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INTRODUCTION
The first-line treatment of advanced gastroesophageal 

adenocarcinomas (GEA) has rapidly transitioned toward the 
broad adoption of concurrent chemoimmunotherapy. Unlike 
melanoma and non–small cell lung cancer (NSCLC) where 
a large portion of patients benefit from anti–PD-1 antibody 
monotherapy (aPD1), the activity of aPD1 in gastroesophageal 

adenocarcinomas is modest and heterogeneous (1, 2). Impor-
tantly, the optimal cooperativity between different treatment 
modalities (e.g., chemotherapy, immunotherapy, targeted 
agents) is understudied, and we are therefore limited in ration-
ally designing novel combination treatments or sequencing 
strategies. This is in large part due to suboptimal preclinical 
model systems and clinical trial designs that use concurrent 
chemoimmunotherapy, thus making it difficult to dissect the 
relative contribution of individual modalities. To develop the 
next generation of gastroesophageal trial concepts, we need 
a deeper understanding of our current treatment paradigms.

To address this knowledge gap, we previously conducted 
a small pilot serial biopsy study in unselected metastatic 
gastric cancer patients treated with standard 5-FU/plati-
num (XELOX) chemotherapy and demonstrated early tumor 
microenvironment (TME) remodeling (3). Several features 
including on-treatment M1/M2-like macrophage repolariza-
tion and CD8+ T-cell influx were conserved among patients 
responding to standard 5-FU/oxaliplatin. Similar findings 
have been seen in some posttreatment surgical studies from 
nonmetastatic samples, highlighting a predictive and prog-
nostic role for TME composition (4, 5). These findings sup-
port an ability of chemotherapy to generate a favorable 
environment in which to introduce immunomodulatory 
approaches, but were limited by lack of aPD1 incorporation, 
small sample size, and retrospective analyses.

The immune cells of the TME can assume a variety of 
phenotypes that can be defined by transcriptomic features 
and coexpression of multiple proteins. While modern spatial 
profiling technologies provide important insights into the 
spatial organization of the TME, substantial biology can be 
observed with TME reconstruction from bulk and single-cell 
RNA sequencing (scRNA-seq) data (6–8). Recently, covarying 
transcriptional programs in scRNA-seq data have been lever-
aged to predict multicellular interaction networks, or hubs, 
several of which have been spatially localized within tumors 
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(9–13). While these studies have identified important insights 
into baseline tumor organization in microsatellite-high colo-
rectal (MSI-H) patients, they have lacked on-treatment paired 
sampling to understand how these hubs may evolve under 
therapeutic pressures, and whether remodeling differs between 
patients who benefit and/or do not benefit from a given 
approach. We therefore designed a prospective single-arm 
sequential chemoimmunotherapy trial in patients with meta-
static gastric cancer with serial sampling for deep correlative 
studies to build upon our prior observations. In the framework 
of this clinical trial, we sought to: (i) validate TME remodeling 
of 5-FU/platinum chemotherapy, (ii) understand the contribu-
tion of pembrolizumab on top of standard chemotherapy, and 
(iii) identify candidate pathways and cell types to nominate for 
further exploration in rational combination studies.

RESULTS
Clinical Activity and Molecular Characteristics

Trial accrual is completed, and 47 patients with treatment-
naïve advanced gastric cancer (AGC) were enrolled between 
September 2020 and April 2022. The overall schema and 
sample collection strategy is outlined in Fig.  1A. Patients 
for whom no samples were available are not included in the 
correlative analyses. All tissue biopsies were taken from the 
primary tumor, and an attempt was done to serially biopsy 
the same region within the primary tumors using endo-
scopic mapping. The median age of the patients was 55 years 
(range 34–75 years), and most patients were men (80.9%). All 
patients were Korean. Forty-three patients (91.5%) received 
5-FU/platinum chemotherapy and four (8.5%) received 5-FU/
platinum chemotherapy with trastuzumab as first-line treat-
ment per standard of care (Supplementary Table S1). Demo-
graphic features are shown in Supplementary Table S1. The 
primary objective was to characterize the TME changes, and 
the primary clinical endpoint was objective response rate by 
RECIST v1.1 (See Supplemental Trial Protocol). At the data 
cutoff on April 21, 2022, the overall response rate (ORR) was 
68% (Fig. 1B; Supplementary Fig. S1A and S1B), and with a 
median follow up of 10.7 months the median progression-
free survival (PFS) and overall survival (OS) was 8.2 months 
and 18.6 months, respectively (Fig. 1C and D; Supplementary 
Fig. S1C and S1D). The clinical activity is aligned with data 
from current phase III concurrent chemoimmunotherapy 
trials in Asian and Western patients (2, 14). As this trial con-
tained only standard-of-care approaches the adverse events 
were in line with modern phase III GEA chemoimmuno-
therapy trials (Supplementary Table S2).

The enrolled patient population is representative of the 
established genomic landscape described in the The Cancer 
Genome Atlas (TCGA) and Asian Cancer Research Group 
classifications (Fig.  1E; Supplementary Fig.  S2; Supplemen-
tary Table  S1; refs. 15, 16). Two patients had Epstein–Barr 
virus (EBV)-positive (EBV+) tumors (4.3%), three patients 

had tumors with microsatellite instability (MSI-high; 6.4%), 
16 patients had genomically stable (GS) tumors (34%) and 
26 patients had chromosomally instable (CIN) tumors (55%; 
Fig.  1E). Consistent with prior reports from our group, 
nearly all EBV+ or MSI-high patients achieved CR or PR (17, 
18). Limited by low MSI-high and EBV+ patients, the median 
PFS by TCGA subgroup was 32.0 months for MSI-high, 
20.4 months for EBV+, 7.6 months for CIN, and 9.4 months 
for GS tumors (Supplementary Table  S1). Because RECIST 
stable disease (SD) can encompass heterogeneous clinical 
benefits (i.e., some SD patients achieve durable control), we 
conducted a post hoc analysis of patients by PFS, with fast 
progressors defined as PFS  <  6 months (median PFS and 
OS was 121 and 271 days, respectively) and slow progressors 
as PFS >  6 months (median PFS and OS was 553 days and 
842 days, respectively; ref. 19). The median PFS of 6 months 
was selected from modern phase III first-line trials and we 
observed a shorter overall survival in fast progressors (Sup-
plementary Fig. S1C and S1D; refs. 14, 19–21). We, and oth-
ers, have previously utilized this strategy to observe biology 
in single-arm trials involving immune agents where RECIST 
alone may underestimate patient benefit (22–24). There were 
no genomic features predictive of chemotherapy response, 
consistent with prior studies (3, 25). Tumor mutational bur-
den was not significantly associated with clinical response 
in our cohort (Supplementary Fig. S2A and S2B). While this 
is the first trial to report outcomes by TCGA subtype the 
main intention was not to reexamine the clinical activity of 
standard approaches, but to generate a uniquely character-
ized cohort from which to better understand how our current 
therapies influence tumor, immune, and stromal features.

A Single Dose of 5-FU/Platinum Remodels 
Cell Type Composition in the TME

As we observed a lack of genomic chemotherapy response 
predictors, we sought to broadly understand the effects of 
standard platinum/5-FU on the tumor immune microen-
vironment. Our prior pilot work had suggested that 5-FU/
platinum can lead to increased CD8+ T-cell infiltration and 
can reprogram macrophage populations (3). Comparing base-
line (BL) and follow up 1 (after 1 cycle of chemotherapy; FU1), 
bulk transcriptomic analyses demonstrated broad upregula-
tion of T-cell trafficking pathways, NK, and T-cell populations 
and Th1 signatures associated with IFNγ production (Fig. 2A; 
Supplementary Fig. S3A and S3B). Gene sets related to regula-
tory cells [including regulatory T cells (Treg), checkpoint inhi-
bition and tumor-associated macrophages (TAM)] were also 
significantly higher at FU1 though the magnitude of change 
was less (Supplementary Fig. S3C). We additionally observed 
on-treatment enrichment of pathways involved in checkpoint 
inhibition and protumor cytokine signaling by gene-set vari-
ation analysis (GSVA; Supplementary Fig. S3B and S3C). To 
confirm tumor level compositional changes after chemo, we 
performed multiplex IHC (mIHC; Supplementary Figs. S3D, 

Figure 1. Phase II trial results and sample collection schema. A, Sample collection schedule and analysis platforms in a phase II sequential chemoim-
munotherapy trial. Circles correspond to samples included in analyses. B, Waterfall plot demonstrating RECISTv1.1 response for patients in the trial.  
C, Clinical trial patient composition and response rates by TCGA molecular subgroup. D, Kaplan–Meier curve showing progression-free survival (PFS) by fast 
and slow progressor categorization. Statistical comparison performed using a log-rank test. E, Kaplan–Meier curve showing overall survival (OS) by 
fast and slow progressor categorization. Statistical comparison performed using a log-rank test.
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S4A, S4B, and S5). Consistent with bulk transcriptome data, 
we observed an increase in CD8+ lymphocyte infiltration dur-
ing chemotherapy (Supplementary Figs. S3C, S4A, S4B, and 
S5). Without informing our analyses by clinical categories 
(responder vs. nonresponder or fast vs. slow progressor) our 
data confirms bulk immune cell compositional changes after 
a single cycle of standard 5-FU/oxaliplatin chemotherapy.

We then moved to identify granular cell types, substates and 
gene programs that underlie treatment response and resistance 
by leveraging our paired scRNA-seq data from BL and FU1. We 
examined single-cell gene expression profiles of 138 samples 
[BL tumor (n = 33), BL normal (adjacent normal, n = 11; dis-
tant normal, n = 11), FU1 tumor (n = 33), FU1 normal (adja-
cent normal, n = 11; distant normal, n = 11), and FU2 tumor 
(n = 28)]. After filtering low-quality cells, we collected a total of 
358,067 cells. We performed unsupervised clustering and iden-
tified six major cell types using canonical marker genes, includ-
ing epithelial cells, stromal cells, and immune cells (myeloid, 
T lymphoid, NK cells, B lymphoid; Fig.  2B; Supplementary 
Fig. S6A–S6F; refs. 3, 18, 26–28). Epithelial cells were catego-
rized as tumor or normal cells using known marker genes of 
tumor cells and inferred copy-number variant (CNV) profiles 
with two methodologies, inferCNV (29) and Numbat (30; 
Supplementary Figs. S7A and S7B and S8). Supportive of the 
inferCNV classification we found in the 4 patients diagnosed 
with HER2+ disease by IHC, there was clear, yet heterogeneous 
amplification predicted at the HER2 locus on chromosome 17; 
interestingly, we found smaller subclonal populations with 
putative HER2 amplification in a subset of patients found to 
have HER2− disease (Supplementary Fig. S8).

Consistent with tumor cell death, we observed a contrac-
tion of the epithelial tumor component and expansion of 
myeloid and T-cell compartments after one cycle of chemo-
therapy without significant changes in adjacent or distant 
normal samples (Fig. 2C; Supplementary Figs. S6E and S6F 
and S9A; Supplementary Table  S3). This trend was main-
tained when focusing on only GS and CIN patient samples as 
well (Supplementary Figs. S6F and S9B). TME archetypes are 
an important framework to understand shared immune cell 
features and have prognostic relevance (31). To understand 
archetype evolution, we classified all tumor samples into 
two distinct TME subtypes, immune-depleted or immune-
enriched, using published TME subtypes associated with 
aPD1 outcomes (32). Seventeen patients (36.95%) converted 
from immune-depleted subtype to immune-enriched sub-
type after one cycle of chemotherapy treatment consistent 
with favorable TME remodeling (Fig. 2D). Although limited 
by sample size, we observed immune enriched and immune 
depleted subtypes across all TCGA subgroups, highlighting a 
complementary role for transcriptional classification (Fig. 2E; 
Supplementary Table  S1). Interestingly, when stratified by 
fast versus slow progressors we noted a trend towards greater 
expansion of myeloid and stromal cells in fast progressors, 

and greater expansion of T and B cells in slow progressors 
suggesting even a single dose of chemotherapy may create 
a favorable TME trajectory in some patients, aligned with 
known predictors of IO benefit (Fig. 2E; ref. 33). As 4 patients 
received trastuzumab, we repeated the analysis after holding 
back the HER2+ patients and observed no significant differ-
ences (Supplementary Fig. S6E and S6F).

5-FU/Platinum Globally Alters Epithelial, Stromal, 
and Inflammatory Programs

To understand the gene expression programs induced within 
each cell type by a single dose of chemotherapy, we performed 
consensus nonnegative matrix factorization (cNMF) on each 
cell type at each timepoint individually, and identified between 
9 and 48 programs for each cell type at each timepoint (Sup-
plementary Figs. S10A–S10C, S11A–S11F, S12A–S12C, and 
Supplementary Table S4; refs. 13, 34, 35). To enhance the con-
fidence in our cNMF observations, we performed 5-fold cross 
validation at each timepoint for each cell type and identified 
programs that were robust to missing cells across the dataset. 
To identify programs that were shared across timepoints for 
any given cell type, we performed a hypergeometric test of the 
top 100 weighted genes for all pairs of programs, yielding a 
subset of programs conserved across treatment conditions and 
another subset that was unique to each treatment condition 
(Supplementary Table S4). Among the shared programs across 
timepoints, we found several specific to particular immune or 
stromal cell subsets, such as a myofibroblast program (pS2_B, 
pS5_FU1), a Treg program (pT12_B, pT3_FU1, pT6_FU2), a 
myeloid regulatory dendritic cell program (mregDC; pM8_B, 
pM17_FU1, pM20_FU2), and a plasmacytoid dendritic cell 
program (pDC; pM6_B, pM4_FU1, pM8_FU2), among others 
(Supplementary Figs. S11A–S11F and S12A–S12C). Several 
shared programs were expressed across cell subtypes, such 
as stromal MHCII (pS1_B, pS11_FU1, pS17_FU2) and pro-
liferation programs (pS3_B, pS9_FU1, pS9_FU2), myeloid 
inflammatory, IFN-stimulated gene (ISG), and IL1 programs 
(pM2_B, pM10_FU1, pM13_FU1, pM13_FU2, pM14_FU2), 
and T-cell translation (pT1_B, pT10_FU1), HSP (pT4_B, 
pT12_FU1, pT8_FU2), NFkB/JUN/FOS (pT11_B, pT15_FU1, 
pT3_FU2), and MHCII, IFNγ/ISG and activation programs 
(pT14_B, pT9_FU1, pT13_FU1, pT14_FU1, pT11_FU2; Sup-
plementary Figs. S11A–S11F and S12A–S12C).

Importantly, we found a subset of shared epithelial programs 
across many patients at each timepoint (e.g., pEpi3_B, among 
others), which included basaloid (pEpi7_B, pEpi6_FU1), pari-
etal (pEpi9_B), proliferation (pEpi10_B), KRT20+ (pEpi16_B),  
gastric mucosal/MHCII (pEpi17_B), and adhesion programs 
(pEpi19_B; Supplementary Fig. S10A–S10C). We found epi-
thelial mesothelin (pEpi3_FU1), ISG (pEpi22_FU1), and 
metaplasia (pEpi35_FU1) programs that were present only 
after chemotherapy treatment, suggesting these may reflect 
adaptive epithelial responses to treatment. Other programs, 

Figure 2. A single cycle of 5-FU/platinum remodels the TME in advanced gastric cancer. A, Changes in enrichment in bulk RNA-seq data of immune-
related pathways from baseline (Base) to FU1. Statistical comparison performed using a Wilcoxon signed-rank test. B, UMAP embedding of single-cell 
transcriptomes obtained from all samples in this trial. Labeled are canonical cell types. C, Cell-type proportions, obtained from scRNAseq data, in 
adjacent normal, distance normal and tumor tissue, at baseline (BL) and after 1 cycle of chemotherapy (FU1). D, Redistribution of TME subtypes following 
one cycle of 5FU/platinum chemotherapy. TME subtypes were obtained using a classification performed on bulk RNA-seq data. E, Cell type proportions, 
obtained from scRNAseq data, in tumor samples of fast and slow progressing patients at BL and FU1.
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such as a neuronal-like (pEpi13_B, pEpi11_FU1) program 
marked by ASCL1 expression, were present across timepoints 
but were largely sample-specific. We next sought to iden-
tify programs that were differentially induced in epithelial 
cells when comparing fast and slow progressing patients 
(Fig. 3A; Supplementary Figs. S13A and S13B and S14). We 
found that the metaplasia program, marked by TFF1 (36) 
and MUC5AC (37) as top weighted genes, and the adhesion 
program, marked by MSLN as a top weighted gene, had sig-
nificantly higher usages in epithelial cells postchemotherapy 
(FU1) in fast progressors compared with slow progressors 
(Fig.  3A; Supplementary Fig.  S13A). This potentially impli-
cates chemotherapy-induced metaplastic programs as a poor 
prognostic marker and this difference in metaplasia program 
usage between fast and slow progressing patients was main-
tained after immunotherapy (Supplementary Fig.  S13B). 
Recently, MUC5AC was observed to be enriched among colo-
rectal cancer patients with peritoneal disease, a particularly 
poor prognosis and fast progressing clinical subgroup (38). 

Similarly, MSLN expression is a poor prognostic feature and 
an active area of investigation for cellular therapies (39, 40).

5-FU/Platinum Remodels Cellular Interaction 
Networks and Drives Multicellular Hubs in the TME

We next sought to identify cellular programs across all 
cell types that may influence each other after a single dose of 
chemotherapy. Toward this end, we used a methodology to 
identify groups of cell type–specific programs that covaried 
across all samples at a given time point. For each sample, we 
quantified the program usage of each program within the cell 
type it was identified, focusing on epithelial, stromal, mye-
loid, T, and NK cells. We subsequently looked at the correla-
tion of these program usages over all samples and identified 
groups of covarying programs (termed “multicellular hubs”; 
Supplementary Figs. S15–S17; Supplementary Table S5). We 
found several multicellular hubs at baseline (Supplementary 
Fig.  S15) and after chemotherapy (Fig.  3B; Supplementary 
Fig.  S16). Most notably, we found five major hubs after 

Figure 3. Identification of covarying gene programs that underlie chemotherapy resistance and response. A, cNMF was performed on epithelial cells at 
FU1. Shown is the mean usage of each cNMF gene program in the epithelial cells of fast and slow progressing patients. B, Heat map showing pairwise corre-
lation of gene program activities across all patient samples at FU1 using the 90th percentile of patient-level program activity in epithelial, myeloid, T, NK, 
and stromal cells. Hierarchical clustering was performed to identify clusters of covarying proteins, which have been labeled as Hub1C to 5C. C, Average 
z-scored usage of all gene programs in each hub split by fast and slow progressing patients. Statistical comparison performed using a two-sample t test 
with Bonferroni correction.
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chemotherapy each with distinct properties (Fig.  3B). This 
included: (i) covarying epithelial basaloid and myofibroblast 
programs (Hub 1C); (ii) epithelial metaplasia, myeloid pro-
liferation and C1Q and TREM2 macrophage programs (Hub 
2C); (3) epithelial mesenchymal and inflammatory, mregDC, 
myeloid CXCL10/11, Treg and T-cell ISG programs (Hub 3C); 
(iv) epithelial ISG and T-cell activation programs (Hub 4C); 
and (v) epithelial MHCII and T-cell CXCL13 and activation 
programs (Hub 5C).

Hubs 3C and 5C, while distinct at this time point, appeared 
to collectively include the components of a recently described 
multicellular immunity hub (10) that includes a positive 
feedback loop between CXCL10/11 expressing myeloid and 
tumor cells, and ISG expressing and tumor-reactive CXCL13+ 
T-cell subsets (10, 41, 42). These results suggest that a single 
cycle of standard 5-FU/platinum may steer the formation of 
key immunity hubs in GEA. We therefore hypothesized that 
the composition and degree to which antitumor immunity 
hubs are induced by chemotherapy may inform the ability 
of additional ICB to induce a durable antitumor response 
and durable clinical benefit. We next assessed the relative 
representation of each hub in slow versus fast progressors 
(note: hubs were discovered independent of response status 
and only by looking at covariation across all samples); Hubs 
1C and 5C programs had significantly higher usage in slow 
progressors compared with fast progressors, and hub 3C also 
trended in that direction, (Fig. 3C), consistent with proposed 
role of Hubs 3C and 5C in portending favorable immune 
response. Importantly, Hub 2C programs had higher usage 
in fast progressors compared with slow progressors (Fig. 3C). 
As Hub 2C included covariation of the poorly prognostic 
metaplasia program with several macrophage programs, we 
opted to further probe the role of chemotherapy treatment 
in altering macrophage subsets (Fig.  3B; Supplementary 
Fig. S11A–S11C).

5-FU/Platinum Reprograms Macrophages Subsets
Previously, we had observed a role for early on-treatment 

TAM orientation in identifying clinical responders in GEA, 
and a relationship between TAMs and T-cell exhaustion 
programs in cancer is well described, particularly in the inner 
regions of tumors (43, 44). Although overly simplistic, the 
M1 versus M2 framework is useful for conceptualizing TAM 
populations, and M2-like TAMs can impair antigen presenta-
tion and limit T-cell activation (43, 45, 46). In this context, 
we explored TAM associations with response. We first per-
formed a high-level clustering of all myeloid cells, identi-
fying dendritic cell, monocyte/macrophage, and mast cell 
populations (Supplementary Figs. S18A and S18B). To fur-
ther refine TAM subsets, we performed subclustering of the 
TAM population and identified cells divided among 15 sub-
type clusters (Fig.  4A; Supplementary Fig.  S19A and S19B). 
To better dichotomize the TAMs, we grouped them into 
proinflammatory macrophage subsets (M1: M1_FCGR3B, 
M1_IFIT2, M1_TNFAIP6, M1_FCN1, M1_VCAN, M1_TNF, 
M1_INHBA, M1_CXCL5, M1_CD40) and anti-inflammatory 
subsets (M2: M2_NR4A2, M2_APOE, M2_SPP1, M2_C1QC, 
M2_TMEM176B, M2_HLA-DQB1, M2_STMN1). Interest-
ingly, we found that the C1Q and TREM2 macrophage 
programs that covaried with the poorly prognostic epithelial 

metaplasia program were most highly expressed in M2 mac-
rophage subsets (Supplementary Fig.  S11B), consistent the 
proposed negative prognostic role of M2-like macrophages. 
As has been seen in prior work, we found proinflammatory 
genes, such as IL1B and S100A8 were significantly upregu-
lated in M1 clusters (Supplementary Fig. S19B).

Using the M1/M2 conceptual structure we compared 
TAMs from tumor tissues at baseline and FU1. We observed 
divergent patterns of M1-like proportions between fast 
and slow progressor groups (Supplementary Fig.  S19C and 
S19D). In a prior pilot study, we noted the relevance of the 
M1/M1+M2 ratio in segregating responders (3, 18). In this 
prospective trial we confirmed changes in the M1/(M1+M2) 
ratio with a trend for increased M1/(M1+M2) ratio and 
significantly greater magnitude of change in the slow pro-
gressor group, and this was consistent when doing the com-
parison between clinically defined RECIST responders and 
nonresponders (Fig.  4B and C; Supplementary Fig.  S19C–
S19H). Within the M2-like subset SPP1 expression is associ-
ated with proangiogenic signaling and worse outcomes with 
immunotherapy (47, 48). We examined M2-SPP1 expression 
and demonstrated a decrease in M2-SPP1 proportions only 
in responders (Supplementary Fig.  S19F). To highlight the 
clinical relevance of early on-treatment M1/(M1+M2) ratio 
changes, we examined the relationship to CT and endoscopic 
images. Patients with increased M1/(M1+M2) ratio showed 
decreased tumor volume by CT scan images, PET scan image 
and inflammation in the stomach by endoscopic images 
(Fig.  4D; Supplementary Figs. S19G and S20A). However, 
patients with low on-treatment M1/(M1+M2) ratio after one 
cycle of chemotherapy showed a limited response on CT scan, 
PET scan, and endoscopy (Supplementary Fig. S20B). Given 
that the expansion of M1-like TAMs in tissues was associated 
with a clinical response, we sought to confirm our scRNA-seq 
findings with mIHC. Using established macrophage lineage 
markers (CD14, CD68, CD163), we first confirmed early 
M1 expansion on treatment with mIHC (Supplementary 
Fig. S5). Using the mIHC-determined M1 proportion from 33 
patients there was significant expansion during chemother-
apy in the slow progressor group aligning with our scRNAseq 
data (Fig. 4E and F; Supplementary Fig. S20C). Overall, early 
on-treatment changes in macrophage subsets predicted sub-
sequent clinical outcomes.

Stromal Cell and Macrophage Interactions Confer 
an Unfavorable TME

Having confirmed the clinical relevance of macrophage 
subset composition, we wanted to more deeply understand 
M2 interactions with other TME components. Interestingly, 
we found that the four patients with increased stromal cell 
proportion (E24, E27, E30, and E33) were all fast progres-
sors and had a larger change in proportion of M2-like mac-
rophages after one cycle of chemotherapy (Supplementary 
Fig. S21A and S21B). We next performed a subclustering of 
stromal subsets and identified five distinct clusters of cells: 
fibroblasts, myofibroblasts, endothelial cells, pericytes, and 
glial cells (Supplementary Fig.  S21C and S21D). We subse-
quently noted that myofibroblasts are decreased in number 
in slow progressors at FU1, but not in fast progressors (Sup-
plementary Figs. S21E). To further investigate how M2-like 
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macrophages might influence stromal components, and vice 
versa, we scored M2 macrophage subsets on signatures for 
phagocytosis, angiogenesis, and the PDGF pathway, which 
is known to influence fibroblast behavior. We found APOE 
and C1QC macrophages to have the highest phagocytosis 
scores, SPP1 macrophages to have the highest angiogenesis 
scores, and finally for NR4A2, APOE and SPP1 macrophages 
to have the highest PDGF pathway scores (Supplementary  
Figs. S22).

To better delineate the specific cellular interactions that 
may underlie cell–cell interactions after chemotherapy, we 
applied a methodology to infer ligand–receptor pairs (Cell-
phoneDB; ref.  49) between cell types using scRNAseq data 
and applied it to each treatment time point and to normal 

tissues separately (Supplementary Table S6). We found that 
the number of predicted interactions were highest for stro-
mal cells with other stromal cells or with myeloid cells (Sup-
plementary Fig.  S23A–S23D). We homed in on predicted 
L–R interactions within tumor tissues that were distinct 
from normal tissue (Supplementary Table  S7), and addi-
tionally were unique to FU1 samples compared with base-
line samples (Supplementary Table S7). We found that after 
chemotherapy, LGALS9 and SIRPa on myeloid cells served 
as ligands to CD47 on stromal cells, thus inhibiting phago-
cytosis by myeloid cells (50). In addition, we found several 
other myeloid–stromal ligand–receptor interactions that may 
influence macrophage polarization, including stromal cell 
produced E-selectin and macrophage inhibitory factor (MIF). 

Figure 4. Chemotherapy leads to macrophage repolarization in patients with favorable responses. A, UMAP embedding of single-cell transcriptomes of 
all macrophages from all samples in this trial. Labeled are granular macrophage subtypes, including designation of M1 and M2 subtypes. B, Relative pro-
portion of M1 macrophages of all macrophages, obtained from scRNAseq data, at BL and FU1 in fast and slow progressing patients. Statistical compari-
son performed using a Wilcoxon signed-rank test. C, Change in M1 and M2 macrophage proportions from BL to FU1, obtained from scRNAseq data, in fast 
and slow progressing patients. Statistical comparison performed using a Wilcoxon signed-rank test. D, Change in relative M1 proportion from BL to FU1 
plotted against change in tumor volume after 1 cycle of chemotherapy, segregated by fast and slow progressing patients. (continued on following page)
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Importantly, we found several ligands in myeloid cells shared 
at the baseline timepoint that may influence stromal behav-
ior, including CD55, IL8, TNF, TGFB1, and SPP1.

The Addition of Pembrolizumab Enhances T-cell 
Antitumor Immune Remodeling

A main goal of the trial design was to understand early 
chemotherapy-driven TME features and their impact on aPD1 
benefit. We first applied a validated gene expression signa-
ture predictive of pembrolizumab benefit and demonstrated 
an increase with chemotherapy alone that was furthered by 

the addition of pembrolizumab across all patients (Supple-
mentary Fig. S24A; refs. 51–53). After a single cycle of 5-FU/
oxaliplatin, we observed increased expression of representative 
genes of immunogenic cell death (ICD) in the slow progres-
sor group, but not the fast progressor group (Supplementary 
Fig. S24B; ref. 54). Consistent with these findings, we found 
a larger proportion of slow progressor patients had remod-
eled TMEs toward immune enriched environments compared 
with fast progressors (Fig.  5A). In our serial scRNAseq data, 
the composition of the TME was altered after aPD1 with an 
increased proportion of T cells after chemotherapy treatment 
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Figure 4. (Continued) E, Multiplexed immunofluorescence (mIF) images of BL, FU1 and FU2 samples from two patients, E40 (slow progressor) and E41 
(fast progressor), staining for panCK, PD-L1, CD163, CD68, CD14 and CD8. F, Proportion of M1 macrophages, obtained from mIF images, at BL and FU1 in 
fast versus slow progressing patients. Statistical comparison performed using a Wilcoxon signed-rank test.
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Figure 5. The addition of immunotherapy to 5-FU/platinum chemotherapy redistributes T-cell phenotypes. A, Remodeling of TME from immune depleted 
to immune-enriched environments derived from bulk RNA-seq profiles in fast and slow progressing patients, shown across timepoints. B, Cell type 
proportions, obtained from scRNAseq data, of all tumor samples at BL, FU1 and after immunotherapy treatment (FU2). C, Cell type proportions, obtained 
from scRNAseq data, in tumor samples of fast and slow progressing patients at BL, FU1, and FU2. D, UMAP embedding of single-cell transcriptomes 
of all T and NK cells from all samples in this trial. Labeled are granular T- and NK-cell subtypes. E, Cell type proportions as a proportion of all immune 
cells, obtained from scRNAseq data, of total, naïve, memory, effector, and exhausted CD8 T cells. Statistical comparisons performed using a Wilcoxon 
signed-rank test. F, Multiplexed immunofluorescence (mIF) images of BL, FU1 and FU2 samples from two patients, E17 (slow progressor) and E27 (fast 
progressor), staining for panCK, PD-L1, CD4, CD8, and Granzyme B. G, Proportion of CD8 T cells macrophages, obtained from mIF images, at BL, FU1 and 
FU2 in fast versus slow progressing patients. Statistical comparison performed using a Wilcoxon signed-rank test.
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(Fig.  5B). When comparing fast and slow progressors, we 
found that the expansion of T cells after aPD1 was predomi-
nantly in slow progressors and was not observed in fast pro-
gressors (Fig.  5C; Supplementary Fig.  S9B). This suggests a 
working model whereby the early chemotherapy-driven TME 
remodeling leading to the formation of an immunity hub con-
taining CXCL13+ T cells is a central determinant of whether or 
not the addition of aPD1 can potentiate an antitumor T-cell 
response. We note, however, given the sequential nature of 
treatments given in the trial, we cannot exclude the possibility 
that the changes observed over time in slow progressors may 
be independent of immunotherapy treatment. That is, early 
TME modeling may serve as a prognostic marker as opposed 
to having predictive value for aPD1 benefit.

To understand which T-cell subsets were most strongly 
affected by aPD1 treatment, we next subclustered the T and 
NK cells in our scRNAseq dataset to identify more granular 
subtypes (Fig.  5D; Supplementary Fig.  S25A and S25B). We 
found significant CD8 T-cell expansion across timepoints (B, 
FU1, FU2) in slow progressor patients but not in fast progres-
sor patients (Fig. 5E), and this was consistent when comparing 
responders to nonresponders (Supplementary Fig. S26A). We 
validated that there was increased CD8 T-cell expansion in 
slow progressors (and treatment responders) using mIF for 
CD4, CD8, GzmB, and PD-L1 (Fig. 5F and G; Supplementary 
Figs. S5 and S26B and S26C). Among CD8 T-cell subsets, we 
found that CD8 naïve, memory and exhausted subsets were 
significantly expanded after aPD1 in slow progressors, but 
not in fast progressors (Fig.  5E; Supplementary Fig.  S26D). 
CD8 effector subsets were expanded in both slow and fast 
progressors after aPD1 (Fig.  5E); however, when performing 
the analysis comparing responder and nonresponder patients, 
this only held true in the responder subgroup (Supplementary 
Fig. S26D). Of note, within the CD4 T-cell compartment, we 
found that Tregs and Th1 cells were most altered in frequency 
across treatment timepoints (Supplementary Fig. S26E).

In our analysis of gene expression programs, we had identi-
fied a tumor-reactive T-cell program, which included CXCL13 
as a top weighted gene, that was only identified postch-
emotherapy (pT18_FU1) and ICB (pT12_FU2; Fig. 3A; Sup-
plementary Fig.  S11F). We found that the usage of these 
programs was higher in T cells of slow progressors compared 
with fast progressors (Fig. 3A; Supplementary Figs. S26F and 
S27A and S27B), consistent with literature reports that have 
identified CXCL13+ CD8 T cells as a tumor-reactive T-cell 
subset (41, 42, 48). We further validated that CXCL13+ was 
increased in single CD8 T cells across timepoints, in addition 
to other tumor-reactive (CD39, CD103) and costimulatory 
markers (4–1BB, GITR; Supplementary Fig. S27C). To further 
investigate the evolution of covarying hubs identified after 
chemotherapy treatment (Fig.  3B), we next looked for cova-
rying gene programs across samples after immunotherapy 
treatment (Fig. 6A and B). We identified 4 major hubs post-
immunotherapy, and notably found that the CXCL13 T-cell 
program covaried with epithelial adhesion, ISG and prolifera-
tion programs, myeloid dendritic cell and IL1 programs, Treg 
and T-cell cytotoxicity programs, and stromal proliferation 
programs (Hub 2I; Fig.  6B; Supplementary Fig.  S17). We 
termed this the “immunity hub” and note that we find that 
compared to chemotherapy treatment alone, the addition of 

immunotherapy led to the covariation of the tumor-reactive 
CXCL13 program with other programs that have several simi-
lar features to those seen in other multicellular hubs identified 
in colorectal cancer (10). This includes the presence of epithe-
lial ISG and Treg programs, but also with distinct properties 
from the hubs identified in colorectal cancer that include the 
presence of myeloid IL1 and dendritic cell programs.

We identified three other notable multicellular hubs in the 
aPD1 treated samples that include: (i) epithelial mesenchymal 
and IL6, mregDC, and stromal collagen programs (Hub 1I); 
(ii) epithelial neuroendocrine, chief and parietal, and myeloid 
CXCL9 and ISG programs (Hub 3I); and (iii) epithelial squa-
mous and metaplasia, myeloid C1Q macrophage and CLEC9+ 
DC, T-cell JUN/FOS, innate and HSP, and stromal MHCII 
and JUN/FOS programs (Hub 4I). We next analyzed hub par-
ticipation after aPD1 between slow and fast progressors, and 
we found that compared to fast progressors, slow progressors 
trended toward higher usage of programs in Hub 1I and Hub 
2I, the immunity hub, and had significantly lower usage of 3I, 
both of which may therefore be features of aPD1 resistance 
(Fig. 6C).

Despite being more highly represented in slow progressors, 
Hub 1I centered around several immune features known to 
directly antagonize immunotherapy response most notably 
mregDCs (55) and IL6 (56). Notably, circulating plasma IL6 
was higher among fast progressors in our trial (Supplemen-
tary Fig. S22). We suspect this paradox may likely be due to 
the source of IL6 in circulation and as reported in previous 
studies (bioRxiv 2022.02.02.478819). Whereas in Hub 1I, we 
find epithelial cells as a major source of IL6, several studies 
have reported that IL6 produced by other cell types, par-
ticularly myeloid cells, may be poorly prognostic (57). Hub 
4I contained immunosuppressive C1Q+ TAM (58) programs 
covarying with markers known to be involved in T-cell exhaus-
tion and impaired antitumor immunity (JUN/FOS; ref.  59). 
The epithelial programs covarying with the immunosuppres-
sive immune cell programs may hint at epithelial cell plasticity 
and are enriched for squamoid and metaplasia (Hub 4I) pro-
grams, which are implicated in therapeutic resistance (60, 61).

DISCUSSION
Efforts to identify determinants of response to cytotoxic 

chemotherapy and immune checkpoint blockade, and dis-
secting the evolution of immune cell populations and inter-
actions under therapeutic pressures has been largely limited 
to comparisons of pretreatment and temporally distant post-
treatment and/or progression samples across solid tumors 
(11, 62, 63). While useful, this framework limits the ability 
to develop early, true on-treatment biologic insights and bio-
markers to inform biologically adapted clinical trial concepts 
and nominate therapeutic targets. Here we present a novel 
and large sequential sampling cohort in the framework of a 
prospective phase II chemoimmunotherapy trial in AGC. To 
our knowledge, this is the first and largest trial of its kind to 
couple serial true on-treatment biopsies with multiparamet-
ric molecular characterization in advanced GEA.

Taken together our data point toward an early initial 
complex coordinated response in primary tumor lesions to 
cytotoxic chemotherapy that differs between patients who 
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go on to develop response/benefit and those that do not 
(Fig. 6D). Notably, the baseline TME composition appears to 
have less impact than the early adaptive changes induced by 
chemotherapy. Using an initial window after 1 cycle of 5-FU/
platinum (∼2–3 weeks between baseline; BL and follow up 1; 
FU1 samples) we uncover early on treatment patterns that 
converge on central components of the TME, specifically the 
myeloid and T-cell interactions with both the epithelial and 
stromal elements. This is largely consistent with the observa-
tions that presence, and in our case induction, of immune 
archetypes are important modulators of the ability to mount 
a T cell–driven immune response with aPD1 approaches. To 
gain a more granular insight into drivers of TME modulation, 
we leveraged covarying gene programs to infer multicellular 
interaction networks across our timepoints. This strategy has 
identified key conserved programs and “immune hubs” in 
colorectal cancer but was limited to untreated earlier stage 
patient samples (10, 34). How these networks evolve during 
therapeutic pressure has been a scientific blind spot. The 
described hubs with colocalization of IFNG+ and CXCL13+ 
T cell programs is something we observed, but only after 
treatment with chemotherapy (FU1). Interestingly, Pelka and 
colleagues did not observe this preexisting hub when restrict-
ing analysis to microsatellite stable (MSS) colorectal cancers 
(10, 64). Although limited by sample size, particularly for 
MSI-high and EBV+ subtypes, were observed TME evolution 
independent of genomic TCGA classification, highlighting 
the heterogeneity within the general TCGA subgroups.

Conceptually, a single dose of chemotherapy looks to 
incite a turf war between opposing communities (hubs), the 
prevailing composition and usage of which will influence the 
ability of aPD1 addition to further the antitumor immune 
response. This idea is reflected in the relative hub usage in fast 
and slow progressors with fast progressors demonstrating 
increase in epithelial metaplasia, myeloid proliferation, and 
C1Q and TREM2 macrophage programs (Hub 2C). Predicted 
cellular interactions in this group are associated with known 
adaptive resistance mechanisms including tumoral plasticity 
and IL6 (65–67). Conversely, we observe a portion of patients 
with suggestions of proimmunity hubs evolving after chemo 
and furthered by the addition of aPD1 and it is tempting to 
speculate that these patients are indeed some of the patients 
who derive very durable benefit, often described in the “tail of 
the curve” in aPD1 clinical trials. We in fact see greater rep-
resentations of the aforementioned hubs after chemotherapy 
and after aPD1 in patients that are slow to progress (have 
more durable responses) compared with those that progress 
faster. From a clinical perspective, it remains unclear whether 
the optimal strategy is to attempt to restrain the initial for-
mation of antiimmunity hubs with agents that deprive the 
TME of immunosuppressive signals as has been attempted 

with neutralizing antibodies to IL6 (56) and DKK1 (68), or 
to try to directly stimulate the induction of proimmunity 
hubs with agonist approaches like STING (69, 70) or TLR7/8 
(71, 72). Toward the later approach, we find that programs 
for plasmacytoid and conventional dendritic cell subsets 
were present in hubs that favored slow progression (e.g., Hub 
2I). More nonspecific strategies to remodel the TME such as 
combinations with aPD1, chemotherapy and VEGF small-
molecule inhibitors are also under clinical investigation (73).

Although our dataset lacks high resolution spatial charac-
terization, some of the broad features raised in our scRNAseq 
analyses are recapitulated in our multiplex IHC/IF analysis. To 
date, some of the correlations between inferred network struc-
ture from scRNAseq and ground truth analysis such as IHC 
and IF and emerging spatial transcriptomics appear to largely 
hold, which is reassuring for our data (10, 11, 43, 63, 64, 74, 
75). As we needed to prioritize patient safety, our serial samples 
are limited to endoscopic biopsies of the primary tumor, and 
we recognize the potential value for complementary spatial 
transcriptomics approaches. For instance, we nominate an 
increase in cDC1 programs that parallels CD8 effector increase 
and M2 decrease only in responders. Receptor–ligand predic-
tions point to a direct communication among these cell types, 
but we cannot confirm the spatial orientation. In a recent 
analysis from a PD-1 containing CRC trial (Keynote-177) the 
spatial proximity between CD74+ macrophages and PD1+ CD8 
T cells was a robust response predictor (76).

TAM, particularly the alternatively activated (M2-like) 
subset are known to facilitate tumor-promoting processes 
including angiogenesis, impede antigen presentation, and 
suppress the tumoricidal functions of CD8 T cells and NK 
cells (77–80). Recent data suggest SPP1-high TAMs are linked 
to EMT, higher angiogenesis scores, and liver metastasis 
(47, 81, 82). We observed a decrease in SPP1 expression only 
among responding patients, and a suggestion of increased 
macrophage-derived MIF inhibiting T-cell proliferation when 
examining M2-like macrophage interactions with T cells. 
MIF is known to directly antagonize immune responses in 
melanoma (83). Despite preclinical rationale for repolar-
izing M2-like TAMs toward the more antitumor M1-like 
state, the clinical development has fallen short in several 
chemotherapy-free approaches, including in GEA (reviewed 
in ref. 44). Additional support for our broad observations is 
seen in WTS analyses of samples from the phase III front-
line CheckMate-649 trial and adjuvant CheckMate-577 trials 
where increased M2 signature and high stromal signatures 
were associated with lesser benefit from PD-1.

The inciting signals, or mix thereof, that drives the initial 
formation of pro- and anti-immunity hubs is an area of impor-
tant ongoing investigation. Coupling WTS and scRNAseq can 
reconstruct the immune TME and provide prognostic clinical 

Figure 6. Multicellular hubs underlie chemoimmunotherapy resistance and response. A, cNMF was performed on epithelial cells at FU2. Shown is the 
mean usage of each cNMF gene program in the epithelial cells of fast and slow progressing patients. B, Heat map showing pairwise correlation of gene 
program activities across all patient samples at FU2 using the 90th percentile of patient-level program activity in epithelial, myeloid, T, NK, and stromal 
cells. Hierarchical clustering was performed to identify clusters of covarying proteins, which have been labeled as Hub1C to 5C. C, Average z-scored 
usage of all gene programs in each hub split by fast and slow progressing patients. Statistical comparison performed using a two-sample t test with 
Bonferroni correction. D, Summary schematic of proposed changes to the TME after 1 cycle of chemotherapy and chemoimmunotherapy in fast versus 
slow progressing patients; in particular, fast progressing patients have induction of metaplasia programs and increased abundance of suppressive M2 
macrophages. Slow progressing patients have increased infiltration of CXCL13+ CD8 T cells after chemotherapy, and increased tumor-intrinsic ISG induc-
tion and inflammatory M1 macrophage subsets.
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information, but it does not confirm the functional impact 
of predicted relationships. Preclinical models to functionalize 
the study of immune TME manipulation remains a problem 
in immunomodulatory drug development, including GEA 
(84–86). We had intentionally structured our trial with serial 
timepoints to partly address this limitation and enhance con-
fidence in our observations and we hope the future work with 
improved model systems can test some of our observations 
(87). We note that the focus of our work is for hypothesis 
generation for future studies and future work may expand on 
the number of patients analyzed. We provide in depth analyses 
of primary lesions but acknowledge the TME of metastatic 
lesions may be different and further work is needed to char-
acterize metastatic sites in treatment response. In addition, 
while we present analyses on the immune interaction net-
works, detailed analyses incorporating tumor genetics, neo-
antigen prediction, and T-cell receptor sequences are beyond 
the scope of this manuscript but remain areas of interest. In 
fact, overall, we envision our dataset to serve as an in silico 
framework to directly support and evaluate observations from 
investigators exploring preclinical models in GEA and hope 
our data will be a valuable resource for the field.

METHODS
Clinical Trial

All patients were enrolled in this prospective open-label phase II 
trial (ClinicalTrial.gov identifier: NCT04249739). Eligible patients 
were required to meet the following criteria: (i) at least 19 years old, 
(ii) histologically confirmed diagnosis of unresectable, metastatic 
gastric cancer, (iii) adequate organ function per protocol, and (iv) 
Eastern Cooperative Oncology Group performance status of 0 or 1 
(Supplementary Table  S8). All patients were naïve to prior chemo-
therapy. The trial protocol was approved by the Institutional Review 
Board (IRB) of Samsung Medical Center (Seoul, Korea; IRB No. 
2019–11–089) and was conducted in accordance with the Declara-
tion of Helsinki and the Guidelines for Good Clinical Practice. All 
patients provided written informed consent before enrollment. If the 
tumor was HER2−, the patient was enrolled on to capecitabine/oxali-
platin/pembrolizumab. If the tumor was HER2+, the patient received 
capecitabine/cisplatin/trastuzumab and pembrolizumab. The trial 
was registered at clinicaltrials.gov and the full protocol is provided in 
the Supplementary Material.

Tumor Sample Collection
All primary tissues were collected from the patients who had biop-

sies at day 1 before cycle 1, day 1 before cycle 2 and day 1 before cycle 7. 
Tumor tissues were obtained from endoscopic site-mapping biopsies. 
If tumor purity was estimated to be more than 40% after pathologic 
reviews, tumor DNA and RNA were extracted by using a QIAamp 
Mini Kit (Qiagen) according to the manufacturers’ instructions for 
exome and transcriptome sequencing. Concentration, 260/280 and 
260/230nm ratios were measured with ND1000 spectrophotometer 
(Nanodrop Technologies, Thermo Fisher Scientific) and then DNA/
RNA was quantified using a Qubit fluorometer (Life Technologies).

PD-L1 IHC
Tissues were freshly cut into 4-μm sections, mounted on Fisher-

brand Superfrost Plus Microscope Slides (Thermo Fisher Scientific), 
and then dried at 60°C for 1 hour. IHC staining was carried out on 
a Dako Autostainer Link 48 system (Agilent Technologies) using the 
Dako PD-L1 IHC 22C3 pharmDx Kit (Agilent Technologies) with 

the EnVision FLEX Visualization System and counterstained with 
hematoxylin according to the manufacturer’s instructions. PD-L1 pro-
tein expression was determined using CPS, which was the number 
of PD-L1–stained cells (tumor cells, lymphocytes, and macrophages) 
divided by the total number of viable tumor cells and multiplied by 
100. The specimen was considered to have PD-L1 expression if CPS ≥ 1.

MSI Status
Tumor tissue MSI status was determined using PCR analysis of 

five markers with mononucleotide repeats (BAT-25, BAT-26, NR-21, 
NR-24, and NR-27). Briefly, each sense primer was end-labeled with 
FAM, HEX, or NED. Pentaplex PCR was performed, and the PCR 
products were run on an Applied Biosystems PRISM 3130 automated 
genetic analyzer. Allelic sizes were estimated using Genescan 2.1 
software (Applied Biosystems). Samples with allelic size variations in 
more than two microsatellites were considered MSI-H.

Whole Exome and Whole Transcriptome Sequencing
Sequencing was performed using genomic DNA (gDNA) from the 

tumor tissues and matched blood samples using a QIAamp DNA 
Blood kit (QIAGEN). For construction of standard exome capture 
libraries, we used the Agilent SureSelect Target Enrichment protocol 
for an Illumina paired-end sequencing library together with 1 μg of 
inputted gDNA. In all samples, the SureSelect Human All Exon V6 
probe set was used. We assessed the quantity and quality of DNA by 
PicoGreen and agarose gel electrophoresis. We diluted 1 μg of gDNA 
in the elution buffer and sheared it to a target peak size of 150 to 200 
bp using the Covaris LE220 focused ultrasonicator device (Covaris 
Inc.) according to the manufacturer’s recommendations. The frag-
mented DNA was repaired, and “A” was ligated to the 3′-end. Then, 
we ligated the fragments with Agilent adapters and amplified them 
using PCR. The prepared libraries were quantified using the TapeSta-
tion DNA ScreenTape D1000 (Agilent). For exome capture, 250 ng 
of DNA library was mixed with hybridization buffer, blocking mixes, 
RNase block, and 5 μg of SureSelect all exon capture library, accord-
ing to the standard Agilent SureSelect Target Enrichment protocol. 
Hybridization to the capture baits was conducted at 65°C using a 
heated thermal cycler lid option at 105°C for 24 hours on the PCR 
machine. The captured DNA was washed and amplified. The final 
purified product was quantified by qPCR according to the qPCR 
Quantification Protocol Guide (KAPA Library Quantification kits for 
Illumina Sequencing platforms) and qualified using the TapeStation 
DNA ScreenTape D1000 (Agilent). Samples were multiplexed, and 
flow-cell clusters were created using the TruSeq Rapid Cluster kit and 
the TruSeq Rapid SBS kit (Illumina). Indexed libraries were submit-
ted to an Illumina HiSeq2500 (Illumina), and paired-end (2 × 100 bp) 
sequencing was performed.

scRNAseq
For single-cell preparation, tumor tissue was dissociated with 

the gentleMACS Dissociator and Tumor infiltrating Lymphocyte 
Kit (Miltenyi Biotec) according to the manufacturer’s protocol. The 
cells were then cryopreserved in liquid nitrogen until use. All sam-
ples showed a viability of around 90% on average after thawing. 
We performed 5′  gene expression profiling on the same single-cell 
suspension using the Chromium Single Cell V(D)J Solution from 
10x Genomics according to the manufacturer’s instructions. Up to 
8,000 cells were loaded onto a 10x Genomics cartridge for each sam-
ple. Cell-barcoded 5′ gene expression Libraries were constructed and 
sequenced at a depth of approximately 50,000 reads per cell using the 
NovaSeq 6000 platform (Illumina).

WES Analysis
Somatic Variant Calling. WES reads were aligned to the refer-

ence human genome GRCh37 using BWA-MEM (88) followed by 
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preprocessing steps, including duplicate marking, indel realignment, 
and base recalibration using the Genome Analysis Toolkit (GATK; 
version 4.1.1.0) (89), generating analysis-ready BAM files. To increase 
the sensitivity for identifying both the lower and higher allele fre-
quencies of somatic variants in the given tumor and paired normal 
BAM files at the genomic locus, we used the union variant callsets 
from two tools: MuTect2 (90). Default parameters were applied, 
and both variant callers were run with dbSNP (version 138; ref. 91), 
1000G (phase I; ref.  92), and HapMap (phase III; ref. 93) data for 
known polymorphic sites. Filtered variants with minimum depth ≥ 5 
and minimum alternative alleles  ≥  2 were annotated using the 
Ensembl Variant Effect Predictor (VEP; release version 87; ref.  94) 
with the GRCh37 database.

Mutational Signature Analysis. Mutational signature analysis was 
performed using the deconstructSigs package (version 1.6.0) in R 
(PMID: 26899170). Exome regions were defined by the Agilent Sure-
select V5 target region. Only somatic mutations in exome regions were 
considered, and trinucleotide counts were normalized by the number 
of times each trinucleotide context was observed in the exome region. 
Mutational signatures were represented by the following terms: age 
(SBS1 and SBS5), apolipoprotein B mRNA editing enzyme, catalytic 
polypeptide-like (APOBEC; SBS2 and SBS13), UV (SBS7a, SBS7b, 
SBS7c, and SBS7d), smoking (SBS4), homologous recombination 
deficiency (HRD; SBS3), mismatch repair deficiency (MMRD; SBS6, 
SBS15, SBS20, and SBS26), nucleotide excision repair deficiency 
(NERD; SBS8), DNA proofreading deficiency (DPD; SBS10a and 
SBS10b), and base excision repair deficiency (BERD; SBS18).

Whole-Transcriptome Sequencing Analysis
We annotated RNA sequence reads with ENSEMBL (version 98) 

and aligned them to the human reference genome (GRCh38) using 
STAR (version 2.6.1; ref.  95). We quantified in units of transcript 
per million (TPM) as a function of gene expression using RSEM 
(version 1.3.1; ref. 96), applying the option parameters suggested by 
the GTEx project. TPM values less than one were considered unreli-
able and substituted with zero. By integrating the transcriptomic 
data, we classified each tumor sample into two microenvironment 
subtypes (immune-depleted, immune-enriched) using the molecular 
functional portrait as previously described (32). Briefly, the samples 
were classified by TME into 4 categories: depleted, fibrotic, immune-
enriched, immune-enriched/fibrotic. We then simplified these clas-
sifications into two categories mainly by the immune levels because 
our research focused on the relation between chemoimmunotherapy 
and inflammatory remodeling. The GSVA algorithm was used to 
validate our previous findings in this cohort (97).

scRNA-seq Analysis
Preprocessing and Annotations. We aligned scRNA-seq reads to 

the GRCh38 human genome reference and quantified them using a 
Cellranger (version 5.0). The data from all samples were combined in 
R v.4.1 using the Seurat package v.4.0 (98). We filtered out doublets 
using Scrublet (99). In addition, cells with low-quality libraries (<400 
genes) and high mitochondrial read proportion (>30%) were filtered 
out. Data from each sample were normalized, scaled, and subjected to 
principal component analysis, followed by a batch correction using 
the Harmony (100). We used the Uniform Manifold Approxima-
tion and Projection (UMAP) algorithm to reduce the dimension for 
visual representation, and identified cell clusters using a shared near-
est neighbor modularity optimization–based clustering algorithm. 
We identified various cell type clusters using the “FindAllMarkers” 
function in Seurat for each cluster and annotated them based on 
the expression of representative lineage markers. Gene enrichment–
related phagocytosis, angiogenesis, and PDGF pathway were esti-
mated using the “AddModuleScore” function in Seurat.

InferCNV. inferCNV (https://github.com/broadinstitute/infercnv) 
was run on the unprocessed epithelial cells from each scRNA-seq 
tumor sample individually to infer copy-number variations. When 
available, a matching normal sample was used as the reference. For the 
tumor samples without a matching normal sample, a standard refer-
ence was generated consisting of a random sampling of 20,000 cells 
from the combined population of epithelial cells from all normal 
samples, stratified by patient. The inputs include the combined count 
matrices of both the sample of interest and reference formatted as an 
R dgCMatrix, group annotations per cell barcode, and a list of the 
groups to use as reference. A gene ordering file was generated from 
the standard hg38 genome reference using the script provided in the 
above github repo. The i6 HMM implementation of inferCNV was 
used with a cutoff of 0.1 (as advised for 10x data), the subclusters 
analysis mode and median filtering enabled. This tool was run on Terra 
(https://app.terra.bio) via a workflow available here: https://dockstore.
org/workflows/github.com/MilanParikh/infercnv_workflow.

Numbat. Numbat (https://github.com/kharchenkolab/numbat/) 
was run on each full tumor sample (all cell types) individually to call 
copy-number variations and differentiate normal and tumor cells. 
When available a matching normal sample was used as the refer-
ence. For the tumor samples without a matching normal sample, a 
standard reference was generated consisting of a random sampling of 
25% of all cells from normal samples, about 26,000 cells. The inputs 
include the bam file, bam index file, 10x barcodes file, and the raw 
count matrix as an R dgCMatrix for the sample of interest, as well as 
the cell-type annotations and count matrix as an R dgCMatrix for the 
reference. All default parameters were used, including the provided 
SNP VCF and phasing panel from the 1000 Genome project. This 
tool was run on Terra (https://app.terra.bio) via a workflow avail- 
able here: https://dockstore.org/workflows/github.com/MilanParikh/
numbat_workflow.

Consensus NMF. Consensus NMF (cNMF; https://github.com/
dylkot/cNMF) was run on each cell type at each timepoint separately 
for tumor samples or for each cell type separately in the normal sam-
ples to derive gene programs. For each of these runs, the input was 
an unprocessed AnnData file subset to the population of interest. 
The custom parameters used include the number of highest variance 
genes to use in the factorization step (2000) and the range of k values 
tested for by cNMF (3 to 101 with intervals of 3). All other default 
parameters were used. Once the prepare, factorization, and combine 
steps were completed, the generated k selection plot (plotting stabil-
ity or error vs. k values) was used to manually select the most appro-
priate k value, and then run the consensus step. To filter overlapping 
programs between timepoints or normal/malignant samples within 
the same cell type, a hypergeometric test was performed between the 
top 100 genes of each pair of programs. The Bonferroni-corrected P 
value was calculated and program pairs with a P value of less than or 
equal to 0.05 were counted as overlapping. This tool was run on Terra 
(https://app.terra.bio) via a workflow available here: https://portal.
firecloud.org/?return=terra#methods/mparikh/cnmf_parallel/7. The 
cNMF programs were subsequently manually annotated by running 
GSEA on the top 100 weighted genes for each program using the 
Enrichr implementation in GSEApy (https://gseapy.readthedocs.io/
en/latest/introduction.html), by comparing program correlation in 
the single-cell data with other known program signatures, and by 
manually examining the top weighted genes in each program.

To highlight the robustness of the approach for identifying gene 
programs using consensus nonnegative matrix factorization, we have 
performed 5-fold cross validation and looked to see how frequently 
overlapping programs are identified. In detail, we split the full dataset 
into cross validation folds by randomly splitting patients into five 
roughly 20% subsets. For each fold, we left one of these subsets out 
so that each fold contains data from roughly 80% of the patients. We 

https://github.com/broadinstitute/infercnv
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https://dockstore.org/workflows/github.com/MilanParikh/infercnv_workflow
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https://app.terra.bio
https://dockstore.org/workflows/github.com/MilanParikh/numbat_workflow
https://dockstore.org/workflows/github.com/MilanParikh/numbat_workflow
https://github.com/dylkot/cNMF
https://github.com/dylkot/cNMF
https://app.terra.bio
https://portal.firecloud.org/?return=terra#methods/mparikh/cnmf_parallel/7
https://portal.firecloud.org/?return=terra#methods/mparikh/cnmf_parallel/7
https://gseapy.readthedocs.io/en/latest/introduction.html
https://gseapy.readthedocs.io/en/latest/introduction.html


An et al.RESEARCH ARTICLE

782 | CANCER DISCOVERY MAY  2024 AACRJournals.org

further split each fold by cell type (at the level of B cells, epithelial, 
myeloid, NK cells, stromal, and T cells) and time point/tissue type 
(baseline tumor, follow-up 1 tumor, follow-up 2 tumor, and all 
time points normal tissue), as had been done in the cNMF analysis 
across the entire dataset. Across each of these splits and across all 
folds we performed cNMF to determine covarying gene programs 
in each. We also performed this process (splitting into cell type and 
time point and performing cNMF) on the full dataset. cNMF was 
performed using the same input hyperparameters in all cases, except 
for the number of programs found in each split, which was tuned 
for each run individually based on the stability and error rate of the 
cNMF solution. For each cell type and tissue type/time point split 
across all the cross-validation folds (in addition to the combined 
data set), the top 100 genes were selected for each gene program 
identified. Then, for each corresponding cell type split across the 
cross-validation folds, the amount of overlap in the gene lists for the 
programs in a particular split were measured using a hypergeometric 
test to determine whether there was a significant overlap between 
two particular gene program lists belonging to different folds. Pro-
grams identified for any time point/tissue type were considered for  
these comparisons.

Covarying Programs. To find sets of covarying gene programs, or 
hubs, a patient by program matrix was generated for each timepoint 
where the values were the 90th percentile of the cNMF program 
score for that program and patient. This was repeated for the 25th, 
50th, 75th, and 95th percentiles as well. For each of these matrices 
a pairwise correlation of columns was calculated using pandas’ 
DataFrame.corr() method, resulting in a program-by-program cor-
relation matrix. This was then visualized using Seaborn’s clustermap 
function with Euclidean distance as the spatial distance metric. The 
90th percentile data is displayed in Figs. 3 and 6 and was used to 
identify groups of covarying programs. To find sets of covarying 
gene programs, or hubs, a patient by program matrix was generated 
for each timepoint where the values were the 90th percentile of the 
cNMF program score for that program and patient. The Pearson 
correlation coefficient, R, was calculated for each pair of programs 
using pandas’ Dataframe.corr() method. To calculate significance, 
the patient assignments for each cell were randomly shuffled using 
pandas’ Series.sample() method and then the 90th percentile scores 
and correlation coefficients were recalculated. This was repeated for 
1,000 iterations to generate a null distribution of correlations for 
each pair of programs. A p-value was then calculated by counting 
how many times the randomly shuffled patient assignment cor-
relations were higher than the true correlation, divided by the total 
number of iterations.

Ligand–receptor Analysis. CellphoneDB’s (https://github.com/
ventolab/CellphoneDB) statistical analysis method was run on each 
time point and normal cells separately to infer ligand–receptor pairs. 
The inputs include an Anndata file (.h5ad) for each timepoint and 
cell type annotations provided as a two-column csv with cell barcodes 
and their corresponding cell type. The default parameters were used 
including 1,000 iterations, a P value of 0.05, and a threshold of 0.01, 
with no subsetting. This tool was run on Terra (https://app.terra.
bio) via a workflow available here: https://dockstore.org/workflows/
github.com/MilanParikh/cellphonedb_workflow.

Statistical Analyses
All statistical analyses were conducted using R V.4.1.1 (The R 

Foundation for Statistical Computing, www.R-project.org) or as spe-
cifically specified for each method used. All variables were compared 
using Wilcoxon signed-rank test and paired Wilcoxon signed-rank 
test. All P values were two-sided, and results were determined to be 
significant at P < 0.05.

Multiplex IHC Analysis with 17 Cell Markers
Five-micron–thick tissue sections were made from formalin-fixed, 

paraffin-embedded tissue blocks. Tissue sections were mounted on 
glass slides and were prepared according to the manufacturer’s 
instructions. Tissue sections were baked at 60°C for 2 hours and 
deparaffinized using Neo-Clear (Sigma Aldrich) and rehydrated in 
descending grades of ethanol (100%, 95%, 80%, 70% of ethanol) for 
5 minutes each. Antigen retrieval was performed under 96°C for 
30 minutes (IHC-Tek IHC WORLD). After that, tissues were cooled 
down to 70°C and washed using deionized water. Before staining, tis-
sues were blocked using 3% BSA for 45 minutes at room temperature 
in the hydration chamber. The tissues were incubated overnight with 
antibody cocktails including 17 antibodies (Extended Data Table 1) 
at 4°C in the hydration chamber. After staining, tissues were washed 
in 0.2% Triton X-100 (Sigma Aldrich) dissolved in PBS two times for 
8 minutes. Tissues were also stained in Ir-intercalator solution which 
was diluted 1:400 in PBS to detect nuclei. Stained tissues were ana-
lyzed using the multiplex IHC (IMC), Hyperion (Standard BioTools 
Inc) after tuning the instrument according to the manufacturer’s 
instructions. 700 μm × 700 μm regions were selected and analyzed for 
further analysis. IMC image data were acquired at a laser frequency 
of 50 Hz. Raw image data were preprocessed using MCD Viewer 
(Standard BioTools Inc).

Cell segmentation was performed using Highplex FL algorithms 
in HALO v3.4 (Indica Labs) based on nuclei staining (Ir-intercalator 
solution). After classification, cells were classified into two groups, 
tumor and stromal, using a random forest model. We also annotated 
macrophage M1 and M2, CD8 T cells, CD4 T cells based on signals 
of each immune cell marker. First, tumor cells were annotated based 
on the signal of pankeratin (panCK) and these cells were excluded for 
further cell annotation. CD14-positive and CD68-positive cells were 
annotated to M1 macrophages derived from monocytes and CD68-
positive CD163-negative cells were annotated to M1 macrophages. 
M2 macrophages were annotated with CD163-positive and CD68-
positive cells. CD8-positive cells were annotated to CD8 T cells and 
CD4-positive cells were annotated to CD4 T cells. All cell segmenta-
tion was performed using Highplex FL algorithms. After cell segmen-
tation, the number of each cell was acquired from HALO software 
and multiplex images of each tissue were visualized in HALO soft-
ware. All statistical analysis was performed using R software.

Data Availability
Sequencing data from the patient cohort are deposited in the 

European Nucleotide Archive (ENA) under accession PRJEB60680 
and these data will be provided upon reasonable written request for 
academic use and within the limitations of the clinical trial informed 
consent and general data protection regulations. All other data 
is provided within the article and Supplementary Tables. Written 
requests will be reviewed, and data agreements will be needed.
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