transcription 
factors and ECM decreases with age [10]. Additionally, 
neonatal tendon cells express markers of mesenchymal 
stem cells (MSC) but differ from bone-marrow MSCs 
as neonatal tendon cells demonstrate reduced differen-
tiation potential toward chondrogenesis and osteogenesis 
compared to bone-marrow MSCs [11, 12]. Results from 
these studies reveal progenitor cells that have undergone 

differentiation toward tendon cells are terminal, introduc-
ing a potential challenge for interfacial tissue regenera-
tion, as terminally differentiated cells post-injury may not 
have the high regeneration potential of progenitor cells 
typically involved during neonatal development. Thus, it 
is essential to understand the cellular mechanisms involved 
in interfacial tissue development that can be used to drive 
regeneration using native cell types.

Tools such as transgenic animals for lineage tracing, 
flow cytometry and cell sorting, and RNA sequencing have 
been foundational for understanding how the resident cell 
population establishes the interface. For example, it is 
known that cells rely on the expression of the transcrip-
tion factor Scleraxis (Scx+) for enthesis development [13, 
14]. Additionally, Scx+ cells that co-express SRY-box tran-
scription factor 9 (Sox9+) are bi-fated and generate both 
Scx+ tendon fibroblasts and Sox9+ chondrocytes critical 
for enthesis formation (Fig. 2) [15, 16••]. Recent work 
by Best and Loiselle showed that Scx lineage cells are 
essential for generating an organized and bridging tissue 
following tendon injury, and ablation of Scx-lineage cells 
may improve tendon healing [17]. However, Scx + cells are 
required for adult tendon homeostasis [17–20], and expres-
sion of Scx is required to recruit mesenchymal progeni-
tors during embryonic tendon elongation and regeneration 
in both mice and zebrafish [21–23]. Scx+ cells are also 
responsible for healing neonatal tendons [24, 25].

The hedgehog (Hh) signaling pathway is critical for for-
mation and maintenance of tissue interfaces [7, 26–29]. 
For example, Felsenthal et al. found that Sox9+ lineage 
cells are replaced with cells expressing Glioma-associated 
oncogene homolog 1 (Gli1+), a hedgehog-responsive tran-
scription factor [30, 31]. These initial Sox9+ progenitor 
cells are necessary to establish the fibrocartilaginous tem-
plate before cells are removed and replaced (during attach-
ment migration) or further differentiate into Gli1 + cells 
[30] [32]. GLI family zinc finger 3 (Gli3) is also an essen-
tial regulator of patterning of attachment-site progenitors 
[33]. These findings during enthesis development support 
the balance Scx, Sox9, and hedgehog pathways for estab-
lishing the cell gradient necessary for enthesis function. 
Another emergent signaling pathway involved in post-natal 
interface development is fibroblast growth factor (FGF) 
signaling, in part because it plays a key role in mineraliza-
tion at the tendon-to-bone enthesis and regulates cell fate 
in fibrocartilage tissues [5, 34–37]. Mechanobiological 
processes associated with cilia have recently been deemed 
critical for enthesis formation and healing and are medi-
ated via Hh signaling and mechanical loading [28, 38–40]. 
The regulation of ECM deposition by mechanical loading 
and cellular pathways like Hh and FGF signaling suggests 
these are key targets and tools for regenerative approaches 
for the interface.
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Contributions of the Local ECM on Interfacial 
Development and Healing

Cell-ECM interactions regulate mechanotransduction, par-
ticularly within key transitional tissues such as the osteochon-
dral interface or the enthesis (Fig. 2) [41]. Mechanical and 
chemical cues are transduced from ECM to the cells to regu-
late production of nascent ECM. Remodeling of the ECM 
by matrix metalloproteases (MMPs) and tissue inhibitor of 
metalloprotease (TIMPs) and deposition of nascent ECM are 
critical to maintaining tissue homeostasis throughout changes 
in mechanical loading such as tension, compression, shear, 
and hydrostatic strains [42]. Within the enthesis, there is a 
complex ECM gradient from the tendon into the bone includ-
ing a transition of primarily collagen types I and II, with col-
lagen types III, V, VI, X, and XI contributing to the complex 
collagen and mineralized gradient [43–45]. Similarly, the 
osteochondral interface is also characterized by its unique 
cellular and ECM gradient [46, 47]. The mineralized and 
unmineralized regions of these interfaces are separated by 
a distinct tidemark, and the collagen organization and fibril 
size change, becoming smaller during the transition from soft 
to hard matrix (Fig. 1). Our ability to visualize and quantify 
specific spatial qualities of interfaces has been improved with 

refined techniques in fractionation, mass spectrometry, and 
proteomics in other interfacial tissues, like the myotendinous 
junction [48•]. The inability to remodel adult extracellular 
and pericellular matrix is a major obstacle to overcome in the 
context of interfacial tissue healing. The remodeling of ECM 
in mature interfaces is limited, in part, by increased collagen 
cross-linking due to advanced glycation end products (AGEs) 
or lysyl oxidase (LOX), increased ECM-to-cell ratio, and 
production, or lack thereof, of pericellular matrix [49–53]. 
Interfacial tissue ECM is also rich in proteoglycans, provid-
ing this tissue with osmotic properties to reduce compressive 
stress. Using hyperelastic characterization of strain-stiffening 
in cartilage, McCreery et al. found proteoglycans drive the 
strain-stiffening response in hyaline cartilage [54]. These data 
support that ECM components are key to mechanosensing 
and mechanical function of interfacial tissues.

ECM composition may also play role in stimulating 
inflammation [55]. While inflammation is a key response 
to injury, chronic inflammation and accumulated fibrotic 
ECM can hinder the ability of interfacial tissue to regener-
ate. Clues from neonatal healing may provide insights of 
the regenerative potential of remodeling or maintenance of 
the native ECM by tissue resident cells, as a recent study by 
Vinestock et al. has shown that neonatal enthesis injury leads 

Fig. 1  Schematics of the osteochondral interface (e.g., within the 
knee) and the tendon-to-bone interface (e.g., Achilles enthesis), 
which highlight the stiffness gradients (from bone to tendon), tide-
mark between mineralized and unmineralized fibrocartilage, varia-

tions in collagen alignment and fibril size, and cell type distribution 
inclusive of tendon fibroblast, fibrochondrocyte, and chondrocytes/
osteoblasts
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to generation of an acellular and low-inflammatory scar 
driven primarily by resident cells [9]. The intricate cross-
talk between cells and their nascent ECM may influence the 
inflammatory response involved in tissue remodeling.

Controlling Inflammation to Influence 
Interfacial Tissue Healing

The inflammatory response contains a myriad of different 
cell types and functions making it challenging to decouple 
the beneficial or harmful mechanisms post-injury on inter-
facial tissues (Fig. 2) [56]. Inflammation may cause dis-
ruptions in homeostasis causing modulations in the native 
ECM architecture and mechanics that are challenging to 
reverse [42]. Regulatory T cells (Tregs) impact resident 
cells, and neonates have elevated levels of Tregs to help 
prevent autoimmune response [24, 57]. Tregs maintain the 
environment necessary for the switch from pro-inflammatory 
to anti-inflammatory macrophage phenotypes necessary to 
regulate tissue regeneration [55, 58]. Howell et al. found 
macrophages to be critical for neonatal tendon regeneration 
[24, 59]. Biomaterials can be designed to employ immu-
nomodulatory effects to reduce the localized overactive 
immune response.

Cytokines, particularly IL-33, have been studied in the 
context of tendon and enthesis injury as well [60]. IL-33 
expression is elevated in the human torn tendon and in early 
tendinopathy [60, 61]. Additional studies interrogating the 
inflammatory response post-injury or during disease pro-
gression (e.g., enthesitis) have revealed non-autonomous 
functions driving healing [18, 62], such as the protein com-
plex known as nuclear factor kappa-light chain-enhancer of 
activated B cells (NF-kB) [63–65].

Leveraging Mechanical Cues to Understand 
Interfacial Tissue Development

The primary function of tissue interfaces is to transmit and 
dissipate forces between tissues with dissimilar mechanical 
properties (Fig. 2). In the absence of mechanical loading 
during periods of growth, these tissues do not form their 
hallmark gradient cellular and ECM morphology and are 
also remarkably weaker and less mechanically resilient [6, 
13, 66]. Mechanical loading (e.g., from skeletal muscle 
contractions) can regulate cell-scale ciliary Hh signaling 
[26, 28, 29], interfacial matrix organization [6, 13, 67, 68], 
and accrual of mineral [6, 66]. Both the organization and 
deposition of mineral drive the mechanical toughness at the 

Fig. 2  Strategies for regenerat-
ing interfacial tissues like the 
osteochondral interface and 
tendon-bone enthesis include: 
leveraging developmental 
cues to promote resident 
and progenitor cell remod-
eling of the interfacial tissues 
(e.g., Sox9 + /Scx + bi-fated 
cells, shown in blue, residing 
between Scx + cells in purple 
and Sox9 + cells in green); 
identifying factors that influence 
formation of nascent ECM in 
native tissues during remodeling 
and repair; promoting a regen-
erative, rather than destruc-
tive, inflammatory response; 
controlling the mechanical 
environment by increasing or 
decreasing applied loads (e.g., 
from skeletal muscle); and 
understanding and controlling 
interfacial cell metabolism and 
physiological response and 
sensitivity to their environment, 
such as hypoxia



294 Current Osteoporosis Reports (2024) 22:290–298

interface [66]. Furthermore, mechanical loading stimulates 
primary cilia assembly, which is required for Hh signaling 
[28]. These findings can be used in regenerative medicine 
approaches by mimicking loading using Hh activation via 
biomaterials or small molecules.

At the microscale, the ability of cells to respond to local 
substrate stiffness has been investigated for decades, yet our 
understanding of how cells interact within gradient materials 
is relatively new [69, 70]. Key studies have demonstrated the 
importance of loading in interface disorders such as rota-
tor cuff disease and ligament repair [71–73]. At the cellu-
lar level, changes in stiffness elicit transcriptional changes 
which can lead to changes in cell fate [74–78]. Further-
more, tendon stromal compartments respond to mechani-
cal unloading dependent on the vascular niche as well as 
reactive oxidative species (ROS) which can proteolytically 
break down functional collagen backbones [79]. Mechanical 
force has also been shown improve rotator cuff tendon-bone 
healing by activating the IL-4/JAK/STAT signaling pathway 
through mediation of macrophage polarization, indicating 
a feedback system involving both mechanosensing and the 
immune system [58, 80]. Therefore, in order to regenerate 
this tissue, strategies must consider mechanosensing of resi-
dent cells at tissue interfaces [81].

How Are Cellular Metabolism and Hypoxia 
Involved in Interface Healing?

Metabolism is a key driver of changes within the cell as it is 
typically the first approach for cells to adapt to changes in their 
environment, such as changes in oxygen availability and vas-
culature. Yet the metabolic profile of cells at tissue interfaces 
is poorly understood and a prime target for future studies. In 
cartilage, suppression of mitochondrial respiration is a key 
driver for chondrocyte survival under hypoxic conditions [82, 
83]. In tendon, disorders such as tendinosis have been associ-
ated with changes in oxygen tension-dependent modulation 
of Rac1 activity [84]. Hypoxia inducible factor 1a (HIF-1α) 
is an oxygen-dependent transcription factor that regulates 
gene expression of genes affiliated with metabolism, angio-
genesis, and matrix maturation. HIF-1α has recently gained 
more traction in the study of hypoxic, ECM-rich tissues such 
as the cartilage and tissue interfaces, and has potential to act 
as a therapeutic target for treating osteoarthritis [85]. HIF-1α 
metabolically regulates collagen synthesis and modification 
in chondrocytes [86]; thus, it may contribute to the establish-
ment of the ECM gradient in the fibrochondrogenic enthesis 
(Fig. 2). In vitro, the deposition of osteochondrogenic matrix 
is mediated by HIF-1α in hypoxia [87]. However, prolonged 
HIF-1α signaling in chondrocytes via HIF prolyl hydroxy-
lase 2 (PHD2) deactivation restricts cellular bioenergetics and 

biosynthesis, leading to skeletal dysplasia [86]. In addition 
to the metabolic response to changes in oxygen availability, 
increased matrix production is correlated with decreased 
mitochondrial gene expression as well as a lack of inflam-
matory signature [73]. With the close ties between oxygen 
availability and vascularity, studies focused on the effects of 
vascularity on cell fate within interfacial tissue are of par-
ticular interest. For instance, vascularity and lipid availability 
regulate skeletal progenitor cell fate while Sox9 suppresses 
fatty oxidation in chondrocytes [88]. More studies investi-
gating vasculature in interfacial tissue are required to better 
inform regenerative approaches.

Impact in Discovery and Clinical Translation

Cues from interfacial tissue development and healing have 
the potential to inform how we treat and repair interfaces. 
One strategy for regeneration that has shown promise is bio-
material scaffolds; however, these strategies have been used 
for decades with limited translation to the clinic, and few of 
these are focused on complex tissue interfaces. To stimulate 
interfacial tissue regeneration, biomaterial design could pro-
mote a microenvironment like that of the developing interfa-
cial tissue. To advance biomaterial design, continued study 
of interface development and healing is necessary, in addi-
tion to assessment of cell behavior in gradient-structured 
materials. To this end, biofabrication of interfaces highlights 
major advances in the field of tissue engineering, including 
development bi-zonal patterning of engineered constructs 
[89, 90] and preclinical translation of composite biomateri-
als for craniofacial osteochondral repair [91] and tendon-
bone enthesis repair [92–94] have shown promise.

Biomaterials have proven to be a more popular method 
for interfacial tissue repair as they offer a more controlla-
ble system without the complexity of cell implantation (i.e., 
cells are challenging to scale-up production reproducibly for 
transplant) [95, 96]. There are several approaches to bio-
material design for interfacial tissue regeneration including 
synthetic vs. natural constructs, injectable vs. non-inject-
able materials, 3D-printed vs. electrospun, degradable vs. 
non-degradable, and multi-phasic vs. uni-phasic [97–104, 
105••]. Currently, substantial progress has been made in 
osteochondral interfacial regeneration with bone using 
biomaterials, particularly in craniofacial bone defects [91, 
97, 106–109]. These provide further motivation to inves-
tigate the use of biomaterials to heal the osteochondral 
interface or enthesis. As interfacial tissues with bone are 
graded, collagen-rich tissues, collagen scaffolds have been 
of particular interest to guide native cellular migration and 
spatial differentiation at the defect site. However, synthetic 
materials may provide a better scaffold for cells to interact 
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with their microenvironment and generate the collagen or 
ECM required for regenerating the gradient. Overall, non-
cellularized or acellularized multiphasic scaffolds generated 
to treat injured interfaces show promise in vitro, but require 
validation in vivo [110].

Interfacial tissue proves to be challenging to regenerate; 
however, increased studies in ECM remodeling, the immune 
system, mechanical loading, metabolism, hypoxia, and angio-
genesis in development and healing will provide new insights 
into regenerative approaches. Cell functions within interfacial 
tissues contribute to the unique mechanical properties. ECM 
components derived from cells are key to mechanosensing 
and mechanical function of interfacial tissues. Furthermore, 
studies support that the tissue regeneration and healing can 
be regulated by mechanical force, the immune system, and 
metabolism as well. Knowing this, we can tune regenerative 
approaches using biomaterials or pharmaceuticals to promote 
interfacial tissue regeneration post-injury as we continue to 
study interfacial tissue development and healing.
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