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Abstract
This work presents a multi-resolution physics-informed recurrent neural network (MR PI-RNN), for simultaneous prediction
of musculoskeletal (MSK) motion and parameter identification of the MSK systems. The MSK application was selected as
the model problem due to its challenging nature in mapping the high-frequency surface electromyography (sEMG) signals
to the low-frequency body joint motion controlled by the MSK and muscle contraction dynamics. The proposed method
utilizes the fast wavelet transform to decompose the mixed frequency input sEMG and output joint motion signals into nested
multi-resolution signals. The prediction model is subsequently trained on coarser-scale input–output signals using a gated
recurrent unit (GRU), and then the trained parameters are transferred to the next level of training with finer-scale signals.
These training processes are repeated recursively under a transfer-learning fashion until the full-scale training (i.e., with
unfiltered signals) is achieved, while satisfying the underlying dynamic equilibrium. Numerical examples on recorded subject
data demonstrate the effectiveness of the proposed framework in generating a physics-informed forward-dynamics surrogate,
which yields higher accuracy in motion predictions of elbow flexion–extension of an MSK system compared to the case with
single-scale training. The framework is also capable of identifying muscle parameters that are physiologically consistent with
the subject’s kinematics data.

Keywords Multi-resolution recurrent neural network · Physics-informed parameter identification · Musculoskeletal system ·
Gated recurrent unit · Fast wavelet transform

List of symbols

e Raw sEMG signals captured by sensors
u Neural excitations
a Muscle activations
d Electro-mechanical delay between origin of neu-

ral excitation from central nervous system and
reaching the muscle group

A Shape factor used to relate neural excitation to
muscle activation

f M0 Maximum isometric force in the muscle

B Jiun-Shyan Chen
js-chen@ucsd.edu

1 Department of Structural Engineering, University of
California San Diego, La Jolla, CA, USA

2 ANSYS Inc., Livermore, CA, USA

3 Department of Civil, Environmental, and Geo- Engineering,
University of Minnesota, Minneapolis, MN, USA

lM0 Optimal muscle length corresponding to the max-
imum isometric force

vM
max Maximum contraction velocity

lTs Slack length of the tendon
ϑ Pennation angle between muscle and tendon
κ Set of muscle parameters for each muscle group
˜lM Normalized muscle length
ṽM Normalized muscle velocity
lMT Total length of muscle–tendon complex
f A Active force component of hill-typemusclemodel
f A, L Length dependent active force generation compo-

nent
f V Velocity dependent active force generation com-

ponent
f P Passive force component of hill-type muscle

model
FM Total muscle force
FMT Total force produced by muscle–tendon complex
T MT Torque produced by the muscle–tendon complex
q Generalized angular motion of the MSK system
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hn Hidden state after n history steps of theRNN/GRU
W XY Weights connecting the variable X to variable Y
bX Bias for the RNN to calculate variable X
r i Output from the reset gate of the GRU
ui Output from the update gate of the GRU
zi , ci , c̃i Intermediate variables in GRU forward pass
˜hn Candidate hidden state after n history steps of the

GRU
θ Set of all weights and biases of the RNN/GRU
φ j , k Scaling function in multi-resolution analysis
ψ j , k Wavelet function in multi-resolution analysis
Vj , Wj The nested and complementary subspaces con-

taining φ j , k and ψ j , k respectively
Pj , Hj Projection operators on a function f projecting it

onto subspaces Vj and Wj respectively
�i i th Parameter characterizing the parameterized

ODE system
x[− j]
i Input data at scale [− j] to theMRPI-RNN frame-

work at time-step i
D[− j] Input data set projected to scale [− j]
q̂[− j]
i Predicted angularmotion at scale [-j] from theMR

PI-RNN framework at time-step i
J Composite loss function of the PI-PINNminimiz-

ing data and ODE residual
l f a Forearm length
lua Upper arm length
m f a Mass of forearm

1 Introduction

The prediction of the evolution of state variables in dynam-
ical systems has been a vital component to several scientific
applications such as biology, geophysics, earthquake engi-
neering, solid mechanics, robotics, computer vision [1–7]
etc. Black-box techniques based on data-driven mapping and
development of parameterizedmulti-physicsmodels describ-
ing the progression of the data have been previously utilized
formaking predictions on the states. This task continues to be
an active area of research due to challenges on many fronts,
such as, the quality and scarcity of relevant physical data, the
dynamics and complexity of the system, and the reliability
and accuracy of the prediction model.

On the other hand, the characterization of parameters
in the multi-physics models of these dynamical systems is
also critical [8–14]. The task is challenging due in parts
to potential noise pollution captured by sensors in the sys-
tem’s measured data, as well as the potential of the parameter
space being high-dimensional, leading to ill-posed problems
that pose difficulties in numerical solutions. Standard opti-
mization techniques such as genetic algorithms [15, 16],

simulated annealing [17], and non-linear least squares [18,
19] have been employed for parameter identification, but
can be computationally expensive and may not converge
for ill-posed, non-convex optimization problems that are
encountered while solving inverse problems on MSK sys-
tems [15, 20].

In recent years, machine learning (ML) or deep-learning-
based approaches have gained significant popularity for
solving forward and inverse problems, attributed to their
capability in effectively extracting complex features and pat-
terns fromdata [21]. This has been successfully demonstrated
in numerous engineering applications such as reduced-order
modeling [22–26], and materials modeling [27–29], among
others. Data-driven computing techniques that enforce con-
straints of conservation laws in the learning algorithms of
a material database, have been developed in the field of
computational mechanics [29–37]. More recently, physics-
informed neural networks (PINNs) have been developed
[11, 38, 39] to approximate the solutions of given physical
equations by using neural networks (NNs). By minimizing
the residuals of the governing partial differential equations
(PDEs) and the associated initial and boundary conditions,
PINNs have been successfully applied to solve forward prob-
lems [11, 40, 41], and inverse problems [11, 38, 42–44],
where the unknown system characteristics are considered
trainable parameters or functions [38, 45]. For biomechan-
ics and biomedical applications [1, 46–50], this method has
been applied extensively along with other ML techniques
[51, 52]. These attempt to bridge the gap between ML-based
data-driven surrogate models and the satisfaction of physical
laws.

In this study, we focus on the application tomusculoskele-
tal systems, aiming at utilizing non-invasive muscle activity
measurements such as surface electromyography (sEMG)
signals to predict joint kinetics or kinematics [1, 18, 19],
which is of great significance to health assessment and reha-
bilitation purposes [15, 16]. These sEMG signals can be
used as control inputs to drive the physiological subsystems
that are governed by parameterized non-linear differential
equations, and thus form the forward dynamics problem.
Given information on muscle activations, the joint motion
of a subject-specific MSK system can be obtained by solv-
ing a forward dynamics problem. Data-driven approaches for
motion prediction have also been introduced to directly map
the input sEMGsignal to joint kinetics/kinematics, bypassing
the forward dynamics equations and the need for param-
eter estimation [26–30]. However, the resulting ML-based
surrogate models lack interpretability and may not satisfy
the underlying physics. Another challenge is that the sEMG
signal usually exhibits a wide range of frequencies that are
non-trivial for ML models [1] to map to the joint motion.

In our previous work [1], a physics-informed parame-
ter identification neural network (PI-PINN) was proposed
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for the simultaneous prediction of motion and parameter
identification with application to MSK systems. Using the
raw transient sEMG signals obtained from the sensors and
the corresponding joint motion data, the PI-PINN learned
a forward model to predict the motion with identifying
the parameters of the hill-type muscle models representing
the contractile muscle–tendon complex. A feature-encoded
approach was introduced to enhance the training of the PI-
PINN, which yielded high motion prediction accuracy and
identified system parameters within a physiological range,
with only a limited number of training samples. However,
this method relies on mapping in a feature domain consti-
tuted by Fourier and polynomial bases, which requires the
input sEMG signal to span over the entire duration of the
motion. Thus, it prevents real-time predictions as the signal
is obtained from the sensor.

To enhance the predictive accuracy of the time-dependent
signals, recurrent neural networks (RNNs) such as gated
recurrent units (GRUs) [29, 53] are utilized in this study
to inform predictions with the history information of the
motion. To overcome the limitation of the size of the data
and provide more information from the composite frequency
bands in the signals, a multi-resolution based (MR) approach
is proposed. In this approach,wavelets are used to decompose
both the raw sEMGand jointmotion signals into coarse-scale
components at various frequency scales and the remaining
fine-scale details. Using principles of the multi-resolution
theory and transfer learning, multi-resolution training pro-
cesses are repeated recursively from the coarse-scale to the
full-scale in order tomap the sEMGsignal to the jointmotion.
Furthermore, gaussian noise is introduced to the recorded
motion data used for training to enhance the robustness and
generalizability of the model [29]. The trained model can be
applied for real-timemotion predictions given the raw sEMG
signal obtained from the sensor.

This manuscript is organized as follows. Section 2 intro-
duces the subsystems and mathematical formulations of
MSK forward dynamics, followed by an introduction of the
proposed multi-resolution PI-RNN framework for simulta-
neous motion prediction and system parameter identification
in Sect. 3. The following sections verify the proposed frame-
work using synthetic data and validate it by modeling the
elbow flexion–extension movement using subject-specific
sEMG signals and recorded motion data in Sect. 4 and 5,
respectively. Concluding remarks and future work are sum-
marized in Sect. 6.

2 Formulations for muscle mechanics
andmusculoskeletal forward dynamics

This section provides a brief overview of muscle mechan-
ics and forward dynamics of the human MSK system, with

details in “Appendices A and B”. As depicted in Fig. 1,
multiple subsystems within the MSK forward dynamics
interact hierarchically: 1) the neural excitation u(t) trans-
forms into muscle activation a(t) (activation dynamics); 2)
Muscle activation drives muscle fibers to produce force FMT

(muscle–tendon (MT) contraction dynamics); 3) the resul-
tant forces produce joint motion q (translation and rotation)
ofMSK systems, called theMSK forward dynamics [18, 19].

2.1 Neural excitation-to-activation dynamics

While activations a(t) in the muscle fibers can be obtained
through a non-linear transformation on neural excitations
u(t), they are difficult tomeasure in-vivo. Therefore, the exci-
tations are estimated from [15, 16] the raw sEMG signals e(t)
considering an electro-mechanical delay:

u(t) � e(t − d) (1)

where d measures the delay between the neural excitation
originating and reaching the muscle group. The muscle acti-
vation signal a(t) is then expressed as,

a(t) � exp(Au(t)) − 1

exp(A) − 1
(2)

where A is a shape factor. These activations initiate muscle
fiber contraction leading to force production from themuscle
group (Fig. 2).

2.2 Muscle–tendon force generation through
contraction dynamics

Forces in the muscle–tendon (MT) complex are generated
by the dynamics of MT contractions, where for structural
length scale behaviour of the MT complex, homogenized
hill-type muscle models are utilized (described in “Appendix
B”). Each muscle group can be characterized by a parameter
vector,

κ �
[

lM0 , vM
max , f M0 , lTs , ϑ0

]

(3)

containing constants such as the maximum isometric force
in the muscle ( f M0 ), the optimal muscle length (lM0 ) cor-
responding to the maximum isometric force, the maximum
contraction velocity (vM

max ), the slack length of the tendon
(lTs ), and the initial pennation angle (ϑ0) [18, 19]. The total
force produced by the MT complex, FMT , can be expressed
as:

FMT (a,˜lM , ṽM , ϑ ; κ) � FM
(

a,˜lM , ṽM ; κ
)

cosϑ (4)
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Fig. 1 The subsystems involved
in the forward dynamics of an
MSK system are depicted in this
flowchart. Neural excitations are
transmitted to muscle fibers
(activation dynamics) that
contract to produce force
(muscle–tendon contraction
dynamics). These forces generate
torques at the joints (structural
level MSK dynamics) leading to
joint motion [1, 54]

Fig. 2 A muscle–tendon complex
in the arm modelled by a
homogenized hill-type model
where muscle group’s in a are a
homogenized muscle–tendon
(MT) complex described by the
model shown in b
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where a is the activation function in Eq. (2),˜lM is the nor-
malized muscle length, ṽM is the normalized velocity of the
muscle and ϑ is the current pennation angle. In this study,
the tendon is assumed to be rigid

(

lT � lTs
)

which simpli-
fies theMT contraction dynamics [57, 58] accounting for the
interaction of the activation, force length, and force velocity
properties of the MT complex. More details can be found in
“Appendices A and B”.

2.3 MSK forward dynamics of motion

Body movement is the result of the force produced by actu-
ators (MT complexes), converted to torques at the joints of
the body, leading to rotation and translation of joints, which
are considered as the generalized degrees of freedom of an
MSK system (q). The dynamic equilibrium can be expressed
as

I(q)q̈ − TMT (a, q, q̇; κ) − E(q) � 0 (5)

where q, q̇, q̈ are the vectors of generalized angular motions,
angular velocities, and angular accelerations, respectively;
E(q) is the torque from the external forces acting on theMSK
system, e.g., ground reactions, gravitational loads etc.; I(q)

is the inertial matrix; TMT is the torque from all muscles in
the model calculated by TMT (a, q, q̇; κ) � R(q)FMT (a,
q, q̇; κ), where R(q) are the moment arm’s and FMT (a,
q, q̇; κ) are the forces from the MT complex. Given the
muscle activation signals a, initial conditions and parameters
of involvedmuscle groupsκ , the generalized angularmotions
q and angular velocities q̇ of the joints can be obtained by
solving Eq. (5). An example of these vectors is shown in
Sect. 4 and “Appendix D”.

3 Multi-resolution recurrent neural networks
for physics-informed parameter
identification

This section describes the recurrent neural network algo-
rithms, followed by the physics-informed parameter identi-
fication that enables the development of a forward dynamics
surrogate and simultaneous parameter identification. The
employment of multi-resolution analysis based on fast
wavelet transform [59, 60] for training data augmentation
is then defined. The computational framework for multi-
resolution recurrent neural network for physics-informed
parameter identification is also discussed.

3.1 Recurrent neural networks and gated recurrent
units

The computational graph of a standard recurrent neural net-
work (RNN) and its unfolded graph is shown in Fig. 3. The
hidden state h allows for RNNs to learn important history-
dependent features from the data in sequential time steps [29,
53]. The unfolded graph shows the sharing of parameters
across the architecture of the network, allowing for efficient
training. The forward propagation of an RNN starts with an
initial hidden state that embeds history-dependent features
and propagates through all input steps. Considering an RNN
with m history steps as shown in Fig. 3, the propagation of
the hidden state can be expressed as follows [29].

hi � atanh(Whhhi−1 + W xhxi + bh),

i � n − m, . . . , n (6)

The hidden state at the final (current) step n is then used
to inform the prediction.

q̂n � Whqhn + bq (7)

Here, atanh is the hyperbolic tangent function;W xh , Whh ,
and Whq are the trainable weight coefficients; bh and bq are
the trainable bias coefficients. The trainable parameters are

shared across all RNN steps. Let xn �
[

tn , e1n , . . . , eNa
n

]

be

the current time and current sEMG data of the Na muscle
components and q̂n be the predicted joint motions at the
current time tn . Figure 4a illustrates the computational graph
of an RNN model trained to predict the motion at step n by
using m history steps of x and q as well as the x at step n.
The forward propagation is defined as

hi � atanh
(

Whhhi−1 + W xhxi + Wqhqi + bh
)

,

i � n − m, . . . , n − 1 (8)

hn � atanh(Whhhn−1 + W xhxn + bh) (9)

q̂n � Whq̂hn + bq (10)

with trainable parameters including the weight coefficients
Whh , W xh , Wqh and Whq̂ and bias coefficients bh and bq .
During training, the ‘teacher-forcing’ method is used where
the measured motion data is given to the model in the history
steps. In test mode, the model is fed back to the previous
predictions as input to inform future predictions. The inputs
received in this scenario could be quite different from those
passed through in the training process, leading the network
to make extrapolative predictions and therefore, accumulate
errors which will pollute the predictions. To improve the

123



1130 Computational Mechanics (2024) 73:1125–1145

Fig. 3 Computational graph of a standard recurrent neural network using ‘m’ history steps for prediction

Fig. 4 An example computational graph of an RNN that uses one history step: a The train mode and b the test mode, where the motion predicted
from the previous step is used as part of the input to predict motion at the current step

testing performance and enhancemodel accuracy and robust-
ness, a user-controlled amount of random Gaussian noise is
added to the recorded motion data to introduce stochastic-
ity so that the network can learn variable input conditions,
resembling those in the test mode, see [29] for details.

Standard RNNs, however, have difficulties in learning
long-term dependencies due to vanishing and exploding
gradient issues arising from the recurrent connections. To
mitigate these issues, gated recurrent units (GRUs) have
been developed [29, 53]. A standard GRU consists of a reset
gatern , that removes irrelevant history information, an update
gate un that controls the amount of history information that
is passed to the next step, and a candidate hidden state˜hn that

is used to calculate the current hidden state hn . Considering
a GRU with m history steps, the forward propagation can be
expressed as follows [29]:

r i � aσ

(

Whrhi−1 + W xr xi + Wqrqi + br
)

ui � aσ

(

Whuhi−1 + W xuxi + Wquqi + bu
)

z(i , i−1) � r i � Wh˜hhi−1

˜hi � atanh
(

z(i , i−1) + W x˜hxi + Wq˜hqi + b
˜h

)

c(i , i−1) � ui�hi−1

c̃(i , i) � ui�˜hi
hi � c(i , i−1) +˜hi − c̃(i , i) + bh
∀i � n − m, . . . , n − 1,

(11)
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rn � aσ (Whrhn−1 + W xr xn + br )
un � aσ (Whuhn−1 + W xuxn + bu)

z(n, n−1) � rn � Wh˜hhn−1
˜hn � atanh

(

z(n, n−1) + W x˜hxn + b
˜h

)

c(n, n−1) � un�hn−1

c̃(n, n) � un�˜hn
hn � c(n, n−1) +˜hn − c̃(n, n) + bh

(12)

q̂n � Whq̂hn + bq̂ (13)

where � denotes the element-wise (Hadamard) product;
aσ (·) is the sigmoid activation function and atanh(·) is the
hyperbolic tangent function; Whr , W xr , Wqr , Whu , W xu ,
Wqu , Wh˜h , W x˜h , Wq˜h and Whq̂ are the trainable weight
coefficients; br , bu , b˜h , bh and bq̂ are the trainable bias coef-
ficients. The current hidden state hn is calculated by a linear
interpolation between the previous hidden state hn−1 and the
candidate hidden state˜hn , based on the update gate un . The
model is trained via the backpropagation through time algo-
rithm applied to RNNs [21]. Training occurs by plugging in
the measured motion data in history steps (shown in Fig. 5),
known as the teacher forcing procedure [21]. For predictions,
the prediction from the previous step is used to predict the
current step. The addition of gaussian noise tomeasured data,
as described before, is adopted in GRU models as well.

3.2 Simultaneous forward dynamics learning
and parameter identification

With the governing equations for a general MSK forward
dynamics (Sect. 2.1), the following parameterized ODE sys-
tem is defined as.

L
[

q(t); λ
] � s(t ; ω), ∀t ∈ (0, T], B[q(0)] � g (14)

where the differential operator L[(·); λ] is parameterized
by a set of parametersλ. The right-hand side s(t ; ω) is param-
eterised byω. B[(·)] is the operator for initial conditions, and
g is the vector of prescribed initial conditions. To simplify
notations, the ODE parameters are denoted by � � {λ, ω}.
The solution to the ODE system q : [0, T ] → R depends on
the choice of parameters �.

Here, an RNN is used to relate data inputs containing dis-
crete sEMG signals and discrete time from all them previous
history time-steps of a trial, ∪n

i�n−mxi ∈ R
nin , m ∈ Z

+,
to discrete joint motion data outputs at the current time-
step, qn ∈ R, approximating the MSK forward dynamics.
Let the training input at the i th history step be defined as

xi �
[

ti , e1i , . . . , eNa
i

]

, where ti denotes the time at the i th

time step, and
{

e ji

}Na

j�1
denotes the sEMG signals of Na mus-

cle groups involved in theMSK jointmotion at ti . Themotion

at time step n, is then predicted using the training input from
all the previous m steps using the RNN.

q̂n(θ) � fRNN
(

xn , xn−1, qn−1, . . . , xn−m , qn−m ; θ
)

(15)

where fRNN denotes RNN evaluations (depending on model
chosen) discussed in Eq. (11)-(13). The optimal RNNparam-
eters˜θ and the ODE parameters ˜� are obtained by minimiz-
ing the composite loss function J as follows,

˜θ , ˜� � argmin
θ ,�

(J ) � argmin
θ ,�

(

Jdata + β Jres
)

(16)

where β is the parameter to regularize the loss contribution
from the ODE residual term in the loss function and can be
estimated analytically [1]. The data loss is defined by,

Jdata � 1

Ndata

∑Ndata

α�1
‖̂qα(θ) − qα‖2L2

(17)

where q̂α(θ) is the predicted motion, and qα is the recorded
motion of MSK joints. In addition to training an MSK for-
ward dynamics surrogate, the proposed framework aims to
simultaneously identify important MSK parameters from the
training data by minimizing residual of the governing equa-
tion of MSK system dynamics in Eq. (5).

Jres � 1

Ndata

∑Ndata

α�1
‖r(q̂α(θ); �

)‖2L2
,

with

r
(

q̂α(θ); �
) � L[

q̂α(θ); λ
] − s(tα; ω) (18)

where r
(

q̂α(θ); �
)

is the residual associatedwithEq. (14) for
the αth sample; � � {λ, ω} represents the ODE parameters
relevant to the MSK system. The gradients of the network
outputs with respect to the network parameters (θ), MSK
parameters (�), and inputs are needed in the loss function
minimization in Eq. (16), which can be obtained efficiently
by automatic differentiation [61]. The formulation in Eq. (15)
is general such that more advanced RNN frameworks can be
used such as the GRU described in Eq. (11)-(13).

3.3 Multi-resolution training with transfer learning

To improve the training efficiency of RNN for MSK applica-
tions with mixed-frequency sEMG input signals and low-
frequency output joint motion, a multi-resolution decom-
position of the training input–output data is introduced in
Sect. 3.3.1, followed by the transfer learning based multi-
resolution training protocols to be discussed in Sect. 3.3.2.

123



1132 Computational Mechanics (2024) 73:1125–1145

Fig. 5 An example computational graph of a GRU in train mode that
uses one history step: a Starting with an initial or previously obtained
hidden state (hn−2), themain GRU cell takes the input xn−1 andmotion
qn−1 that are used to obtain the GRU hidden state hn−1 at step n − 1

(Eq. (11)) and, b where the hidden state hn−1 is plugged back in to the
GRU along with input xn at step n to predict the motion q̂n (Eq. (12)-
(13)). The ‘ + ’ cell produces an output (arrow pointing outwards) that
is the summation of the inputs (arrows pointing into the cell)

3.3.1 Wavelet basedmulti-resolution analysis

Consider a sequence of nested subspaces . . . ⊂ V−1 ⊂
V0 ⊂ V1 ⊂ . . . ⊂ L2(R) where

⋃

j∈ZVj � L2(R),
and

⋂

j∈ZVj � ∅. Each subspace Vj of scale [ j] is
spanned by a set of scaling functions φ j , k(t), i.e.,Vj �
{

φ j , k(t)|φ j , k(t) � 2
j
2 φ

(

2 j t − k
)

, k ∈ Z
}

Each subspace is related to the finer subspace through the
law of dilation i.e., ifφ(t) ∈ Vj , then φ(2t) ∈ Vj+1, ∀ j ∈ Z .
Translations of the scaling function span the same subspace,
i.e., if φ(t) ∈ Vj , thenφ(t − k) ∈ Vj , ∀ j , k ∈ Z .

A mutually orthogonal complement of Vj in Vj+1 is Wj ,
such that,

Vj+1 � Vj ⊕ Wj , ∀ j ∈ Z (19)

where ⊕ is a direct sum. This subspace Wj is spanned
by a set of wavelet functions ψ j , k(t), i.e.,Wj �
{

ψ j , k(t)|ψ j , k(t) � 2
j
2 ψ

(

2 j t − k
)

, k ∈ Z
}

where ψ(t) is

the mother wavelet. It follows that,

⊕ j∈ZWj � L2(R) (20)

and therefore,

Vj � Vi ⊕
(

⊕ j−i−1
k�0 Wi+k

)

, j > i . (21)

The two-scale dilation and translation relations for the
scaling functions can be written as

φ(t) � √
2
∑∞

k�−∞dkφ(2t − k). (22)

Orthogonal wavelet functions can be obtained by impos-
ing orthogonality conditions between scaling and wavelet
functions in the frequency domain using Fourier transform,

ψ(t) � √
2
∑∞

k�−∞(−1)k−1d−k−1φ(2t − k) (23)

where dk is the coefficient.
Orthogonal scaling functions can be constructed by choos-

ing a candidate function φ∗(t) such that φ∗(t) have reason-
able decay and a finite support. In addition,

∫

φ∗(t)dt �� 0.
It should also satisfy the two-scale relation,

φ∗(t) �
∑

k
pkφ

∗(2t − k), k ∈ Z. (24)
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With these, an orthogonal scaling function φ(t) can be
expressed in terms of φ∗(t) as

φ(t) �
∑∞

k�−∞akφ
∗(t − k). (25)

It is then possible to define the scaling function at the
coarse scale in terms of the scaling function at the fine scale
and the wavelet functions at the coarser scale,

(26)

φ (2t − l) �
∑∞

k�−∞dl−2kφ (t − k)

+
∑∞

k�−∞hl−2kψ (t − k) , l ∈ Z.

Any function can be approximated at scale [ j] by using
φ j , k as a basis as well as using its coarse scale [ j − 1] rep-
resentation and details at the coarse scale, i.e.,

Pj f �
∑∞

k�−∞S[ j]k φ j , k � Pj−1 f + Hj−1 f �
∑∞

k�−∞
S[ j−1]
k φ j−1, k +

∑∞
k�−∞T [ j−1]

k ψ j−1, k (27)

where Pj and Hj are the operators projecting f onto the
subspaces Vj and details of f at scale [ j] in the orthogonal

subspace Wj , respectively. S
[ j]
k and T [ j]

k are the correspond-
ing basis coefficients at the coarse scale [ j]. While the
example shown here is for a one-dimensional case, this
multi-resolution representation can be extended to multi-
dimensions.

3.3.2 Multi-resolution data representation and training
protocols

In this approach, a given signal f (t) is represented using the
multi-resolution scaling functions and wavelets. A scale [ j]
representation of signal f (t) can be obtained from the scale
[r ]( j > r ) representation with the addition of wavelet com-
ponents (high frequency components) of the scales higher
than [r ], using the discrete wavelet transform modified from
Eq. (27),

Pj f (t) � Pr f (t) +
∑ j−1

b�r
Hb f (t) �

∑∞
k�−∞S[r ]k φr , k(t)

+
∑ j−1

b�r

∑∞
k�−∞T [b]

k ψb, k(t) (28)

where Pr is the projection operator at scale [r ] and Hb are
the wavelet projectors of the signal that are added from scale
[r ] to scale [ j − 1] to reconstruct the signal at scale [ j];
S[r ]k and T [b]

k are the scaling and wavelet function’s coeffi-
cients, obtained by the orthogonality condition as given in
Sect. 3.3.1.

Using the Wavelet transform to represent a time series
under multiple resolutions offers advantages for feature

extraction from signals. Compared to the Fourier transform
which offers only localization in the frequency domain, the
Wavelet transform provides both frequency and time domain
localization, making it more suitable for time history (or
sequence) learning algorithms such as the standard RNN
and its enhanced variant GRU. More specifically, one can
enhance training efficiency by using a sequential training
strategy for the time-history input (sEMG) and output (joint
motion) data. Applying the Fast Wavelet Transform [59, 60]
to obtain the input and output data from low to high res-
olutions results in better generalization performance of the
RNN trained to map from sEMG signals to joint motion time
history as described below. The second order Daubechies
wavelets are used in this work.

Here we consider a general MSK system described in
Sect. 2. The original unfiltered data is denoted as scale [0],
which will be decomposed into a sequence of lower scales
[− j], j ∈ Z

+ for multi-resolution training.
Let D[0] be the input training data at the full-scale ( j � 0)

of the raw signals i.e.,

D[0] �
[

x[0]1 , x[0]2 , . . . , x[0]Ndata

]

,

x[0]i �
[

ti , e
1[0]
i , . . . , eNa [0]

i

]

. (29)

and the motion of joints of the MSK system at the i th time-
step at the full-scale ( j � 0) is q[0]i such that the array of
the unfiltered motion data for the duration of the motion is
q[0] �

[

q[0]1 , q[0]2 , . . . , q[0]Ndata

]

.

From MR theory, subtracting details from the fine scale
representations at the full-scale of the signal, i.e., [0], results
in a course scale representation of the signal at scale [−k],
k � 1, . . . j . The projected training data at coarse scale [-j]
is defined as

D[− j] �
[

x[− j]
1 , x[− j]

2 , . . . , x[− j]
Ndata

]

(30)

where Ndata is the total number of data points and

x[− j]
i �

[

ti , e
1[− j]
i , . . . , eNa [− j]

i

]

, i � 1 . . . , Ndata (31)

is the input data of scale [-j] at time step i . The motion of the
MSK joints at the i th time-step at the scale [− j] is q[− j]

i .The

data sets for a representative muscle group ‘MT ’, eMT [− j]
i

and motion q[− j]
i , are obtained from the original raw data

eMT [0]
i and q[0]i by wavelet projection using Eq. (27), that is,
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eMT [− j](t) ≡ P je
MT [0]

(t) � Pj−1e
MT [0](t)

+ Hj−1e
MT [0](t)

� eMT [0](t) −
∑ j−1

b�0
Hbe

MT [0](t),

(32)

q[− j] (t) ≡ P jq
[0]

(t) � P j−1q[0] (t) + H j−1q[0] (t)

� q[0] (t) −
∑ j−1

b�0
Hbq[0](t)

where P j and H j are the projection operators in multi-
dimensions. Hence, datasets that contain lower resolution
representations of the original signal at scales [0] can be
expressed as:

D[− j] ⊂ D[− j+1] ⊂ . . . D[−1] ⊂ D[0],

q[− j] ⊂ q[− j+1] ⊂ . . . q[−1] ⊂ q[0] (33)

where q[− j] �
[

q[− j]
1 , q[− j]

2 , . . . , q[− j]
Ndata

]

.

Instead of learning the signal mapping from input original
raw sEMG data D[0] to motion data q[0], we initiate learning
themapping by starting from a coarse scale representation of
the input–output data at scale [− j] and map D[− j] to q[− j].
For multi-resolution RNN, the initial learning starts from the
coarsest scale [− j] as follows:

(34)

h[ j]i � atanh
(

W [− j]
hh h

[− j]

i−1 + W [− j]
xh x[− j]

i + W [− j]
qh q[− j]

i

+ b[− j]
h

)

∀i � n − m, . . . , n − 1

h[− j]
n � atanh

(

W [− j]
hh h

[− j]

n−1 + W [− j]
xh x[− j]

n + b[− j]
h

)

(35)

q̂[− j]
n � W [− j]

hq̂ h
[− j]

n−1
+ b[− j]

q (36)

At the next finer scale [− j + 1], the weights at scale [− j]
(using an early stopping [62]) are used as the initial values
for W [− j+1]

hh , W [− j+1]
xh , W [− j+1]

qh , W [− j+1]
hq̂ b[− j]

h b[− j]
q , similar

to the concept of transfer learning[63].
Similarly, for multi-resolution GRU, the initial learning

starts from the coarsest scale [− j] as described in “Appendix
C”. The same procedures to transfer the NN parameters in
Eq. (34)-(36) are repeated with [− j] → [− j + 1] until it
reaches scale [0]. To enhance model accuracy and robust-
ness, variations based on Gaussian noise are added to the
motion data in each sequential step, as suggested by [29].
The sequential MR training process is described in Algo-
rithm 1.
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Fig. 6 An overview of the application of this framework to the recorded
motion data. The location of motion capture markers is circled in red
and the sEMG sensors on Biceps and Triceps muscle groups in blue
and green, respectively. The simplified rigid body model was used in
the forward dynamics equations within the framework with appropri-
ately scaled anthropometric properties (for geometry) and physiological

parameters (for muscle–tendon material models). The raw sEMG sig-
nals were mapped to the target angular motion of the elbow and used to
simultaneously characterize theMSK system using the proposedMulti-
Resolution PI-RNN framework

4 Verification example

For verification of the proposed MR PI-RNN framework, an
elbow flexion–extension model [1] and synthetic sEMG sig-
nals with Gaussian noise and associated motion responses
were considered. The flowchart of the proposed computa-
tional framework for simultaneous forward dynamics pre-
diction and parameter identification of MSK parameters is
shown in Fig. 6.

The model contained two rigid links corresponding to the
upper arm and forearmwith lengths lua and l f a , respectively.
They were connected at a hinge resembling the elbow joint
“A”, while the upper arm link was fixed at the top joint “B”,
and the biceps (Bi) and triceps (Tri) muscle–tendon com-
plexes (modeled by Hill-type models with parameters κ Bi

and κTri ) were represented by the lines connecting the links,
as shown in Fig. 6. The degree of freedom of the model was
the elbow flexion angle q. The mass in the forehand was
assumed to be concentrated at the wrist location, hence, a
massm f a was attached to one end of the forearm link with a
moment arm l f a from the elbow joint. Tendonswere assumed
as rigid [58] for ease of computation.

The equation of motion for this rigid body system is given
in “Appendix D”. Given the synthetic sEMG signals (eBi (t),
eTri (t)), the initial conditions q(0) � π

6 radians and q̇(0) �
0 radians/sec and the parameters in Table 1, themotion of the
elbow joint, q, can be obtained by solving the MSK forward

dynamics problem using an explicit Runge–Kutta scheme,
implemented in Python’s SciPy library [64].

To verify and check the robustness of the MR framework
to different levels of noise in the input, the following test was
performed. Originally, five synthetic samples i.e., Trial’s 1 to
5, of noiseless synthetic muscle sEMG signals are assumed,
as shown in Fig. 7. In practical applications, signals obtained
from measurement devices such as sEMG sensors contain
noise in their content. Therefore, three cases were devel-
oped by adding Gaussian noise (N (μ, σ)) with zero mean
(μ � 0) and increasing levels of standard deviations (σ ) to
the input synthetic sEMG signals as mentioned in Table 2.
As the maximum value of the noiseless sEMG signals is
1, the chosen σ ’s were kept within 10%—20% of the sig-
nal maximum for a reasonable level of noise. Restricting it
between 10%—20% is a choice as having higher noise lev-
els (> 20%) would dominate over the underlying ‘noiseless’
periodic sinusoidal signal, leading to non-physiological syn-
thetic sEMG signals. The corresponding output motions are
generated by passing the noisy sEMG as input to the FD
equations in Sect. 2. The following training procedures were
performed for each of the three cases.

4.1 1-scale training

Themixed frequency input sEMG signals and corresponding
output motion data q at scale [0], denoted by D[0] and q[0],
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Table 1 Parameters involved in
the forward dynamics setup of
elbow flexion–extension motion

Parameter Type Value Parameter Type Value

lM0, Bi Biceps Muscle Model 0.6 m m f a Equation of motion 1.0 kg

vM
max , Bi Biceps Muscle Model 6 m /sec lua Geometric 1.0 m

f M0, Bi Biceps Muscle Model 300 N l f a Geometric 1.0 m

lTs, Bi Biceps Muscle Model 0.55 m l1, Bi Geometric 0.3 m

φBi Biceps Muscle Model 0.0 radians l2, Bi Geometric 0.8 m

lM0, Tri Triceps Muscle Model 0.4 m l1, Tri Geometric 0.2 m

vM
max , Tri Triceps Muscle Model 4 m /sec l2, Tri Geometric 0.7 m

f M0, Tri Triceps Muscle Model 300 N d Activation Dynamics 0.08 sec

lTs, Tri Triceps Muscle Model 0.33 m A Activation Dynamics 0.2

φTri Triceps Muscle Model 0.0 radians

Table 2 Input data and gaussian noise level for each case

Case ID Input Synthetic sEMG data + N (μ, σ )

1 Original + N (0, 0.1)

2 Original + N (0, 0.15)

3 Original + N (0, 0.2)

respectively, are mapped to get a baseline performance. This
is termed as 1-scale training as only the full-scale (i.e., [0])
of the mixed frequency data is used for training.

4.2 2-scale training

a. Initiate learning from a coarse scale representation of the
mixed frequency input data at scale [−1] and map D[−1]

to the corresponding motion data at scale [-1], q[−1], of
that case.

b. Transfer parameters to the next scale training and finish
the learning by mapping D[0] to q[0].

4.3 3-scale training

a. Start learning from a coarse scale representation of the
mixed frequency input data at scale [−2] and map D[−2]

to the corresponding motion data at scale [-2], q[−2], of
that case.

b. Transfer parameters to the next scale training and con-
tinue learning by mapping D[−1] to q[−1].

c. Transfer parameters to the next scale training and finish
the learning by mapping D[0] to q[0].

For each case and for each of the training scales in that
case, the training data samples contained the data of trial’s
1, 2, 4, 5 while trial 3 was used for testing, each trial with

n � 500 data points. The MSK parameters � � {�l}4l�1 �
{

f M0, Bi , l
M
0, Bi , f M0, Tri , l

M
0, Tri

}

were chosen to be identified

from the training data using the proposed framework. Due to
differences in units and physiological nature of the parame-
ters, the conditioning of the parameter identification system
could be affected. To mitigate this issue, normalization [1,
44] was applied to each of the parameters,

�l � �l

�
(0)
l

(37)

where �
(0)
l was the initial value of the parameter. Therefore,

the parameters to be identified became � � {

�l
}4
l�1.

The proposed framework, as described in Sect. 3, was
applied to each case to simultaneously learn the MSK for-
ward dynamics surrogate and identify the MSK parameters
� by optimizing Eq. (16), where the residual of the governing
equation for the current time step k, was expressed as

(38)

r
(

q̂[− j]
k

(

θ q
)

, ˙̂q[− j]
k

(

θ q
)

, ¨̂q[− j]
k

(

θq
)

; �
(

�; �(0)
))

� I ¨̂q[− j]
k

(

θ q
) − E

(

q̂[− j]
k

(

θ q
)

)

− T MT
(

aBi (tk) ,

aTri (tk) , q̂
[− j]
k

(

θ q
)

, ˙̂q[− j]
k

(

θq
)

; �
(

�; �(0)
))

and is included in the residual term Jres in the loss function
in Eq. (16). While the training happens sequentially from
coarse to fine-scales of the motion, the final identification of
parameters happens at the scale [0], i.e., the full-scale in each
of the 1-, 2- and 3-scale MR training types.

A GRU with 2 history steps, 1 hidden layer and 50 neu-
rons in each layer was used. The training was performed
after standardizing the data, such that the scale or range of
the input and output have minimal influence on model per-
formance [21]. The Adam algorithm [65] was used with an
initial learning rate of 1×10−3 and the penalty parameter for
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Fig. 7 The original ‘noiseless’ input–output data set with the synthetic
biceps and triceps sEMG signals having variations in frequency for
five trials are shown at the top. Increasing levels of noise are added to
develop 3 cases of synthetic mixed frequency input sEMG, from which

corresponding output motions are solved, using the forward dynamics
equations. To verify the MR framework, these three cases with their
respective mixed frequency input data are then mapped to their corre-
sponding motion data

theMSK residual term in the loss function,β ∝ 
t2
I � 10−3.


t is the time-step between data points and I is the moment
of inertia in Eq. (38). Five parameter initialization seeds were
used for an averaged response of the MR training.

To compare the post-training performance of 1-, 2- and 3-
scale MR training’s, the average testing mean squared error
(MSE) and testing R2 scores were compared, where these
measures for a single trial are defined as:

MSE � 1

n
‖ q − q̂ ‖2

L2
(39)

R2 � 1 −
∑n

i�1(qi − q̂i )2
∑n

i�1(qi − q)2
(40)

where q is themotion data of the trial, q̂ is the trial’s predicted
motion from the MR PI-RNN framework, and q is the mean
of trial’s motion data with n being the number of data points
in the trial. At each epoch in the MR training, the training
loss is calculated by using the scale of the training data used
in that training scale, i.e., scale [− j] of the data is used in
j-scale training.
The gradual improvement in these metrics is evident from

Fig. 8 where, as further scales of information are added and
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Fig. 8 The training loss and testing metrics are shown. The zoomed-
in plots are included for clarity on the loss evolution for the last 500
epochs. The shaded area indicates one standard deviation from themean

(solid line), in both the loss and average test MSE and R2 score figures.
As more scales of data are introduced in the MR training, the average
Test MSE and R2 score calculated post-training improve in each case

the training data is augmented, the generalization perfor-
mance shows improvement from 1-scale to 3-scale. Overall,
it is noted that the test metrics such as the MSE reduces,
and the R2 score gets closer to one, indicating an increase
in the generalization accuracy as more training scales are
introduced. This can be explained through the theory of
bias-variance tradeoff; training on various scales of the data
introduces more variance to the training, helping the ML
framework to reduce the bias it develops by just training on
the full-scale of the data. Together, this reduction in bias and
growth in variance leads to a better generalization perfor-
mance. Computationally, this method improves accuracy in
the same amount of training epochs showing the efficiency
of this method. As generalization predictions post-training
are made using the full-scale of the data, there is no increase
in time needed to perform the forward pass for any scale.

Meanwhile, theMSK parameters, f M0 (maximum isomet-
ric force) and lM0 (optimal muscle length corresponding to
the maximum isometric force), of both the biceps and the
triceps were accurately identified from the motion data, as
shown in Table 3. Compared with the parameter identifica-
tion from our previous work [1] where in addition to f M0 ,
the maximum contraction velocity vM

max was independently
identified, due to non-convergence of lM0 by the time-domain
and feature-encoded trainings, the proposed method can

Table 3 The average percentage error (shown as mean± standard devi-
ation) between predicted and true values of the parameters for 3-scale
training for each case from five initialization points

Parameter Case 1 Case 2 Case 3

f M0, Bi 0.50 ± 0.02 0.50 ± 0.01 0.37 ± 0.04

f M0, Tri 0.06 ± 0.02 −0.04 ± 0.02 −0.02 ± 0.03

lM0, Bi 0.10 ± 0.03 0.10 ± 0.02 0.05 ± 0.05

lM0, Tri −0.06 ± 0.07 −0.05 ± 0.02 −0.03 ± 0.10

accurately identify lM0 . vM
max can then by obtain by the exper-

imentally observed relationship of vM
max/l

M
0 � 10sec−1 [57,

66].
For the identification of optimal muscle length parame-

ters
(

lM0
)

, the initial points need to be chosen with respect
to constraints applied by the geometry of the MSK system.
The errors reported in Table 3 are calculated by taking the
average of the percentage error of the identifiedMSK param-
eters from the 3-scale training with the multiple parameter
(θ , �) initializations. It was observed that in MSK param-
eter identification, similar accuracy in characterization was
obtained from all training scale approaches used within each
case, with errors less than 1%. This indicates that the MR PI-
RNN improves the generalization performance of themotion
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prediction, without loss in parameter identification accuracy.
It is noted that this example investigates the predictivity of
in-distribution testing data, i.e., testing data that lies within
the range of the training data. The effect of MR PI-RNN
training on out-of-distribution predictivity is also studied in
“Appendix E”.

5 Validation: elbow flexion–extension
motion

5.1 Application of MR PI-RNN to subject-specific
data

The recorded motion data and sEMG signals were collected
andprocessed as per the data acquisition protocolsmentioned
in [1]. In brief, three elbow flexion–extension motion trials
were performed by the subject for 10 s each, with two Del-
sys Trigno sEMG sensors placed on the biceps and triceps
muscle groups, based on SENIAM recommendations [67].
The processed sEMG signals were transformed as described
in Sect. 2.1 to obtain muscle activation signals, used to cal-
culate the MSK forward dynamics ODE residual. The same
simplified rigid bodymodel was used as in Sect. 4 and appro-
priately scaled anthropometric properties (for the geometry
of the model) and physiological parameters (for muscle–ten-
don material models used for the muscle groups) based on
the generic upper body model defined in [68, 69] were used.
Figure 9 shows the measured data of the three trials, includ-
ing the transient raw sEMG signals and the corresponding
angular motion of the elbow flexion–extension of the sub-
ject.

In this example, the raw sEMG signals were used as input.
A 5-scale MR training procedure as described in Sect. 4 was
used on a GRU with 1 hidden layer with 50 neurons. The
data of trials 1 and 3 were used for training, while trial 2 was
used for testing, where each signal contained 500 temporal
data points.

The muscle parameters to be identified by the frame-
work include the maximum isometric force and the optimal
muscle length from both muscle groups, which are denoted

as � �
{

f M0, Bi , l
M
0, Bi , f M0, Tri , l

M
0, Tri

}

. It was observed in

our tests that despite the normalization process described in
Eq. (37) and (38), the parameters obtained at the end of the
MR training with motion data either diverged or converged
to non-physiological values. To obtain physiologically con-
sistent parameters, we use the values obtained from literature
studies and constrain the space of parameter search [44].

Let the parameter to be identified be defined as

�l(ψ) � 1

N

∑N

r�1
γ r sig(ψr ), ψ � [ψ1, ψ2, . . . , ψN ]

(41)

where γ r is the value defined in the r th literature study and
ψr is the parameter to be optimized in the training such that
it can be used to evaluate the sigmoid function sig(ψr ) and
ψ is the vector of these trainable parameters. Using the opti-
mizedψ , the desiredMSKparameters can be estimated. This
formulation constrains the identified parameters to be consis-
tent with parameters obtained through experimental studies
[68–70].

The proposed framework was then applied to simulta-
neously learn the MSK forward dynamics surrogate and
identify theMSKparameters� byoptimizingEq. (16),where
the residual of the governing equation for the current time
step k, is expressed with a slight correction of Eq. (38) due
to parameter space modification as

(42)

r
(

q̂[− j]
k

(

θ q
)

, ˙̂q[− j]
k

(

θ q
)

, ¨̂q[− j]
k

(

θ q
)

; � (ψ)
)

� I ¨̂q[− j]
k

(

θ q
) − E

(

q̂[− j]
k

(

θ q
)

)

− T MT
(

aBi (tk) ,

aTri (tk) , q̂
[− j]
k

(

θq
)

, ˙̂q[− j]
k

(

θ q
)

; � (ψ)
)

This is introduced into the residual term Jres in the loss
function and the optimization problem becomes,

˜θ , ˜ψ � argmin
θ ,ψ

(Jdata(θ) + β Jres(θ , ψ)). (43)

As mentioned in the verification example (Sect. 4), the
multi-resolution parameter identification is performed start-
ing from the coarsest scale, transferring the learned hyperpa-
rameters to the next finer scale parameter identification, and
finally completing the parameter identification at the full-
scale, i.e., at scale [0].

5.2 Results

To accelerate the training process, the training dataset is stan-
dardized to have zero mean and unit variance. The training
was performed with the standardized data, using the Adam
algorithm [65] with an initial learning rate of 1×10−3 and 4
history steps were considered. Five parameter initialization
seeds were used for an averaged response of theMR training.
To quantify the error in the testing predictions, a normalized
mean squared error (NMSE) was defined,

NMSE � 1

n

∑n
i�1(qi − q̂i )2

∑n
i�1(qi − q)2

(44)

where qi is the i th target motion data point, q̂i is the i th pre-
dicted motion data point, from the MR PI-RNN framework,
and q is the mean of target motion data. The R2 score was
calculated using the metric defined in Eq. (40). From Fig. 10,
Fig. 11 and Table 4, it is clear that addition of training scales
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Fig. 9 The measured raw sEMG signals and the corresponding angular motion of the elbow flexion–extension of the subject are plotted

Fig. 10 Comparison of test predictions post-training for eachMR train-
ing scale performed. The solid dash line is the mean of the predictions
post-training when various initialization points are utilized to begin the

MR training, with shaded region indicating one standard deviation from
the mean

Fig. 11 The test normalized
mean squared error (NMSE) and
test R2 score are plot for the
testing predictions post-training,
averaged over five initialization
seeds. The mean of the metric is
the solid marker line, the shaded
portion being one standard
deviation from the mean

Table 4 The test metrics such as NMSE and R2 score averaged over five initialization seeds, for the various training scales involved are reported
here

Training
Scale

Avg. Test
NMSE

Decrease (%) in Avg. Test NMSE w.r.t
1-Scale Training

Avg. Test R2

Score
Increase (%) in Avg. Test R2 score w.r.t
1-Scale Training

1 8.00E–04 - 0.599 -

2 5.74E–04 28% 0.713 19%

3 4.14E–04 48% 0.793 32%

4 2.33E–04 71% 0.884 47%

The % decrease in average NMSE and % increase in average R2 w.r.t 1-scale training are shown in the 3rd and 5th columns respectively
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Table 5 The identified parameter estimates usingMRPI-RNN training,
and their values reported in literature [68–70]

Parameter Identified values Estimates from literature

f M0, Bi (N) 348.23 ± 0.2 158.4–845

lM0, Bi (m) 0.108 ± 0.001 0.115–0.142

f M0, Tri (N) 758.36 ± 0.5 554.4–2332.916

lM0, Tri (m) 0.069 ± 0.001 0.067–0.087

leads to improved motion predictions. The multi-resolution
training leads to an increase in average test R2 score of more
than 40% (bringing it closer to one), averaged over the mul-
tiple initialization seeds. With the addition of more scales,
Fig. 10 clearly shows the progression in improvement of the
predictions as more scales are involved in the training.

The identified MSK parameters from the MR PI-RNN
training are summarized in Table 5 with the mean of the
final converged values of f M0 and lM0 obtained from mul-
tiple parameter initializations at 4-scale training, consistent
with the physiological estimates of these parameters reported
in literature [68–70]. lM0, Bi is slightly outside the estimated
range, which could be attributed to the variance in pop-
ulation. Similar values were obtained across all scales of
training hence parameters obtained from a representative 4-
scale training are shown here. The results demonstrated the
effectiveness of the proposed MR PI-RNN framework and
promising potential for real applications.

6 Discussion and conclusions

In this work, we proposed a multi-resolution physics-
informed recurrent neural network (MR PI-RNN) for an
application to MSK systems, for time-domain motion pre-
diction and parameter identification. A GRU with a physics-
informed loss function that minimized the error in the
training data and the residual of the MSK forward dynamics
equilibrium was used for this purpose. Wavelet based multi-
resolution techniques were used to decompose the input
sEMG signals and output joint motion data into coarse-scale
approximations at different scales and fine-scale details at
those scales. The sEMGand joint motionmulti-scale compo-
nents were then mapped to each other starting from a chosen
coarse-scale components and then sequentially trained (via
transfer learning) to higher scales, completing the training
on the full-scale of the data.

By initializing training on the coarse-scale of the train-
ing data, the optimization reaches a local minimum that
serves as a better initialization state for the training data
that includes the sequential fine-scale details. The proposed
transfer-learning based sequential training scheme can be

used for learning datasets that have high frequency signals
as shown in the verification example with synthetic mixed
frequency sEMG data. The numerical examples show an
improvement in testing prediction and identifying the param-
eters. We observe from the loss profiles that the testing loss
decreased while the training loss increased as more scales of
data were brought in. It was also observed that the average
test MSE and R2 metrics showed a clear improvement in the
generalization accuracy. These phenomena can be explained
through the theory of bias-variance tradeoff; training on vari-
ous scales of the data introducesmore variance to the training,
helping the ML framework to reduce the bias it develops by
just training on the full-scale of the data. Computationally, it
is noted that the proposed method achieves improved accu-
racy by using the same amount of training epochs.

The proposed MR framework was validated on recorded
sEMG and motion data from a subject [1] and significant
improvements were observed in the testing prediction accu-
racy, with 1-scale training often leading to large errors. The
predicted motion at higher training scales showed improve-
ments across all initialization points used, indicating the
robustness of the method. The identified parameters were
also consistent with the physiological range observed in lit-
erature.

This method also has the advantage of operating in the
time-domain as compared to the feature-encoded (FE) train-
ing [1], where the input sEMG signals were projected on
to the frequency domain using the Fourier basis. In the FE
training, to make a prediction, the input signal for the entire
duration of themovement predictionwas neededwhereas the
physics informedMR training of theRNNenables the trained
model tomake real-time predictions by using the information
of the previous time-steps and the current sEMG signal. In
addition, for mixed frequency signals, wavelet resolution can
better capture the local frequency information as compared to
the Fourier basis which captures the global frequency infor-
mation. As compared to the NN-based time-domain training
performed at the original scale of the data (scale [0]) pro-
posed in [1], the MR PI-RNN training approach described
here achieved significant improvements due to the stronger
sequence learning capability of the RNN and the ability of
the MR training.

This method is presented as a general approach where
multi-resolution is applied to both input and output. For some
applications, e.g., those that require only data mapping, the
MR training can be applied by only considering the decom-
position to the input, keeping the output at the full-scale (i.e.,
scale [0]) throughout, or vice versa. To apply this method
to clinical studies, RNN hyperparameters may also be tuned
to account for subject variability. The dependence of this
method on the number of data points available in a signal
can also be studied in the future. To further improve this
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method, we can consider the use of multi-resolution as acti-
vation functions of the ML framework, instead of relying on
data filtration processes for better computational efficiency.
This method will also be studied on other physics-informed
ML techniques to solve forward problems with PDEs having
mixed frequency source terms.
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Appendix A: Muscle–Tendon Force
Generation

The total muscle force FM can be expressed as

FM
(

a,˜lM , ṽM ; κ
)

� f M0

(

f A
(

a,˜lM , ṽM ; κ
)

+ f P
(

˜lM ; κ
))

(45)

where f P
(

˜lM
)

is the passive muscle length dependent force
generation function. The active force f A component can be
expressed as:

f A
(

a,˜lM , ṽM ; κ
)

� a f A, L
(

˜lM ; κ
)

f V
(

ṽM ; κ
)

˜lM � lM/lM0

ṽM � vM/vM
max (46)

where a is the activation function in Eq. (2),˜lM is the nor-
malized muscle length, ṽM is the normalized velocity of the
muscle. The total length of the MT system lMT is given by,

lMT � lMcosϑ + lT (47)

Given the current joint angle q and the angular velocity q̇ ,
the current length, lMT of the MT system can be calculated
using trigonometric relations.

The f A, L
(

˜lM
)

and f V
(

ṽM
)

are generic functions of the
length and velocity dependent force generation properties of
the active muscle, represented by dimensionless quantities.

In this study, the tendon is assumed to be rigid
(

lT � lTs
)

.
The total force produced by the MT complex, FMT , can be
expressed as:

FMT (a,˜lM , ṽM , φ; κ) � FM
(

a,˜lM , ṽM ; κ
)

cosϑ (48)

The rigid-tendon model simplifies the MT contraction
dynamics [57, 58] which accounts for the interaction of the
activation, force length, and force velocity properties of the
MT complex.

Appendix B: Hill-TypeMuscle Models

For the length dependent muscle force relations, this work
uses the equations given in [55]. The active muscle force
dependent on variation in length is given as

f A, L
(

˜lM
)

�

⎧

⎪

⎨

⎪

⎩

9
(

˜lM − 0.4
)2
,˜lM ≤ 0.6

1 − 4
(

1 −˜lM
)2
, 0.6 ≤˜lM ≤ 1.4

9
(

˜lM − 1.6
)2
,˜lM > 1.4

(49)

f P
(

˜lM
)

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0,˜lM ≤ 1

γ1

(

exp
(

γ2(˜l
M − 1)

)

− 1
)

, 1 ≤˜lM ≤ 1.4

(γ1γ2exp(0.4γ2))˜l
M + γ1((1 − 1.4γ2)exp(0.4γ2) − 1),˜lM > 1.4

(50)

where γ1 � 0.075 and γ2 � 6.6 correspond to parameters in
the passivemuscle forcemodel related to an adult human.The
muscle force velocity relationship f V

(

ṽM
)

is used directly
from [66].

Appendix C: Multi-Resolution GRU
Formulation

For multi-resolution GRU, the initial learning starts from the
coarsest scale [− j] as follows with notations according to
Sect. 3.3.2,

r[− j]
i � aσ

(

W [− j]
hr h[− j]

i−1 + W [− j]
xr x[− j]

i + W [− j]
qr q[− j]

i + b[− j]
r

)

u[− j]
i � aσ

(

W [− j]
hu h[− j]

i−1 + W [− j]
xu x[− j]

i + W [− j]
qu q[− j]

i + b[− j]
u

)

˜h[− j]
i � atanh

(

r[− j]
i � W [− j]

h˜h
h[− j]
i−1 + W [− j]

x˜h
x[− j]
i + W [− j]

q˜h
q[− j]
i + b[− j]

˜h

)

h[− j]
i � u[− j]

i � h[− j]
i−1 +

(

1 − u[− j]
i

)

�˜h[− j]
i + b[− j]

h

∀i � n − m, . . . , n − 1,
(51)
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(

W [− j]
hr h[− j]

n−1 + W [− j]
xr x[− j]

n + b[− j]
r

)

u[− j]
n � aσ

(

W [− j]
hu h[− j]

n−1 + W [− j]
xu x[− j]

n + b[− j]
u

)

˜h
[− j]
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(
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(52)
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q̂[− j]
n � W [− j]

hq̂ h[− j]
n + b[− j]

q (53)

where the weights W [− j]
hr , W [− j]

xr , W [− j]
qr , W [− j]

hu , W [− j]
xu ,

W [− j]
qu , W [− j]

h˜h
, W [− j]

x˜h
, W [− j]

q˜h
and biases b[− j]

r , b[− j]
u , b[− j]

˜h
,

b[− j]
h , b[− j]

q are trainable parameters.

Appendix D: Equation of Motion
of the SimplifiedMSKModel

The equation of motion for the rigid body system used in
Sect. 4 is,

I q̈ � E(q) + T MT (aBi , aTri , q, q̇; κ Bi , κTri ) (54)

where,

I � m f al
2
f a (55)

E(q) � −m f agl f asin(q) (56)

(57)

T MT (aBi , aTri , q, q̇; κ Bi , κTri )

� T MT
Bi (aBi , q, q̇; κ Bi ) − T MT

Tri (aTri , q, q̇; κTri )

T MT
Bi

(

aBi , q , q̇; κBi
) �

FMT
Bi

(

aBi ,˜l
M
Bi , ṽMBi ,

˜lTBi ; κBi

)

l2, Bi sin(q)l1, Bi

lMT
Bi (q)

(58)

Table 6 Training and Testing data description for the Out-of-
Distribution predictivity study

Training Data Trials Testing Data Trial

Set A 2, 3, 4, 5 1

Set B 1, 2, 3, 4 5

T MT
Tri

(

aTri , q , q̇; κTri
) �

FMT
Tri

(

aTri ,˜l
M
Tri , ṽMTri ,

˜lTTri ; κTri

)

l2, Tri sin(q)l1, Tri

lMT
Tri (q)

.

(59)

Appendix E: Study on Out-of-Distribution
predictivity of theMR PI-RNN training

To investigate the performance of the MR training strategy
on predictions made on trials that are out-of-distribution of
the training data, two combinations of training and testing
trials from the data used in the verification example (Sect. 4)
were studied, as shown in Table 6 .

The setting of this study is the same as described in Sect. 4.
TheMSE and R2 scores after applying 1-, 2- and 3-scale MR
PI-RNN training are shown in Figs. 12–13. In both tests,
the prediction accuracy of the testing trial increases with
the number of training scales. Such trend is more apparent

Fig. 12 The average test MSE
and R2 score post MR training
for Set A are shown. The shaded
area indicates one standard
deviation from the mean (solid
line), in both figures

Fig. 13 The average test MSE
and R2 score post MR training
for Set B are shown. The shaded
area indicates one standard
deviation from the mean (solid
line), in both figures
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when the sEMGsignals containmore high-frequency content
(from Case 1 to 3). The results demonstrate the effectiveness
and the ability for out-of-distribution predictions of the pro-
posed approach.
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