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INTRODUCTION
Many anticancer agents have limited single agent activ-

ity in the clinic, making drug combinations an important 
treatment strategy. The first successful combination chemo-
therapy, introduced more than 50 years ago, consisted of a 
cocktail of four drugs (cyclophosphamide, vincristine, pro-
carbazine, and prednisone) and resulted in durable clinical 
responses in patients with Hodgkin lymphoma (1, 2). These 
chemotherapy combinations were often determined empiri-
cally in the clinic using existing monotherapy treatments. 
The recent advent of molecularly targeted agents has led to 
the development of more rationally designed combinations. 
Inhibiting multiple nodes in either the same or parallel sign-
aling pathways can help tackle problems such as pathway 
redundancy, feedback reactivation, and tumor heterogeneity, 
all of which can contribute to reduced efficacy and disease 
progression (3). There are, however, several challenges that 
need to be addressed when identifying efficacious drug com-
binations. First, obtaining deep pharmacologic profiles of 
available targeted and chemotherapeutic agents is a complex 

and resource-intensive task. Second, handling the scale of 
this data generation and analyses toward identifying “action-
able” combinations are difficult. Finally, clinically translat-
able combinations that deliver patient benefits are rare.

Employment of several criteria into portfolio decisions has 
resulted in higher success rate during discovery and develop-
ment of novel drugs (4, 5), including considerations of the 
target (efficacy), safety, patient population, exposure, and 
commercial opportunity. Like single-agent drugs, candidate 
drug combinations require demonstration of activity in a 
patient population of unmet clinical need, an efficacy profile 
similar or superior to existing treatments, confidence in the 
tolerability profile, and knowledge of the exposures required 
for activity. When possible, application of these principles 
to design and analysis of in vitro combination screens could 
increase the likelihood of gathering this crucial understand-
ing early in the drug development process. Specifically, com-
prehensive analysis of multi-omics data for cell line panels 
can identify potential biomarkers that could lead to patient 
stratification in the clinic. Avoiding combinations that are 
broadly active across models in in vitro screens can exclude 
combinations that may also be active in cells without genetic 
alteration, which thus could have activity in healthy tissues, 
limiting tolerability. Finally, the design of dose–response sur-
faces covering a matrix of concentrations relevant to clinical 
exposures can help inform the right doses for development.

Several groups, including ourselves (6–8), have published 
unbiased combination screens in cancer cell lines. These have 
generally focused on assessing large numbers of combination 
pairs in relatively small cell panels. For example, we published 
a pan-cancer study as part of the DREAM combination predic-
tion challenge that included >11,500 experiments across 910 
combinations in 85 cell lines (6); O’Neil and colleagues pub-
lished  >22,000 experiments across 583 combinations in 39 
cell lines (9); and the NCI-ALMANAC study included >5,000 
combinations in 60 cell lines of the NCI-60 panel (10). We also 
recently described screening subsets of 2,025 combinations 
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across 125 cell lines for three cancer types (7). For all these 
studies, in addition to screening relatively few cell lines, drug 
combinations were tested using either a limited or a subset 
of a full concentration matrix, thereby limiting the ability to 
comprehensively examine the most relevant range. Here, to 
extend our knowledge of effective drug combinations beyond 
previous studies, we screened 109 drug combinations using a 
7 × 7 concentration matrix across 755 cell lines and developed 
an end-to-end framework that led to the identification and 
validation of clinically actionable drug combinations.

RESULTS
More than 68,000 Combination: Cell Line Pairs 
Screened in 41 Cancer Types

We screened a diverse and molecularly characterized panel 
of 755 cancer cell lines, covering 41 cancer types (ref. 11; Fig. 1A 
and B; Supplementary Table S1). Against these cell lines, we 
screened 109 unique combinations of 37 individual drugs 
and investigational agents, with the majority coming from 
the AstraZeneca portfolio covering diverse targets and mecha-
nisms of action with a particular focus on compounds target-
ing genome integrity, apoptosis, and the cell cycle, which had 
potential for broad activity in a pan-tumor panel and which 
were of interest for clinical development (Fig. 1C; Supplemen-
tary Table S2). Overall, this included 68,816 combination:cell 
line pairs: 82 combinations were screened in 755 cell lines and 
additional 27 combinations screened against a half cell line 
panel of 376 cell lines. To enable in-depth investigations of 
drug combination responses, we included a high coverage of 
chosen pathways, including combinations of drugs targeting 
apoptosis with genome integrity (Fig. 1C).

Drugs were screened in a 7 × 7 combination matrix over a 
1,000-fold concentration range of each drug chosen to cover 
IC50 values reported in previous single-agent drug screens  
(12, 13). The concentrations were informed by clinical rele-
vance, including clinically achievable Cmax (maximum achiev-
able concentration within the body). This design led to a wide 
range of combination Emax (combo Emax) values (second 
highest viability effect) obtained across the screen (Fig. 1D). 
As a control for screen quality, plates had low coefficient of 
variation, robust dynamic range as measured by Z-factor, 
and high correlation between control replicate screens (Sup-
plementary Fig. S1A–S1C; see Methods). Furthermore, there 
was a high correlation when comparing single-agent IC50 
values for six overlapping drugs screened using the same 
experimental platform (Supplementary Fig. S1D; ref. 13), the 
GDSC2 (Genomics of Drug Sensitivity in Cancer 2) dataset 
(Pearson R  =  0.855; 735 common cell lines). Comparisons 
with the GDSC1 and PRISM monotherapy datasets had good 
[GDSC1 (12); Pearson R = 0.753; 699 common cell lines for 
two drugs] to moderate [PRISM (14); Pearson R = 0.513; 346 
common cell lines for 13 drugs] correlations, with the lower 
correlations likely reflecting the use of different experimental 
platforms and protocols (Supplementary Fig. S1E and S1F). 
These results support the robustness of the screen.

We used multiple estimates of single agent and combination 
activity. These include two single-agent IC50 values, the two 
single-agent maximum viability reductions (single-agent Emax; 
Supplementary Fig.  S1G), combination maximum viability 

reduction (combo Emax, the second highest activity level seen 
in the matrix; Supplementary Fig.  S1H), and synergy scores, 
according to either the Bliss model (15) or highest single agent 
(HSA; ref. 16). HSA metric identifies drug combinations if the 
response is greater than either single agent alone. We report 
“matrix” synergy scores averaged across all 49 wells of the com-
bination matrix. In addition, we report “window” synergy scores 
calculated across all 25 possible 3 × 3 submatrices of the 7 × 7 
matrix and report the synergy score for the 3 × 3 “window” with 
the largest synergy score (Supplementary Fig. S1I). The window 
synergy score is useful where synergy is concentration depend-
ent. For example, IST-MES1 mesothelioma cell line treated with 
AZD5991 (MCL1 inhibitor) + AZ-3202 (BCL-Xli; also known as 
compound 15; ref. 17) had higher Bliss synergy excess for the 
window (0.823) versus matrix (0.180; Supplementary Fig. S1J). 
Overall, 52.3% of combination:cell line pairs had a negative Bliss 
matrix excess and positive Bliss window excess, indicating that 
synergy was frequently observed within a narrow range of tested 
concentrations. Bliss excess was highly correlated with HSA 
excess (R = 0.924; Supplementary Fig. S1K). In contrast, there 
was poor correlation between combo Emax with either HSA 
or Bliss synergy, consistent with some combination activity 
being driven by single-agent activity (Supplementary Fig. S1L 
and S1M). Similarly, single-agent Emax weakly correlates with 
combo Emax (Supplementary Fig. S1N), and single-agent activ-
ity poorly correlates with synergy (Supplementary Fig. S1O).

Fitted and raw data are available through Figshare and 
the GDSC Combination website (https://gdsc-combinations.
depmap.sanger.ac.uk/), where data can be visualized and 
explored at the screen, cancer type, combination, and cell line 
combination. Altogether, these data are a rich resource and 
show the value of acquiring multiple estimates of single-drug 
and combination activity across a matrix of concentrations.

Prioritization Based on Combination Activity and 
Tumor Subtypes Specificity

From more than 68,000 combination:cell line pairs tested, 
we aimed to identify candidate combinations with the greatest 
potential to be taken forward into clinical development. There-
fore, we sought to prioritize combinations with strong activity 
specifically focused within particular tumor subtypes. As a 
first step, we identified combination:cell line pairs with high 
activity (combo Emax > 0.5) and combination benefit/synergy 
beyond single-agent activity (HSA > 0.1; Fig. 2A). We have pre-
viously screened nine combinations with a limited concentra-
tion matrix in up to 114 breast, colon, and pancreatic cancer 
cell lines, representing 4,790 overlapping combination:cell line 
pairs (7). In support of our screening results, the classifica-
tion of high activity and synergy beyond single-agent activity 
agreed with the classification of synergy/nonsynergy for 65.4% 
of combination:cell line pairs (Supplementary Fig. S2A). More 
examples of active combinations were identified in this study, 
supporting the value of our approach incorporating a 7  ×  7 
concentration matrix design and HSA metric.

We next identified combinations where at least 10% of cell 
lines tested within a specific cancer type fulfilled these criteria, 
reducing the number of combination:cancer type pairs by 76% 
from 4,469 to 1,056 (Fig. 2B; Supplementary Tables S3 and S4). 
The minimum threshold of 10% was chosen to allow a relatively 
small number of models to highlight a potential combination, 

https://gdsc-combinations.depmap.sanger.ac.uk/
https://gdsc-combinations.depmap.sanger.ac.uk/
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Figure 1. Dose response matrix combination screening landscape. A, Schematic of screen and analysis. Created with BioRender.com. B, Overview of 
cell line cancer types. C, Drug combinations screened grouped by drug target pathways. D, Combo Emax for 755 cell lines screened with 109 combinations. 
White represents combination/cell line pairs not screened.
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while maintaining a strong enough signal to support clinical 
actionability. Six combinations showed no combination ben-
efit (HSA < 0.1, combo Emax < 0.5) in the 755 cell lines tested, 
including the MCL1 inhibitor AZD5991 combined with either 

the DNAPK inhibitor AZD7648 or cMET inhibitor savoli-
tinib; ATM inhibitor AZD1390 combined with either the MEK 
inhibitor selumetinib, the EGFR inhibitor gefitinib, or the 
AKT inhibitor capivasertib; and the PARP inhibitor olaparib 
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Figure 2. Shortlisting for active and selective combinations. A, Growth inhibition (Emax) and HSA matrix plots were generated for each combination in 
every cell line. Combo Emax and HSA were used to identify active combinations with benefit over single agent. B, Combinations were filtered on the basis 
of their activity and selectivity in the tested cancer types. C, Activity of each combination tested in this screen in 41 cancer types. The fraction of cell 
lines where the combinations are active is indicated and combinations are grouped by category. (continued on following page)
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combined with the BRD4 inhibitor AZD5153. Combination 
benefit was most enriched in combination:cell line pairs where 
the combination targeted ERK/MAPK and PI3K/MTOR signal-
ing, or dual targeting of the cell cycle (Supplementary Fig. S2B).

The majority of the active combinations were active in 
multiple cancer types. Specifically, nineteen combinations 
were active in more than 50% of cancer types (Supplemen-
tary Table S5). Of these, five involved combinations targeting 
proteins that have a protein–protein/functional interaction 
from STRING database (prexasertib  +  AZD1775, SRA737  + 

AZD1775, AZD5991  +  AZ3202, trametinib  +  taselisib, dasat-
inib  +  trametinib), and three combinations target synthetic 
lethal pairs of genes as defined by SynLethDB (AZD5153  +   
selumetinib, trametinib + taselisib, AZD5991 + AZ-3202; Sup-
plementary Fig.  S2C). Broadly active combinations may be 
more likely to be active in normal tissues, thereby limiting their 
therapeutic window and potential for clinical development. For 
example, the combination of the MEK inhibitor, selumetinib, 
and the AKT inhibitor, capivasertib, had activity in 22 of 41 
cancer types. Despite strong preclinical activity here and in 
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other studies, the overlapping clinical toxicities of selumetinib 
(inhibitor of MEK: MEKi) combined with MK2206 (AKTi) 
was found to prevent sufficient dose escalation to achieve the 
desired level of target inhibition, and clinical activity was not 
observed (18). However, more recent AKT inhibitors, such as 
capivasertib or ipatasertib, may have a broader therapeutic win-
dow on account of an ATP-competitive mode of action, whereas 
MK2206 was an allosteric inhibitor. To maximize the therapeu-
tic window of selected combinations, an additional filtering 
step was therefore applied to select combinations with high 
activity (HSA > 0.1 and combo Emax > 0.5) in less than 50% of 
cancer types. This reduced the number of combination:cancer 
type pairs to 489 (Fig. 2B and C; Supplementary Table S6).

As a final step of prioritization, drug combinations were 
ranked on the basis of their activity (% responders in a cancer 
type) and cancer type selectivity (cancer type specificity score). 
The cancer type specificity score was calculated by subtracting 
the number of cancer types showing sensitivity to an individ-
ual drug combination (at least 10% responder cell lines) from 
the total number of cancer types. Activity and cancer-type 
selectivity were given equal weights and scores were given as 
a sum of percentage responders in that particular cancer type 
and the cancer type specificity score. Combination:cancer 
type pairs tested in less than 10 cell lines were excluded to pre-
vent small sample sizes biasing the analysis, leading to a list 
of 99 combination:cancer type pairs in hematologic cancers 
(Supplementary Table S7) and 252 combination:cancer type 
pairs in solid tumors. The top 100 combination:cancer type 
pairs are shown in Supplementary Table S8. This systematic 
approach informed our prioritized shortlist for prospective 
validation (see validation section below).

The top scoring combination in hematologic cancers was 
selumetinib (MEKi)  +  venetoclax (BCL2i) in acute myeloid 
leukemia (AML; response in 36% of AML cell lines), which 
also had above 10% activity in B-Lymphoblastic Leukemia 

(Fig. 2D; Supplementary Tables S6 and S7). Another highly 
ranked combination also included venetoclax, now with a 
cell death agent AZD5991 (MCL1i), with 63% responder cell 
lines in AML, but less selectivity across cancer types (active 
in 15 cancer types). For solid tumors, crizotinib + dasatinib 
in low-grade glioma (87% responders; active in 16 cancer 
types) and AZD0156 (ATM/ATRi) plus olaparib (PARPi) in 
Ewing’s sarcoma (84% responders; active in 16 cancer types) 
were high scoring (Fig.  2E; Supplementary Table  S8). Sev-
eral combination:cancer type pairs that have previously been 
shown to drive combination activity were identified, includ-
ing AZD5991 (MCLi)  +  venetoclax (BCL2i) that was active 
in AML cell lines, and has been tested in a phase II trial in 
patients with AML (NCT03218683), providing support that 
our screen and prioritization process is capable of identifying 
clinically relevant combinations in specific cancer types.

To evaluate the impact of our scoring thresholds on prior-
itized combinations, we investigated alternative thresholds 
for percentage response and cancer type specificity. Higher 
response thresholds (from more than 10% of cell lines to 
25%, 50%, or 75%) led to a drop in the number of top hits 
(120, 14, and 3 respectively) by excluding combinations which 
are most cell line selective in their activity (Supplementary 
Tables S9 and S10). There was no change in the top 15 hits 
when the percentage response threshold was increased to 25% 
(Supplementary Table S9). Changing the cancer type specific-
ity threshold (from less than 50% of cancer types to either less 
than 25% or 75%) also altered the number of combinations 
(223 and 727, respectively), either requiring combinations 
to be highly cancer type specific, or including widely active 
combinations which are less likely to be clinically tolerable.

With respect to the frequency of active combinations by 
cancer type, AML had the highest number of active com-
binations within the top hematologic cancer hits (25 com-
binations), followed by chronic myelogenous leukemia (17 
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Figure 2. (Continued) D and E, Top 10 hits in hematologic cancers (D) and solid tumors (E). Percentage of responder cell lines for each combination in 
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combinations) and B lymphoblastic leukemia (15 combina-
tions; Supplementary Table S7). In solid tumors, the highest 
number of active combinations within the top 100 hits were 
in Ewing’s sarcoma (16 combinations), followed by head and 
neck (9 combinations), and small-cell lung carcinoma (8 com-
binations; Supplementary Table S8).

To gain mechanistic insights into the top ranked com-
binations, we assigned combinations into nine categories 
based on the mechanism of action of the two constituent 
drugs (Supplementary Table  S11). Out of the top 100 drug 
combination:cancer type pairs in solid tumors, 19 hits belonged 
to the “cell death” plus “cell signaling.” However, in hemato-
logic cancer top hits, the highest number of combinations were 
the ones targeting “cell death” plus “DNA damage response 
(DDR)” pathways (31 hits). In contrast, combinations from the 
“cell signaling” plus “chemotherapeutic agent” category were 
overall rare (2 hits for hematologic cancer and 2 hits for solid 
tumors; Supplementary Tables  S7, S8, and S12). Out of the 
top ten drug combinations in hematologic cancer, 7 included 

at least one compound targeting the “cell death” pathway 
(Fig. 2D). This finding is in agreement with the fact that apop-
tosis/cell death pathways are frequently dysregulated in hema-
tologic cancers leading to efficacy of cell death agents in these 
tumors (19). Overall, our prioritization approach enriched for 
combinations that are selectively active in subsets of cell lines 
and by tumor type, increasing the probability of identifying 
combinations with a clinically manageable tolerability profile.

Multiomics Analysis Identifies Biomarkers of 
Combination Response

We leveraged the large number of cell lines screened to 
understand how molecular context affects drug combination 
response. Using GDSCtools ANOVA (20), we performed 5.4 
million statistical tests to identify statistically significant associ-
ations between drug response metrics and multi-omics features 
(Fig.  3A; Supplementary Table  S13). This included curated 
molecular features previously associated with single-agent drug 
response (somatic mutations, copy-number alterations (CNA), 

Figure 3. Multi-omics biomarkers of combination activity. A, Schematic of biomarker pipeline including molecular features incorporated and analyses 
performed. Created with BioRender.com. B, Volcano plot of biomarkers from all analyses. Statistically significant associations are colored by analysis 
type, nonsignificant biomarkers are colored gray. C, Venn diagrams of the biomarkers from different inputs leading to the identification of emergent 
biomarkers. Note that single-agent biomarkers may be duplicated for the multiple combinations in which the single agent has been screened: the Venn 
diagram depicts unique single-agent biomarker associations only.  (continued on following page)
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and DNA methylation; n = 1,073; ref. 13); additional molecular 
features curated from public datasets (see Methods; n = 586); a 
curated set of binarized gene expression features (n = 1,344; refs. 
21, 22); and PAM50 status for breast cancer cell lines (n = 9; refs. 
23, 24). Associations were identified with five response metrics, 
including single agent (compound 1 Emax, compound 2 Emax) 
and combination responses (combo Emax, Bliss matrix, Bliss 
window). Bliss was chosen over HSA as the synergy metric for 
biomarker identification because it is a more stringent measure 
of drug combination response and biomarkers of Bliss scores 
are more likely to identify drug interactions.

We identified significant associations for 21 different sub-
groups of cell lines. This included pan-cancer across the 
entire cell line panel; per cancer type for the 14 most com-
mon cancer types in our panel (>19 cell lines); and 6 molec-
ular “baskets” representing cancer type–agnostic cell line 
subpanels of the six most frequently mutated genes [TP53 
(n = 477 cell lines), KRAS (n = 107), MLL2/KMT2D (n = 81), 
PTEN (n =  72), PIK3CA (n =  80), and BRAF (n =  61)]. Over-
all, we identified 11,611 statistically significant associations 
(P  ≤  0.001, FDR  ≤  10%, and positive and negative Glass 

delta ≥1; Fig. 3A and B). This included 6,911 nonunique sin-
gle-agent and 4,700 combination biomarkers, representing at 
least one significant association for every combination tested 
(combo Emax associations, n = 2,170; Bliss matrix, n = 1,080; 
Bliss window, n = 1,450). Cancer type–specific ANOVAs and 
molecular basket ANOVAs identified 803 and 4,388 context-
specific biomarkers, respectively, in addition to those found 
in the pan-cancer setting, confirming the benefit of consid-
ering sensitivity biomarkers in specific molecular contexts 
(Supplementary Figure S3A and S3B; ref. 7).

A subset of biomarker associations were linked to the target 
of one or both of the drugs in a combination. For example, 
elevated expression of PIK3CG was associated with a greater 
Bliss window synergy score for AZD8186 (PI3Kβi)  +  palbo-
ciclib (CDK4/6i) in the KRAS molecular basket (Supplemen-
tary Fig.  S3C). Elevated expression of BIM (BCL2L11) was 
significantly associated with higher AZD4320 (BCL2i,BCL-XLi) 
and venetoclax (BCL2i) single-agent Emax values in the KRAS 
molecular basket (Supplementary Fig.  S3D and S3E), and 
elevated BCL2 expression was associated with higher veneto-
clax (BCL2i) Emax in the TP53-mutant basket (Supplementary 
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Fig. S3F). In many instances, combination biomarkers were also 
associated with the single-agent activity of a constituent drug. 
Specifically, 59.5% (6,911 of 11,611) of combination biomarkers 
were also biomarkers for at least one of the two monotherapies 
in that combination. This has been observed previously; for 
example, BRAF mutation is a predictor of dabrafenib mono-
therapy activity in multiple cancer types and of response to 
dabrafenib-containing combinations in colon cancer (25–27).

We reasoned biomarkers specifically associated with combi-
natorial activity, and not with single-agent activity of the indi-
vidual constituent drugs, so called “emergent” combination 
biomarkers, would be of particular interest because they are 
more likely to capture properties arising from drug–drug inter-
actions. By excluding monotherapy-driven markers for each 
compound, we identified 14% of biomarkers (1,631 of 11,611: 
755 Bliss matrix only, 161 Bliss matrix and combo Emax, 715 
combo Emax only; Fig.  3C) as “emergent” (Supplementary 
Table S13). Considering the top 100 most statistically signifi-
cant emergent biomarkers (Supplementary Table  S14), these 
involved ten unique combinations, seven of which included 
BCL2 or MCL1 inhibitors that target cell death pathways 
(Supplementary Tables  S15 and S16 includes emergent bio-
markers). To gain further insights into their properties, emer-
gent biomarkers were grouped by signaling pathway prior to 
performing pathway enrichment analysis using EnrichR com-
paring single-agent and emergent biomarkers for each mecha-
nistic category of combination (ref. 28; Fig. 3D; Supplementary 
Fig. S3G). Apoptosis, P53, and E2F pathway were among the 
most enriched pathways across the combination categories. A 
smaller number of pathways were enriched in categories includ-
ing chemotherapeutic agents, with no signaling pathway being 
enriched for the emergent biomarkers in the “cell signaling” 
(non-DDR/cell death) plus chemotherapy category. Chemo-
therapeutics were broadly active in our screen, likely explaining 
why highly predictive markers of response were not observed. 
We hypothesize that these emergent biomarkers represent 
predictors of drug–drug interactions that cannot be readily 
identified from single-agent activity alone, and thus highlight 
the potential utility of combination screens for biomarker 
identification over using monotherapy biomarkers alone.

Combination Validation
We identified active and cancer-type selective combinations 

using our prioritization framework. A subset of the top scor-
ing combinations are exemplified here and were validated in 
vitro and in vivo based on AstraZeneca portfolio interest, prior 
knowledge, and to illustrate different types of therapeutic 
opportunities including new combinations and repurposing.

AZD5991 Plus Venetoclax in AML

The second ranked combination in hematologic cancers 
was venetoclax (BCL2i) + AZD5991 (MCLi) in acute myeloid 
leukemia (AML). For 13 of 19 AML cell lines, the combination 
was active (HSA > 0.1 and combo Emax > 0.5; Supplementary 
Fig. S4A and S4B). The combination was also active in other 
hematologic cancers including Hodgkin lymphoma (42.9%, 
3 of 7 cell lines), B-lymphoblastic leukemia (40%, 6 of 15 cell 
lines) and B cell non-Hodgkin lymphoma (36%, 9 of 25 cell 
lines), as well for some solid tumors such as small cell lung 
carcinoma (47.2%, 17 of 36 cell lines) and Ewing’s sarcoma 

(45%, 9 of 20 cell lines; Supplementary Fig. S4C). From our bio-
marker analysis, cell-cycle and DNA repair pathways genes (e.g., 
BRCA2, WEE1, CDC25A) were associated with combo Emax, 
and downregulation of the nucleotide excision repair protein 
ERCC1 was associated with Bliss synergy, providing a putative 
mechanistic link between combination activity and DDR and 
cell cycle–related pathways, as previously reported (refs. 29–31; 
Supplementary Fig.  S4D; Supplementary Table  S17). Impor-
tantly, this combination was selective, with 40% (17/41) of 
tumor types having a response rate >10% and only 19% (8/41) 
of tumor types having a response rate  >25%. In comparison, 
the combination of AZD5991 with another cell death target, 
the Bcl-xL inhibitor (AZ-3202), has poor selectivity with a >25% 
response rate in 90% (38/41) of tumor types (Supplementary 
Fig.  S5A). The combination of AZD5991  +  venetoclax was 
under clinical investigation in a phase I/IIa trial in patients 
with refractory or relapsed hematologic malignancies but was 
recently terminated for undisclosed reasons (NCT03218683).

Selumetinib Plus Venetoclax or AZD5991 in AML

Two further effective and specific combinations in AML 
were selumetinib (MEK1/2i) combined with venetoclax 
(BCL2i) or AZD5991 (MCLi; Supplementary Table S7). Both 
combinations also had activity in other hematologic cancers 
and solid tumors (Supplementary Fig. S6A and S6B). Of the 
nineteen AML cell lines included in the screen, six (EoL-1-
cell, ML-2, OCI-AML5, NOMO-1, KG-1, HL-60) had strong 
combination activity when selumetinib was combined with 
venetoclax and four cell lines (ME-1, ML-2, NOMO-1, HL-60) 
when combined with AZD5991 (Fig. 4A–D). These cell lines 
predominantly harbored alterations in MAPK pathway family 
members including OCI-AML5 (SOS1N2337Y, NF1K1385R), ML-2 
(KRASA146T), HL-60 (NRASQ61L), and Nomo-1 (KRASG13D). Con-
sistent with these findings, among the significant biomarkers 
for venetoclax and selumetinib were proteins involved in 
ERK-MAPK signaling including EGF and SOS1, as well as 
members of the BCL2 family (PMAIP1; Supplementary Fig-
ure S7A and S7B; Supplementary Table S17).

To validate these two combinations in vitro, we assessed 
MAPK pathway inhibition and induction of apoptosis in 
the sensitive Nomo-1 cell line. Treatment with selumetinib 
completely inhibited phospho-ERK (pERK) levels tested for 
up to 72 hours. Neither venetoclax nor AZD5991 altered 
pERK levels (Fig. 4E and F). When selumetinib was combined 
with venetoclax or AZD5991, pERK suppression was main-
tained and induction of cleaved PARP and cleaved caspase 
3 was observed as early as 24 hours, increasing at 72 hours. 
AZD5991 alone caused a weak induction of cleaved PARP 
which was enhanced by the combination. Combination ben-
efit was also achieved by combining selumetinib with an 
alternative selective MCL1 inhibitor, tapotoclax, or selective 
BCL2 inhibitor, S55746 (both currently under clinical inves-
tigation) in NOMO1, HL60, and ML2 cell lines. Similarly, 
an alternative MEK1/2 inhibitor trametinib was active in 
combination with the four MCL1 and BCL2 inhibitors tested 
(Supplementary Figures S8A–S8C and S9A–S9C). Together, 
these results confirm on-target combination activity induces 
suppression of MAPK signaling and increased apoptosis.

We next evaluated the in vivo activity of the combina-
tions using subcutaneous Nomo-1 xenograft models. Neither  
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Figure 4. Combination activity of selumetinib plus venetoclax or AZD5991 in AML. A and B, Combo Emax versus HSA scores in 19 AML cell lines 
exposed to selumetinib combined with (a) venetoclax or (b) AZD5991. C and D, NOMO1 growth inhibition and HSA excess to the combination of selu-
metinib with (c) venetoclax or (d) AZD5991. (continued on next page)
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venetoclax (100 mg/kg oral daily) nor AZD5991 (two intrave-
nous doses of 30 mg/kg given two hours apart once weekly) 
alone caused any significant tumor growth inhibition 
when dosed as a monotherapy (Fig.  4G). While selumetinib 

monotherapy (10 mg/kg oral twice daily, 8 hours apart) led 
to 63% tumor growth inhibition (TGI) at day 10, tumors 
eventually grew out. Notably, combining selumetinib with 
venetoclax or AZD5991 markedly reduced tumor growth. 
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Tumors treated with the selumetinib + venetoclax combina-
tion only reached a mean tumor volume of 963 mm3 after 
28 days. The combination of selumetinib with AZD5991 was 
even more pronounced (88% TGI at day 10) and the mean 
tumor volume had not exceeded 400 mm3 by day 28. Collec-
tively, these results confirm the in vitro and in vivo efficacy of 
these combinations in the setting of AML.

Venetoclax monotherapy in AML is only modestly active 
and significant benefit comes from addition of a second agent 
such as decitabine or cytarabine. Selumetinib has modest 
clinical activity as a monotherapy in patients with AML (32). 
Given that the MAPK pathway is activated in about 70% of 
patients with AML due to mutations in upstream key pro-
teins including RAS and FLT3 (33), and recent studies which 
show that further mutations in MAPK can arise from use of 
venetoclax or targeted therapies like gilteritinib (FLT3i), the 
use of a MEK inhibitor like selumetinib as a combination 
partner has strong rationale (34). Furthermore, the activity of 
selumetinib combined with AZD5991 also suggests an alter-
native partner in patients where BCL2 inhibition is insuffi-
cient to remove the antiapoptotic blockade, and combination 
with an MCL1 inhibitor may be a good choice.

AZD2811 Plus Venetoclax in DLBCL

An additional highly ranked combination was the aurora 
kinase B inhibitor (AURKB) AZD2811  +  venetoclax in B-cell 
non-Hodgkin lymphoma (NHL). The active pharmaceutical 
ingredient in AZD2811 (AZD1152) has previously undergone 
clinical evaluation for diffuse large B-cell lymphoma (DLBCL), 
and the combination activity of aurora kinase B inhibitors and 
BH3 mimetics has been investigated in solid and hematologic 

malignancies (35). AZD2811 + venetoclax has efficacy in TP53-
mutant and wild-type AML in vitro and in vivo models, and over-
came venetoclax resistance in TP53 models (36). However, despite 
these preclinical and clinical signals, the combination of aurora 
kinase inhibitors with BCL2 inhibitors has not been reported  
to be active in DLBCL.

In our screen, 6 of the 25 B-Cell NHL cell lines had strong 
combination activity (HSA  >  0.1 and combo Emax  >  0.5), 
including 2 DLBCL cell lines (WSU-DLCL2 and KARPAS_422; 
Fig. 5A and B). Combination activity was also seen in AML (5 
of 19 cell lines), Ewing’s sarcoma (4 of 20 cell lines), plasma cell 
myeloma (3 of 13 cell lines), and small-cell lung carcinoma (9 
of 36 cell lines; Supplementary Fig. S10A). In support of our 
screening results, combinations with alternative compounds 
targeting aurora kinase (danusertib) and BCL2 (S55748) had 
combination benefit in DLBCL models WSU-DLCL2 and 
KARPAS422 (Supplementary Fig. S11A and S11B). Except for 
upregulation of CCNB1, MCL1, and BCL2A1 gene expression 
in the KRAS, BRAF, and PIK3CA baskets, respectively, other 
significant biomarkers were noncanonical to the cell-cycle 
and cell death pathways that are the targets of the drugs (Sup-
plementary Fig. S12A; Supplementary Table S17).

One of the responsive DLBCL cell lines, WSU-DLCL2, was 
selected for further in vitro and in vivo validation. The combi-
nation of venetoclax plus AZD2811 led to a time-dependent 
induction of apoptosis compared with either single agent alone 
(Fig. 5C), and combination activity was suppressed by pretreat-
ment of cells with the pan-caspase inhibitor Q-VD-OPH (50 
nmol/L; QVD; Fig. 5D). In addition, in vivo antitumor activity 
of AZD2811 combined with venetoclax was assessed in mice 
bearing WSU-DLCL2luc xenografts. Once weekly intravenous 

Figure 4. (Continued) E and F, Western blot analysis for apoptosis 
markers in NOMO1 cells following time course treatment with 
selumetinib (300 nmol/L) combined with (e) venetoclax (300 nmol/L) 
or (f) AZD5991 (100 nmol/L). G, Tumor growth in NOMO1 xeno-
grafts treated with selumetinib, AZD5991, or venetoclax alone or in 
combination for 28 days (n = 5 each arm). Control and monotherapy 
experimental arms were halted once the maximum permitted tumor 
volume (2,000 cm3) was reached. Data are plotted as mean tumor 
volume ± SEM.
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Figure 5. AZD2811 plus venetoclax combination in DLBCL. A, Combo Emax versus HSA in 25 B-cell NHL cell lines including 11 DLBCL cell lines. Cell lines 
with high combination activity (combo Emax > 0.5 and HSA > 0.1) are in red. B, Growth inhibition and HSA excess matrices in DLBCL cell line WSUDLCL2. 
C, Western blot analysis for cleaved PARP in WSUDLCL2 cells treated with AZD2811 or venetoclax alone or in combination. D, Matrix plots indicating 
combination activity (measured by growth inhibition) in WSUDLCL2 cells pretreated with pan caspase inhibitor Q-VD-OPH and exposed to AZD2811 
combined with venetoclax for 72 hours. Matrix values represent cell viability normalized to day 0 on the scale of 0 to 200 (value < 100 = percentage of 
growth inhibition, value > 100 = cell death). E, Tumor growth in WSUDLCL2 xenografts treated with AZD2811 or venetoclax alone or in combination for 
46 days (n = 6 per group, * 0.05 < P < 0.01, ** 0.01 < P < 0.001). Data are plotted as mean tumor volume ± SEM. PO, orally; QD, every day; QW, every week.
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administration of 25 mg/kg AZD2811 resulted in a statistically 
significant tumor growth inhibition (TGI) of 74%, while daily 
100 mg/kg venetoclax resulted in 49% TGI but failed to reach 
statistical significance (Fig.  5E). While both monotherapies 
were unable to prevent progressive tumor growth, the combina-
tion of AZD2811 and venetoclax drove striking activity, leading 
to tumor regression resulting in statistically significant com-
plete regression (98% regression) by the third week of dosing. 
Together, these studies support the in vitro and in vivo activity of 
venetoclax + AZD2811 in the setting of DLBCL.

Capivasertib (AZD5363) Plus AZD5991 in Endometrial Cancer

The combination of the AKT inhibitor capivasertib 
(AZD5363) with the MCL1 inhibitor AZD5991 was one of 
the most selective combinations, active in only 2 of 41 cancer 
types (Supplementary Fig. S12B). The greatest responses were 
in endometrial cancer with 3 of the 10 endometrial cell lines 
showing strong combination activity (Fig.  6A and B). Our 

biomarker analysis identified three significant associations 
involving DDR pathway genes (upregulation of BRCA2, RAD51 
and downregulation of ERCC1), and upregulation of genes 
which directly or indirectly activate AKT (e.g., CDC25A in the 
TP53 basket and RHOA in the PTEN basket) were associated 
with combo Emax and Bliss score (Supplementary Table S17).

We chose two responder cell lines (AN3-CA and MFE-
296) and two nonresponder cell lines (HEC1 and MFE-280) 
for further validation. Both cell lines sensitive to the com-
bination have PTEN mutations and had elevated baseline 
levels of phosphorylated AKT and PRAS40 (Supplementary 
Fig.  S13A). Selective combination activity was confirmed in 
responsive and non-responsive lines, and notably became 
apparent as early as 3 hours, before either compound had 
single-agent activity (Supplementary Fig.  S13B and S13C). 
The combination of capivasertib and AZD5991 led to apop-
tosis (Fig. 6C–E) as evidenced by induction of cleaved PARP 
and cleaved caspase 3 as early as 1 hour, as well as a marked 

Figure 6. Capivasertib (AZD5363) plus AZD5991 combination activity in endometrial cell lines. A, Screening results of combo Emax versus HSA in 
endometrial cell lines treated with AZD5363 plus AZD5991. Cell lines with high combination activity are in red. B, Representative growth inhibition and 
HSA excess matrix plots in endometrial AN3CA cells. (continued on following page)
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induction of caspases (Fig.  6C). Pretreatment with the pan-
caspase inhibitor QVD blunted apoptosis (Fig. 6D).

To evaluate the on-target mechanism of action of the 
combination, we tested alternative compounds with similar 
target specificity. Combination activity was specific to MCL1 
inhibition as both AZD5991 and tapotoclax (an alternative 
MCL1 inhibitor) showed combination benefit with AKT 
inhibition in responder cells (Supplementary Fig.  S14A and 
S14B), whereas, the BCL2 inhibitor venetoclax (ABT-199) or 

a BCL-XL–selective inhibitor AZ-3202 did not (Fig. 6F). The 
combination effect with AZD5991 also occurred with the 
AKT inhibitors MK2206 and ipatasertib, as well as AZD8186 
(PI3Kβ/δ), and to a lesser degree BYL719 (PI3Kα), but not 
the mTOR1 inhibitor rapamycin (Supplementary Figs. S14A 
and S14B and S15). In addition, genetic knockdown of MCL1 
in AN3-CA and MFE-296 cells caused a shift and reduc-
tion in the IC50 of AZD5363 and ipatasertib (Supplemen-
tary Fig.  S16A–S16D). Taken together, these results show 

Figure 6. (Continued) C, Matrix plot measuring apoptosis with AZD5991 and AZD5363 at indicated doses for 6 hours in AN3-CA cells. D, Matrix plots 
showing viability for AN3-CA cells pretreated with DMSO or QVD (caspase inhibitor) for 16 hours prior to the combination for 6 hours. E, Western blot 
analysis in AN3-CA cells treated with AZD5363 (1 μmol/L), AZD5991 (500 nmol/L), or in combination at indicated times. F, Matrix plots showing viability 
in AN3-CA cells treated with AZD5991 or venetoclax (ABT-199 -BCL2 inhibitor), AZD4320 or AZ3202 (BCL-XL inhibitors) with AZD5363 at indicated 
doses for 6 hours.
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marked combination activity through dual targeting the 
PI3K–AKT pathway and MCL1 signaling axes in the setting of 
endometrial cancer.

DISCUSSION
In this study, 755 genomically characterized cell lines from 

41 cancer types were screened with 109 drug combinations 
using a 7 × 7 concentration matrix to generate more than 4 mil-
lion individual sensitivity measurements, of which more than 
2.3 million describe combination response. Previous studies 
have been limited to a maximum of 125 cell lines (7) and conse-
quently lack the same diversity of molecular backgrounds and 
cancer types, which are known to impact treatment response. 
Furthermore, the use of full dose matrices uniquely provides an 
opportunity to identify effective combinations across a range 
of clinically relevant concentrations with enhanced sensitivity 
compared with previous studies which have adopted a partial 
matrix approach (6–8, 37). We anticipate that this dataset will 
be a rich resource and contribute to datasets available for these 
cancer cell lines as part of a Cancer Dependency Map (38).

Future analyses investigating combinations not prioritized 
in this study may yield additional actionable combinations, 
and the data availability will enable this. For example, combina-
tions with activity limited to a small number of cell lines could 
have utility for a subset of patients if highly predictive markers 
could be identified. Similarly, combinations which were highly 
active across multiple tumor types, and so likely to be less 
tumor cell selective, may be tolerable for patients through the 
use of fractionated and alternative dosing schedules.

We capitalized on the availability of multi-omics data 
across all cell lines to not only identify biomarkers within 
a molecular basket (i.e., clinically relevant genotypes), but 
also markers of monotherapy and combination response. We 
report emergent combination biomarkers that could not be 
readily explained by markers of response to the individual 
drugs. Such biomarkers, subject to validation, could provide 
insights into novel biology and signaling pathways driving 
combination efficacy. Future work incorporating newly avail-
able “omics” data such as proteomics (39, 40) may yield addi-
tional markers for combination opportunities and enable 
precision medicine approaches.

Our approach is designed to optimize preclinical interpreta-
tion with a focus on actionability. Rather than simply selecting 
combinations which elicited the greatest synergy, we short-
listed combinations that were highly active, more effective than 
monotherapy alone, and cancer-type selective. Several of the 
identified combination hits have already undergone clinical 
and preclinical development in the same cancer type as identi-
fied in our screen, such as the combination of the AZD5991 
(MCL1i) + venetoclax (BCL2i) in AML (41). A factor driving our 
selection of combinations for experimental follow-up was hav-
ing a rationale for at least one of the agents in the indication. 
For example, selumetinib (MEKi) + AZD5991 (MCL1i) in AML 
cell lines, which builds on reports showing combination activ-
ity in colorectal and melanoma cell models (30). The combina-
tion of AZD2811 (AurkBi)  +  venetoclax (BCL2i) was shown 
here to be active in DLBCL cell lines. This combination has 
activity in AML preclinical models (36). In addition, the combi-
nation of capivasertib (AKTi) + AZD5991 (MCL1i) has shown 

activity in breast cancer models (42) and was identified here as 
an active combination in endometrial lines. The PI3K/AKT/
mTOR signaling pathway is frequently altered in endometrial 
cancer, therefore capivasertib +  AZD5991 could represent an 
active and potent combination in this cancer type that cur-
rently lacks effective treatments. For multiple combinations 
we confirmed comparable activity using alternative inhibitors 
to the same targets, indicating that “on-target” combination 
activity can be achieved with inhibitors in addition to the spe-
cific molecules tested here.

Future work should seek to refine and extend the current 
study. Focused screens in healthy or primary cells, albeit 
technically challenging, could control for potential combina-
tion toxicity. Similarly, tumor xenograft studies should be 
used to assess in vivo activity and tolerability. The inclusion 
of tumor stroma into screens could inform how the tumor 
microenvironment modulates combination response, and 
reveal new active combinations that target tumor cell–stroma 
signaling. A longer duration of combination exposure to 
cells might identify combinations that are dependent on cell 
division, and screening in 3D cultures could reveal combina-
tions dependent on cell–cell interactions and 3D structure. 
Furthermore, many current clinically effective oncology drug 
combinations work through targeting tumor heterogeneity, 
a concept called independent action (43). The large hetero-
geneous panel of cell lines used here should enable analyses 
for independent drug action. Beyond the specific combina-
tions identified, we anticipate that the experimental and 
analytic approach taken here will facilitate the interpretation 
of future drug combination studies. The richness of the full 
matrix design should enable data-driven approaches to better 
model combinatorial drug responses and to guide more effi-
cient experimental designs based on optimized matrices, for 
example, through subsampling the matrix or discontinuous 
dosing gradients (7, 44). Furthermore, our study will be of 
interest to the fields of machine learning and computational 
biology, and as such complements previously published drug 
combination studies (6, 9, 37, 45–47).

In conclusion, this study provides a rich resource and 
identifies actionable combinations as a starting point toward 
achieving the goal of developing rational combinations to 
improve treatment options for patients.

METHODS
Cell Lines

The majority of cell lines were sourced commercially from reposi-
tories and cell banks. To facilitate high throughput screening all 
cell lines were maintained and screened in one of two media types; 
DMEM/F12 or RPMI supplemented with 10% FBS, penicillin–strep-
tomycin and sodium pyruvate. All cell line stocks used for screening 
were tested for Mycoplasma contamination prior to banking using 
both a PCR (EZ-PCR Mycoplasma Detection Kit, Biological Indus-
tries) and a biochemical test (MycoAlert, Lonza). Cultures testing 
positive using either method were removed from the collection.

To prevent cross-contamination or misidentification, all banked 
cryovials of cell lines were analyzed using a panel of 94 single-
nucleotide polymorphisms (SNP; ref. 12; Fluidigm, 96.96 Dynamic 
Array IFC). The data obtained were compared against a set of refer-
ence SNP profiles that have been authenticated by short tandem 
repeat (STR) back to a published reference (typically the supplying 
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repository). Where a published reference STR profile was not avail-
able, the reference SNP profile is required to be unique within the 
collection/dataset. A minimum of 75% of SNPs is required to match 
the reference profile for a sample to be positively authenticated.

In addition, cell line underwent authentication via STR profiling 
at CellBank Australia in 2022. STR loci were amplified using the 
PowerPlex 16HS System (Promega) and the data were analyzed using 
GeneMapper ID software (ThermoFisher). The models were typi-
cally maintained for less than a month between thawing and being 
screened. The cell line stocks were authenticated using SNP and STR 
profiling. Details of cell lines are in Supplementary Table  S1 and 
provided on the Cell Model Passport database (11).

Compounds
Compounds were sourced from commercial vendors or supplied by 

pharmaceutical collaborators. The purity of all compound supplied 
by AstraZeneca compound management was >85% as determined by 
UV analysis of LC/MS chromatograms at 254 nm and substantiated 
using the total absorption chromatogram (TAC). DMSO solubilized 
compounds were stored at room temperature in a low humidity 
(<12%), low oxygen (<2.5%) environment. Details of compounds and 
drug combinations are in Supplementary Table S2. We included three 
compounds in our screen outside the AstraZeneca portfolio that have 
not yet completed clinical trials that are available for purchase from 
vendors: SCH7729 (48), prexasertib (49), and SG3199 (50).

Screening
Cells were transferred into 1,536 microwell plates within 7.5 μL of 

the appropriate media. The seeding density of each cell line was opti-
mized to ensure they remained in the growth phase throughout the 
duration of the assay. Assay plates were then incubated at 37°C in a 
humidified atmosphere at 5% CO2 for 24 hours prior to dosing with 
the compounds. Final DMSO concentrations were typically 0.2% and 
the duration of drug treatment was 72 hours. Cell viability was meas-
ured using CellTiter Glo 2.0 (Promega), 2.5 μL was added to each well, 
plates incubated for 10 minutes and quantification performed using 
a luminescence microplate reader.

Controls
Each assay plate contains widely distributed controls wells includ-

ing, two sets of negative controls n = 155 (wells receiving either no 
treatment or those treated with DMSO only), positive controls n = 32 
(wells treated with either MG-132 or Staurosporine), and blank wells 
n =  28 (media only, no cells). To ensure high quality data, we used 
quality control metrics of the screen: 1,536 microtiter screening 
plates passing coefficient of variation (CV; threshold: CV ≤ 0.17985, 
median: 0.1228, range: 0.1252; Supplementary Fig. S1A) and Z-factor 
(threshold: Z-factor ≥ 0.3, median: 0.498 and range: 0.54945 for both 
positive controls; Supplementary Fig. S1B) thresholds.

Quality Control
Strict quality controls were applied to each assay plate and across 

the screen. An assay plate is required to have a negative control coef-
ficient of variation (CV) below 0.18 which is calculated using the 
DMSO-treated wells (NC-1).

σ µCV = N / N

With σN the SD of the negative controls and μN the mean of the 
negative controls.

The effect of DMSO on cell viability is also assessed using the 
untreated and DMSO-treated negative control wells. The DMSO 
concentration in the negative control wells is equivalent to that of 
the combination treatment wells (0.2%). Plates are required to have 
an NC-0/NC-1 ratio of between 0.8 and 1.2 calculated using the mean 
of each negative control. Z-factors are calculated using the negative 
control (NC-1) and each positive control (PC1, PC2, & B). Where 

cell lines are sensitive to a positive control (NC-1/PC ratio ≥ 4), the 
Z-factor is required to be above 0.3 (a small proportion of lines ∼5% 
have a lower threshold of 0.2).

( ) ( )= − σ + σ µ − µ* /Z-factor 1 3 P N N P

With σN and σP, the SD of the negative and positive controls, and 
μN and μP the mean of the negative and positive controls, respec-
tively. Across all plates in a screen the mean and median Z-factors 
will be >0.4.

A subset of seven cell lines (A375, HT-29, PC-14, U-2-OS, SW620, 
C32, and MHH-ES-1) are screened in technical triplicate on six occa-
sions. This generates 18 replicates for every compound across each of 
the seven lines, provided all plates meet quality controls and enables 
reproducibility to be investigated. Correlations between single-agent 
and combination and synergy metrics for replicated cell lines are 
shown in Supplementary Fig. S1C.

In addition, we compare the response of each drug across all the 
technical and biological replicates for the seven replicate cell lines to 
identify any systematic error or inconsistency. Drugs were flagged as 
failing QC when they demonstrate the following: either significant 
inconsistency across two or more dose points, or the behavior is 
observed in two or more of the replicate lines. Compounds meeting 
these criteria were failed and removed from the screen.

Curve Fitting and Drug Responses
Fluorescent intensity measurements of drug-treated wells (CellTi-

ter Glo assay) were normalized to a cell growth inhibition scale 
between a maximum of 1 (mean of blank wells) and a minimum of 
0 (mean of DMSO control wells). Dose responses on this scale for 
individual library drugs are fitted to a two-parameter logistic curve 
using a nonlinear mixed effects model (51). The fitted response 
at the highest screened dose is reported as the single-agent Emax. 
Combination treatments are normalized but not fitted. As a precau-
tion against outlying results, the combo Emax is the second highest 
reported inhibition value for a given 7 × 7 matrix. Results are in Sup-
plementary Table S18.

Synergy Measurements
Synergy of combinations is measured using two metrics, Bliss 

excess (15) and HSA (16, 52). For Bliss excess, the single-agent activ-
ities of drug A and drug B must be expressed as a probability 
between 0 and 1 ( ≤ ≤ ≤ ≤E EA B0 1 and 0 1). The observed effect of 
the combination is also expressed as a probability: ( ≤ ≤EAB0 1). This 
means that the expected Bliss additive effect can be expressed as 

+ − = + −E E E E E E EA B A A B A B(1 ) . A positive “excess” over the expected 
Bliss additive effect defines a synergistic response. For HSA, a com-
bination of drug A and drug B is classified as synergistic if the effect 
of the combination is larger than the effect of either drug A alone or 
drug B alone, whichever is larger: a positive HSA value therefore indi-
cates synergy. Both metrics are reported as either the highest Bliss/
HSA value found across the entire 7 × 7 dose matrix (“Bliss matrix”, 
“HSA matrix”), or as the highest value measured across the 25 possible 
3 × 3 submatrices, or “windows”, across the 7 × 7 dose matrix (“Bliss 
window,” “HSA window). Synergy metrics are calculated in this way 
to provide global and local views of synergy to enable identification 
of local, dose-specific maxima of synergy that may be “canceled out” 
when considering the full dose matrix. During the course of screening, 
it was decided that the top two highest concentrations for the wee1 
inhibitor AZD1775 were too high to give biologically relevant results, 
and so for these combinations the 7 × 7 matrix was cut down to 5 × 5, 
removing the two highest doses of both drugs for AZD1775-contain-
ing combinations only. Results are in Supplementary Table S18.

Biomarkers
GDSCTools (20) was used to perform ANOVA biomarker discov-

ery using single-agent and combo Emax, and Bliss matrix as inputs. 
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Significance cutoffs of P  ≤  0.001 and FDR  ≤  10% and both Glass 
deltas ≥1 were applied to filter results. Biomarkers were identified in 
either pan-cancer, within common cancer types, or within specific 
genomic “basket” (common genotypes: TP53, KRAS, PIK3CA, MLL2, 
PTEN, BRAF) settings by subsetting the cell lines used for each ANOVA 
using information on cancer type from Cell Model Passports (11, 13), 
or information on mutational status in the multi-omics binary event 
matrix (13). 5,498,585 tests were performed, of which 11,611 passed 
significance thresholds. Results are in Supplementary Table S13.

Biomarker Features
A multi-omics binary event matrix (“MOBEM”) of mutational, gene 

fusion, CNA, and methylation features (number of features = 1,073) 
previously found to be informative for predicting single-agent drug 
response in cell lines (13) were used as a feature dataset for biomarker 
discovery (the “Sanger MOBEMs”). This was supplemented with 
additional binary genomic and molecular biology features (number 
of features = 586, the “AZ MOBEMs”) curated from public datasets. 
To identify CRISPR gene dependencies that are significantly associ-
ated with clinically relevant molecular alterations, we implemented 
a framework that integrates TCGA (The Cancer Genome Atlas; 
RRID:SCR_003193) data with DepMap (Cancer Dependency Map 
Portal; RRID:SCR_017655) annotations. These alterations are either 
recurrently mutated genes (indicated by the gene name) or recurrent 
chromosomal regions that are lost or gained (indicated as gain:cna 
or loss:cna and a gene name where a known cancer gene is present in 
that chromosomal segment). All clinically recurrent mutations and 
CNAs identified in each tumor type are mapped on to >1,000 cancer 
cell lines. We defined whether a gene was an oncogene or a tumor sup-
pressor gene using the OncoKB database (53) .Copy-number regions 
in cell lines were defined as “gain” or “loss” if log2(Segment_Mean) >1 
or ≤1, respectively, for that region. We defined for all common TCGA 
tumor types (The Cancer Genome Atlas; RRID:SCR_003193):

(i)  Driver-mutated cancer genes (CGs) specific for each tumor 
type [refs. 54, 55; TCGA (RRID:SCR_003193)]

(ii)  Recurrent copy-number regions amplified or deleted per 
tumor type (56)

(iii)  ER expression status (breast cancer) and ERBB2 (HER2) expression
(iv)  Microsatellite instability (MSI; ref. 57)

For ER/ERBB2 status, we used expression for ER and ERBB2 as 
defined by the CCLE team at the Broad Institute. For cell lines with 
RNA-sequencing (RNA-seq) data, they used a probabilistic model to 
classify the status. The classification was consistent in both RNA-seq 
and reverse-phase protein analysis, and with the previous knowledge. 
This classification was equivalent to log2(RPKM+1)  >  1.5. For cell 
lines for which they did not have RNA-seq data, the status from 
published data was used.

In addition, previously published RNA-seq gene expression data 
(21) was filtered to a panel of 672 genes representing known targets 
of the drugs used in the screen and their family members, genes 
encoding receptor tyrosine kinases, genes associated with the DNA 
damage superpathway (58), plus genes known to be clinically rel-
evant in the oncology clinic (22) and genes annotated as mutated 
in the MOBEM. The gene expression dataset was then binarized 
across the relevant cell line panel subsets by a Z score  ≥2 equating 
“GeneX_up” and a Z score ≤−2 equating to GeneX_down (number 
of features  =  1,344). In addition, binarized PAM50 status (number 
of features = 9; refs. 23, 24) was also used as a biomarker feature for 
breast carcinoma cell lines.

Protein Interaction and Synthetic Lethality Assessment
Protein interaction maps were generated in STRINGdb (59) with 

the following “source” filters applied–Experiments, Databases, Gene 
Fusions. Each edge captures confidence in the interaction with the 

minimum threshold of 0.4. Synthetic lethality assessment of all 
broadly active combination targets was performed using SynLethDB 
2.0 (60).

Enrichment Assessment of Synergistic Pathways  
Over Random

All synergistic combinations with targets and pathways (Supple-
mentary Table  S18) and implemented the threshold 0.1 HSA, 0.5 
Emax to define efficacious combinations (“n”). Next, we calculated 
the total number of combinations per pathway using the full data 
matrix represented in Fig.  1C (“Nc”). To assess randomness within 
the combination–pathway relationship, we generated random num-
bers (from 1-n) and assigned them to each pathway combination. 
This was performed by bootstrapping 10-fold with an upper limit 
of “n” and calculating average for each pathway combo category 
(“nb”). The number of pathway combinations for only synergistic 
combinations per category (“nc”). Ratio of pathway combinations 
with synergistic combinations versus total number of combinations. 
“Es = nc/Nc” for each pathway category - Es (enrichment for synergy). 
Pathway combinations with weight from bootstrap “Er = nb/Nc” for 
each pathway category - Er (enrichment by random). Enriched for 
synergy over random if Es > Er. Code for this analysis is included in 
the publication’s Github repository.

Additional Cell Culture
WSU-DLCL2 cells were maintained in RPMI1640 (Gibco) supple-

mented with 10% (v:v) heat-inactivated FBS (Sigma Aldrich, catalog no. 
F4135), 2 mmol/L l-Glutamine, and 50 U/mL penicillin–streptomycin.

NOMO1 cells were obtained from DSMZ and maintained in 
RPMI1640 (Gibco) supplemented with 10% FBS and 5% l-Glutamine.

AN3-CA cells were obtained from ATCC and maintained with 
DMEM supplemented with 1% FBS and 1% l-Glutamine. HEC1 cells 
were obtained from ATCC and maintained with McCoy 5a medium 
modified supplemented with 10% FBS. MFE-280 cells were obtained 
by European Collection of Animal Cell Cultures and MFE-296 cells 
were obtained from DSMZ. Both cells were maintained in minimum 
essential medium with 10% FBS and 1% l-Glutamine. All cells were 
incubated at 37°C under 5% CO2. All cell lines were authenticated 
and tested negative for Mycoplasma contamination.

Drug Treatments and Cell Assays
For AZD2811 in combination with venetoclax studies, cells were 

seeded at 0.5E6 cells/mL in culture medium containing either 50 μmol/L 
Q-VD-OPH (Cayman Chemical; item no. 15260) pan-caspase inhibitor 
or vehicle 16 hours prior to dosing with compounds. Compounds were 
solubilized in DMSO at a stock concentration of 10 mmol/L and diluted 
in sterile PBS to a 10X solution. Falcon 96-well White Flat Bottom plates 
(Corning; catalog no. 353296) were seeded with 10X compounds and 
cells were added on top for a final assay volume of 100 μL/well. Stau-
rosporine (5 μmol/L; Sigma Aldrich; catalog no. S5921) was used as a 
positive control for cell death. After 72 hours, 50 μL of CellTiter Glo 
(Promega; catalog no. G7572) was added on top of the cells, the plates 
were shaken for 2 minutes, and then left to incubate protected from light 
at room temperature for 30 minutes before reading luminescence on the 
Synergy Neo2 (BioTek) plate reader.

The Caspase-Glo-3/7 time course assay was conducted similarly to 
the 3-day growth assay, except that 100 μL/well of Caspase-Glo-3/7 
(Promega; catalog no. G8090) was added onto the cells at the time 
point. Separate plates were used for each time point.

For the AKT inhibitor capivasertib in combination with the MCL1 
inhibitor AZD5991 studies, cells were seeded overnight on white 
opaque plates (384w; Corning) at 2,500–5,000 cells per well in a 30 
μL volume. Combinations were dosed using 5-point half-log dilu-
tions at indicated doses using an Echo 555 acoustic liquid dispenser 
(Labcyte). Cell viability was measured at indicated time points after 

https://paperpile.com/c/lDSTZS/WdYRiorPx0Q/LIo3j
https://paperpile.com/c/lDSTZS/jcwKQorPx0Q/SfnZO
https://paperpile.com/c/lDSTZS/A0SC7orPx0Q/IABIU
https://paperpile.com/c/lDSTZS/A0SC7orPx0Q/IABIU
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drug incubation using CellTiter-Glo (Promega). The percentage of 
viability was calculated by normalizing drug-induced luminescent 
measurements to a negative control (DMSO only). For pretreatment 
studies, DMSO or QVD was added to the media when cells were 
seeded; 16 hours later the combination was added and cell viability 
was measured at indicated time points.

For measurement of caspase activation, cells were incubated with 
compounds for 6 hours followed by addition of Caspase-Glo 3/7 
(Promega) following the manufacturer-supplied protocol. The per-
centage of caspase activation was calculated by normalizing drug-
induced luminescent measurements to maximum (100% mixture of 
0.5 mmol/L AZD5991 and 0.5 mmol/L AZD4320 inhibitors) and 
minimum (DMSO only) controls.

For drug treatments used for light microscopy or harvesting 
protein, cells were seeded overnight in 6-well plates (Corning) at 
30%–80% confluency. Compounds were manually added at indicated 
doses and harvested at indicated time points.

For the cell viability 6 × 6 drug combination matrix studies, 1,000–
2,000 cells were seeded in 384-well black plates (Greiner Bio-One Ltd, 
#781090) and incubated overnight at 37°C, 5% CO2. Cells were dosed 
using an Echo 555 acoustic liquid dispenser (Labcyte). Cell viability 
was measured at the time of dosing (day 0) and 72 hours after drug 
incubation using CellTiter-Glo (Promega) according to the manu-
facturer’s instructions. Cell viability values were normalized to day 0 
and the day 3 DMSO and were analyzed using Genedata Screener to 
generate heat maps and calculate the HSA synergy score.

For siRNA experiments, AN3-CA (30 nmol/L siRNA) and MFE-296 
(40 nmol/L siRNA) with 9,000 cells per 96 well) were reverse trans-
fected using Lipofectamine RNAimax and siRNAs of a nontargeting 
pool (Dharmacon, D-001810–10–05) or a MCL1 pool (Dharmacon, 
L-004501–00–0005). After 18 hours, cells were treated with a drug 
dose range of 0.001 to 10 μmol/L. Seventy-four hours later, viability 
was measured with CTG and signal normalized to the DMSO control.

Western Blot Analysis
Cells were collected and centrifuged before the pellet was lysed in a 

cold RIPPA buffer (Thermo Fisher Scientific, 89901) supplemented with 
HALT protease and phosphatase inhibitor cocktail (Thermo Fisher Sci-
entific, catalog no. 78440). Samples were prepared with NuPAGE LDS 
Sample Buffer (4X; Thermo Fisher Scientific, catalog no. NP0007) 
and boiled at 95°C for 5 minutes. Protein samples were quantified 
using Pierce BCA Protein Assay Kit (Thermo Fisher Scientific, 23225) 
according to the manufacturer’s instructions before equal amounts of 
proteins were loaded and separated on to 4%–12% NuPAGE or Bolt Bis-
Tris protein gels, transferred to nitrocellulose membranes, and blocked 
with 5% (wt/vol) nonfat dry milk in TBST [20 mmol/L Tris-HCl (pH 
7.6), 137 mmol/L NaCl, 0.1% Tween-20]. Membranes were probed 
with indicated primary antibodies overnight at 4°C. Horseradish per-
oxidase–conjugated secondary antibodies [Cell Signaling Technology 
(CST), 7074; 1:2,000] were diluted in 5% (wt/vol) nonfat dry milk in 
TBST and detected on autoradiographic films or using G:Box gel doc 
system (Syngene) or Amersham ImageQuant 800 imager (Cytiva) after 
incubating with the ECL or SuperSignal West Dura reagents (Pierce).

Antibodies
The following antibodies were used in this study: pPRAS40(T246) 

catalog number CST 2997; pAKT(S473) CST9271; total AKT CST 
4691; cleaved PARP CST 9542; cleaved caspase 3 CST 9664; vinculin 
Sigma V9131; GAPDH CST 2118; pERK CST 9101; BIM CST 2933; 
β-Tubulin CST 2146; MCL1 CST 5453.

Xenograft Efficacy Studies
All experimental work involving the use of laboratory animals was 

conducted in accordance with the recommendations set forth in the 
Guide for the Care and Use of Laboratory Animals, 8th edition. Mice 

were housed under pathogen-free conditions in individual venti-
lated cages at the Association for the Assessment and Accreditation 
of Laboratory Animal Care accredited facilities at AstraZeneca or 
Champions Oncology (Rockville, MD). All studies were reviewed and 
approved by the respective Institutional Animal Care and Use Com-
mittees (IACUC); work at Champions Oncology was also reviewed 
for compliance with AstraZeneca’s global ethics standards. All results 
were reported following the Animal Research: Reporting In Vivo 
experiments guidelines.

C.B.-17 scid mice were purchased from Charles River Labora-
tories for the WSU-DLCL2 study or Taconic for the NOMO-1 
study. —Five- to 8-week-old mice were implanted with either 5 × 106 
luciferase-tagged WSU-DLCL2 tumor cells (WSU-DLCL2luc) or 
2 × 106 NOMO-1 cells with 50% Matrigel (Corning). Tumor volumes 
(measured by caliper), animal body weight, and tumor condition 
were recorded twice weekly for the duration of the study. The tumor 
volume was calculated using the formula: length (mm)  ×  width 
(mm)2/0.52. Tumor growth inhibition from the start of treatment 
was assessed by comparison of the differences in tumor volume 
between control and treated groups.

Statistical significance was evaluated using a two-way ANOVA with 
Tukey test. Statistical significance is identified as follows: * 0.05  < 
P < 0.01, ** 0.01 < P < 0.001. For efficacy studies, mice were rando-
mized on the basis of tumor volumes using stratified sampling, and 
enrolled into control and treatment groups.

Software
Figures 1A and 3A were created using a licensed version of BioRen-

der.com. Figures 4A and B, 5A, and 6A were generated using TIBCO 
Spotfire Analyze. Matrices in Figs. 6C, D, F and Supplementary Figs. 
S8A–S8C, S9A–S9C, S11A and S11B, S13A and S13B, S14A and S14B, 
and S15A were generated in Genedata Screener.

Code Availability
Analysis code for the manuscript figures, biomarkers, and screen-

ing data fitting are available in the following repositories:

(i) https://github.com/eac54/Large-scale-pan-cancer-screening
(ii) https://github.com/CancerRxGene/gdscmatrixanalyser

Data Availability
Screening data are available through Figshare (https://figshare.

com/projects/Large-scale_pan-cancer_cell_line_screening_identifies_
actionable_and_effective_drug_combinations/163378). Combination 
response data are available via the GDSC Combinations Website 
(https://gdsc-combinations.depmap.sanger.ac.uk/). Combination 
response data are visualized and explored at the screen, cancer type, 
combination, and cell line combination level. In addition, there are 
links to other widely used cancer pharmacogenomics resources such 
as CancerRXGene (61), Cell Model Passports (11, 61), Depmap (38), 
and Project SCORE (62), enabling researchers to fully explore their 
combinations and cancer type of interest in the context of other large 
public pharmacogenomic datasets.
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