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Abstract

Premise of study: Botanists have long been interested in the reasons for genetic variation 

among individuals, populations, and species of plants. The anthocyanin pathway is ideal for 

studying the evolution of such phenotypic variation.

Methods: We used a combination of quantitative trait loci mapping and association studies to 

understand the genetic basis of variation in five anthocyanin phenotypes including calyx, corolla, 

and leaf coloration patterns that vary within and among populations of Mimulus guttatus. We then 

examined what genes might be responsible for this phenotypic variation and whether one of the 

traits, calyx spotting, is randomly distributed across the geographic range of the species.

Key results: All five phenotypes in M. guttatus were primarily controlled by the same major 

locus (PLA1), which contains a tandem array of three R2R3-MYB genes known to be involved 

in the evolution of flower color in a related species of Mimulus. Calyx spotting was nonrandomly 

distributed across the range of M. guttatus and correlated with multiple climate variables.

Conclusions: The results of this study suggest that variation in R2R3-MYB genes is the primary 

cause of potentially important anthocyanin phenotypic variation within and among populations of 

M. guttatus, a finding consistent with recent theoretical and empirical research on flower color 

evolution.
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Botanists have long been interested in why plant species vary in morphological, 

physiological, and life-history traits (Turesson, 1922; Clausen et al., 1940; Stebbins, 1950; 

Grant, 1981; Briggs and Walters, 1997). With recent advances in molecular biology and 

4Author for correspondence (davidbryantlowry@gmail.com). 

HHS Public Access
Author manuscript
Am J Bot. Author manuscript; available in PMC 2024 May 01.

Published in final edited form as:
Am J Bot. 2012 January ; 99(1): 82–91. doi:10.3732/ajb.1100285.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



statistical techniques, it is has now become feasible to determine the genetic mechanisms 

underlying this variation among plants (Lander and Botstein, 1989; Hancock et al., 2011). 

As a result of this recent progress, there is much interest in determining the extent to 

which the same or different loci are involved in phenotypic variation within and among 

populations, between species, and across environmental conditions (Feder and Mitchell-

Olds, 2003; Hoekstra and Coyne, 2007; Mitchell-Olds et al., 2007; Stinchcombe and 

Hoekstra, 2008; Stern and Orgogozo, 2008; Anderson et al., 2011).

The anthocyanin biosynthetic pathway, which is responsible for red, blue, and purple 

pigmentation in plants, has become a model for understanding the evolution of phenotypic 

diversity (Rausher, 2008; Des Marais and Rausher, 2008; Martin et al., 2010; Toleno 

et al., 2010; Hopkins and Rausher, 2011). Production of anthocyanins involves a 

small set of structural pathway genes (chalcone synthase [CHS], chalcone isomerase 

[CHI], flavonoid-3-hydroxylase [F3H], flavonoid-3′-hydroxylase [F3′H], flavonoid-3′,5′-
hydroxylase [F3′,5′H], dihydroflavonol-4-reductase [DFR], anthocyanidin synthase [ANS]) 

that metabolize anthocyanins from precursor molecules (Streisfeld and Rausher, 2011). 

Three types of transcription factors function as a complex to control and regulate the 

expression of the structural genes in the anthocyanin pathway. These regulatory genes are 

R2R3-MYBs (MYB), WD40-repeat (WDR) genes, and basic helix-loop-helix (bHLH) genes 

(Koes et al., 2005; Schwinn et al., 2006).

Most of the focus by evolutionary biologists on anthocyanins has been directed toward 

the evolution of flower color because of its role in attracting different types of pollinators 

(Whittall et al., 2006; Hoballah et al., 2007; Des Marais and Rausher, 2008; Rausher, 

2008; Toleno et al., 2010). Recently, Streisfeld and Rausher (2011) found that across plant 

species, evolutionary changes in pigmentation intensity are preferentially mediated by the 

fixation of transcription factors over structural pathway genes and that MYB transcription 

factors are preferentially fixed over bHLH and WDR transcription factors. The fixation of 

protein coding changes in structural pathway genes are thought to be rare because they incur 

substantial deleterious pleiotropic effects by affecting anthocyanin production in all plant 

tissues. Streisfeld and Rausher also argued that MYBs are most likely to be involved in the 

evolution of pigmentation intensity because, unlike bHLH and WDR genes, R2R3-MYBs 

are very specific in only regulating anthocyanin production and are more tissue specific 

in their action (Quattrocchio et al., 2006; Schwinn et al., 2006; Gonzalez et al., 2008; 

Martin et al., 2010). Thus, mutations in R2R3-MYBs are most likely to be involved in the 

evolution of pigmentation intensity because they are the least likely of anthocyanin genes 

to cause widespread negative pleiotropic effects. While such evolutionary genetic patterns 

have come into focus for the evolution of floral anthocyanins, fewer studies have examined 

the genetic basis of natural variation in vegetative anthocyanin phenotypes (Yamazaki et 

al., 2003; Kobayashi et al., 2009). Anthocyanin production in vegetative tissue may be very 

important ecologically because anthocyanins and their precursors are thought to be involved 

in plant response to abiotic and biotic stresses such as drought, salt, cold, UV exposure, 

metal toxicity, and herbivores (reviewed in Chalker-Scott, 2002; Gould, 2004). Rarely has 

the genetic basis of both vegetative and floral anthocyanin polymorphism been examined in 

the same species (Albert et al., 2011).
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Polymorphisms in anthocyanin pigmentation patterns have been well documented and 

shown to have simple genetic control in the Mimulus guttatus species complex (Ganders et 

al., 1980; Griffiths et al., 1982; Griffiths and Ganders, 1983) as well as in the closely related 

Chilean Mimulus luteus species complex (Cooley et al., 2008; Cooley and Willis, 2009). 

Recently, Cooley et al. (2011) showed that parallel gains of anthocyanin production in 

petal lobes of South American Mimulus species are caused by the evolution of R2R3-MYB 

transcription factors. Sequencing of the M. guttatus genome has revealed five paralogs 

of anthocyanin R2R3-MYBs. Three paralogs (MgMYB1, MgMYB2, MgMYB3) occur as 

a tandem array on chromosome 8 in the PLA1 locus, while the other two (MgMYB4, 

MgMYB5) are located in an unlinked tandem array on chromosome 12 in the PLA2 locus 

(Cooley et al., 2011). The PLA1 and PLA2 MYBs comprise two distinct phylogenetic 

clusters, with the PLA1 cluster most closely related to ROSEA1, ROSEA2, and VENOSA 
of Antirrhinum (Cooley et al., 2011). The MYB tandem array of PLA1 is involved in the 

evolution of petal lobe pigmentation in M. cupreus, while the tandem array of PLA2 is 

involved in parallel pigment evolution in M. luteus var. variegatus (Cooley et al., 2011). In 

M. guttatus, the chromosome 8 tandem array is located within a geographically widespread 

chromosomal inversion polymorphism that is known to pleiotropically control multiple 

adaptive traits that differentiate annual and perennial forms of that species (Lowry and 

Willis, 2010).

In this study, we focused on understanding the phenotypic variation in three vegetative and 

two floral anthocyanin polymorphisms that segregate within M. guttatus (Fig. 1f). Some 

of these phenotypes are polymorphic within populations, while others are fixed between 

populations. Phenotypes also range from environmentally inducible to constitutively 

expressed and thus represent a broad spectrum of interesting botanical variation. Overall, our 

study focused on answering three questions. (1) What portion of the anthocyanin phenotypes 

is controlled by the candidate PLA1 locus? (2) Are there any other candidate anthocyanin 

genes, besides MYBs, that could explain the control of anthocyanin pigmentation by PLA1? 

(3) Is variation in anthocyanin traits randomly distributed across the range of M. guttatus, or 

is it correlated with any particular environmental variables or ecoregions?

MATERIALS AND METHODS

Study system

All members of the M. guttatus species complex have yellow flowers due to the expression 

of carotenoids, with slight variation in red anthocyanin spotting on the tongue of the corolla 

tube (Wu et al., 2008). However, vegetative anthocyanin polymorphisms are widespread 

within and among populations of M. guttatus (Ganders et al., 1980; Griffiths and Ganders, 

1983). Previous controlled crosses have shown that leaf blotching polymorphisms (Fig. 1b) 

as well as spotting of floral calyxes (Fig. 1d) are caused by single Mendelian loci (Ganders 

et al., 1980; Griffiths et al., 1982). Additional polymorphisms, including anthocyanin 

production on the adaxial (Fig. 1a) and abaxial (Fig. 1b) sides of leaves, as well as at 

the proximal end of the corolla tube (Fig. 1f), are commonly observed in the field (Table 1).

LOWRY et al. Page 3

Am J Bot. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Variation in leaf color pattern across environmental conditions

While conducting previous experiments (Lowry et al., 2009), we observed that plants 

differentially responded to environmental variation based on the population from which 

they were collected. Plants from a coastal perennial population (DUN; Oregon Sand Dunes) 

produced anthocyanins at the base of the adaxial (upper) side of their leaves under an 

8-h day photoperiod, while plants from an inland annual montane population (IM; Oregon 

Cascade Mountains) did not. In contrast, under an 18-h day length, DUN plants produced 

no adaxial coloration, but the entire abaxial (lower) surface of IM plants was covered by 

anthocyanins. To evaluate the genetic basis of this genotype by environment interaction in 

anthocyanin phenotypic response, we mapped QTLs using recombinant inbred lines (RILs). 

The creation and genotyping of the RILs is described in detail elsewhere (Hall and Willis, 

2006; Lowry et al., 2009). Briefly, RILs were created from a cross between an inbred line 

(IM62) derived from the IM population and an outbred individual from the DUN population. 

An F2 population of this cross was selfed for 6–8 generations to create the RILs. The 

RILs were then genotyped with a set of exon-primed intron-crossing (EPIC) markers (http://

www.mimulusevolution.org) derived from expressed sequence tags (ESTs). A genetic map 

for 186 of the RILs was assembled with 189 markers leading to the recovery of 14 linkage 

groups that matched the known number of chromosomes.

To determine the genetic architecture of the leaf coloration patterns across environmental 

conditions, we grew RILs under two conditions: short and long day lengths. RILs were 

germinated in 2.5-in2 plastic pots filled with Fafard 4P soil. Replicates of each line were 

distributed between a growth chamber set for 8-h days and a room in the Duke University 

greenhouses set for 18-h days. For all experiments in this study, temperatures were set to 

21°C for light periods and 16°C for dark periods at a constant 30% humidity. A total of 

2–6 replicates of 164 RILs were grown under 8-h days, and 167 RILs were grown under 

18-h days. Overall, only 158 RILs overlapped between experiments due to problems with 

germination and subsequent survival. Inbred lines from the parental populations of the RILs, 

DUN and IM, were also grown under both conditions (see Table 2 for the geographic 

locations of populations used in this study).

At 4 weeks after germination, RILs were scored for the presence or absence of adaxial 

leaf color pattern under 8-h days and abaxial leaf coloration under 18-h days. Thus, each 

individual in the experiment received a score of 1 for presence and 0 for absence of the trait. 

Some RILs contained contradicting individual replicates, where some replicates of the RIL 

expressed the phenotype and other replicates did not. Such a pattern is likely due to residual 

heterozygosity within RILs or to incomplete penetrance of the trait. For these polymorphic 

RILs, the proportion of replicates expressing the polymorphism was used as the phenotypic 

score, with the total score per RIL ranging from 0 to 1. To map the location of the 

environmentally induced leaf color polymorphisms, we used composite interval mapping 

implemented with Haley-Knott regression using the CIM command in R/qtl (Broman et al., 

2003), a module of the statistical software R (v. 2.12; www.r-project.org). All traits were 

analyzed with six covariate markers and a window size of 15 cM. For establishing alpha 

= 0.05 significant thresholds, the data were permuted 1000 times per each trait in each 
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experiment. The data for these analyses can be found in Appendix S1 (see Supplemental 

Data with the online version of this article).

Within population variation in leaf blotching

Previously, Griffiths and Ganders (1983) documented natural variation in leaf blotching on 

the abaxial side of leaves in a population of M. guttatus growing in an exposed serpentine 

community at Anacortes Washington Park (AWP) along the Puget Sound of Washington 

state. To determine whether the segregating leaf blotching polymorphism is associated 

with the PLA1 locus, we conducted a single marker analysis association study with lines 

collected from the AWP population. This single-marker analysis is not whole genome QTL 

mapping. Instead, the goal is to use genotypes from markers in the vicinity of the PLA1 
locus to ask whether PLA1 is associated with a particular trait of interest.

For the single-marker association analysis, seeds from 10 families collected from AWP 

were germinated and then screened for abaxial leaf blotching. Plants with blotched leaves 

were self-fertilized, and progeny were grown from each of these families under 16-h days 

in the Duke University greenhouses. We identified two families that contained plants with 

and without blotched leaves, as would be predicted if the parent was heterozygous at 

the color blotch locus. For one of these families, we phenotyped 66 plants for presence 

(1) and absence (0) of leaf blotching and collected tissue for DNA extractions. All DNA 

extractions in this study were conducted using a modified CTAB extraction protocol (Kelly 

and Willis, 1998). Each individual was then genotyped at locus MgSTS173, which is a 

polymorphic marker located on scaffold 11 of the M. guttatus genome v. 2.0 (Fig. 2). A 

likelihood-ratio χ2 test was conducted to determine whether there was an association of 

genotype at MgSTS173 with the binary leaf blotch polymorphism. MgSTS markers are 

the same EPIC markers used for the creation of the RIL map as described in the previous 

section.

Among population variation in calyx spotting

To determine whether the calyx spot polymorphism (Fig. 1d) is associated with the PLA1 
locus, we crossed an inbred line from an inland annual population (LMC) to an inbred line 

from a coastal perennial population (SWB). All plants from the LMC population are spotted, 

while all plants from the SWB population lack spots. A total of 153 F2 individuals of the 

LMC × SWB cross were grown in the Duke University greenhouse under 18-h days. The 

F2’s were scored for the presence (1) or absence (0) of calyx spots 10 d after flowering. The 

F2’s were then genotyped with Micro6046, which is a polymorphic microsatellite marker 

between LMC and SWB located on scaffold 11 (Fig. 2). Micro6046 should be completely 

genetically linked to the three MYB arrays because both are located within the chromosomal 

inversion and LMC and SWB have opposite orientation of the inversion (Lowry and 

Willis, 2010). We conducted single-marker association analysis between Micro6046 and 

the bionomial calyx spotting trait with a likelihood-ratio χ2 test.

To set a boundary on the genetic position for control of calyx spotting, we crossed LMC to 

IM (the RIL parent from inland habitat) and selfed an F1 hybrid to create the F2 generation. 

IM was used instead of SWB because it has the same orientation of the chromosomal 
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inversion as LMC (Lowry et al., 2009; Lowry and Willis, 2010). We selfed the F1 to produce 

an F2 generation and grew these F2’s in the Duke University greenhouse under 18-h days. 

We then screened the F2’s for recombination events between the polymorphic markers 

MgSTS571 and MgSTS278, which flank the tandem R2R3-MYB locus (Fig. 2). To confirm 

that the calyx-spotting locus is between those two markers, we tested progeny by scoring 

calyx phenotypes in progeny families of recombinant individuals.

Red corolla banding polymorphism

Banding at the distal end of the corolla tube (Fig. 1f) is also a widely distributed 

polymorphism in M. guttatus. To determine whether there is an association of red corolla 

banding with PLA1 88 F2 plants were selected and scored for presence/absence of calyx 

spotting and corolla banding in the IM × LMC F2 mapping population. The IM parent 

(IM62) had red corolla banding, while the LMC parent did not. These F2’s were then 

genotyped at MgSTS278 and MgSTS571 and single-marker likelihood-ratio χ2 tests were 

conducted as described already.

Location of anthocyanin genes in Mimulus genome

To determine whether other candidate anthocyanin genes could underlie the pigmentation 

patterns controlled associated with the PLA1 locus, we conducted tBLASTx searches 

to identify the genomic location of homologues of known anthocyanin structural and 

regulatory genes. Searches were conducted with the Mimulus genome v2.0 (http://

www.mimulusevolution.org) to identify the chromosome location of each gene.

Geographic distribution of calyx spotting

There has been extensive debate over the adaptive role of anthocyanin polymorphisms 

(Chalker-Scott, 2002; Gould, 2004; Umbach et al., 2009; Jaakola and Hohtola, 2010). If 

a particular trait is locally adaptive to particular environmental conditions its geographic 

distribution should be nonrandomly spread across the distribution of a species, such that its 

presence is correlated with a set of environmental variables. In this study, we focused on the 

geographic distribution of calyx spotting because it can be easily scored, and unlike many 

other anthocyanin polymorphisms, it is robust to environmental perturbation.

To determine the spatial distribution of calyx spotting, we grew (16-h days) and scored 

calyx spotting on one plant from multiple populations of the Duke University M. guttatus 
collections. Populations were collected from over the entirety of western North America 

from Mexico in the south to southeastern Alaska in the north and as far to the east 

as the front range of the Rocky Mountains in Colorado. Plants were scored for the 

presence or absence of calyx spots. Our samples grown in the growth chamber were 

heavily biased toward the Pacific States (California, Oregon, Washington) and British 

Columbia. To broaden sampling of the distribution of calyx spotting, we also examined the 

Mimulus collections at the California Academy of Science in San Francisco. To determine 

the location of populations from herbarium vouchers, as well as samples without GPS 

coordinates from Duke, we used key word searches and the link function with Google Maps 

(http://www.maps.google.com).
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To test whether calyx spotting occurred spatially at random or whether its occurrence 

was spatially autocorrelated, we used a Moran’s I test. We then tested whether the spatial 

pattern in calyx spotting was associated with environmental variables. Ecoregion data were 

obtained from the Commission for Environmental Cooperation (Level I, CEC, 1997). We 

tested whether spatial patterning was independent of ecoregion, using a Fisher’s exact test, 

because occurrences were few in some ecoregions. We also tested whether calyx spotting 

was independent of whether plants were found within 100 km of the coast, using a χ2 

test. Climate data were obtained from two global sources: WorldClim at 30″ (Hijmans et 

al., 2005) and Climate Research Unit (CRU) at 10′ resolutions. WorldClim data included 

mean monthly minimum, mean, and maximum temperatures as well as mean monthly 

precipitation. Furthermore, WorldClim contains derived variables of biological importance. 

The CRU data were used to estimate vapor pressure deficit (VPD). The VPD is the 

difference between water vapor partial pressure and maximum potential pressure at a given 

air temperature and reflects evaporative demand on plants (Johnson and Ferrell, 1983). We 

calculated the principal components (PC) of altitude and climate variables and took the first 

five axes, which cumulatively explained 95% of climate variation among plants. We tested 

whether PCs were significantly different between plants with vs. without calyx spotting, 

using nonparameteric Wilcoxon signed-rank tests. We also tested whether each of the 80 

climate variables included were significantly different between plants with vs. without calyx 

spotting. All geographic information system (GIS) calculations were done with the program 

ArcGIS 10 (Esri, Redlands, California, USA).

RESULTS

Variation in leaf color pattern across environmental conditions

We determined the genetic architecture of leaf color polymorphism across different day 

length conditions using previously genotyped RILs. Under 18-h days, there were 52 RILs 

(31%) where all replicates produced red abaxial leaf coloration. For 62 (37%) RILs, none of 

replicates produced abaxial coloration. A total of 53 RILs (32%) were polymorphic and thus 

included a mix of replicates with and without abaxial coloration.

Under 8-h days, there were 37 (23%) RILs where all replicates produced adaxial leaf 

coloration. For 83 RILs (51%), none of the replicates produced adaxial coloration. For 

44 of the RILs (27%), there was a mix of replicates with and without adaxial coloration. 

There was a strong negative relationship between abaxial leaf coloration under 18-h days vs. 

adaxial leaf coloration under 8-h days (R2 = 0.24, F1,157 = 49.87, P < 0.0001).

We mapped only one large significant QTL for leaf coloration in both 8- and 18-h days. The 

significance threshold for adaxial coloration in 8-h days was LOD = 4.09 and for abaxial 

coloration in 18-h days was LOD = 4.10. Both the abaxial and adaxial QTLs colocalized 

on linkage group eight with the peaks centered at the location of the previously identified 

chromosomal inversion (Fig. 2). We detected no other significant QTLs. Interestingly, leaf 

color in the two conditions was controlled by different alleles at the same locus. In the 8-h 

condition, adaxial leaf color was associated with the DUN allele, while abaxial leaf color 

was associated with the IM allele in the 18-h conditions (Fig. 2).
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Within population variation in leaf blotching

The single marker analysis revealed a strong association between the leaf blotching 

polymorphism within the AWP population and the PLA1 locus. Leaf blotching was highly 

associated with genotype at marker MgSTS173 (χ2 = 27.08, df = 2, P < 0.0001; Table 3). 

Consistent with Griffiths et al. (1982), leaf blotching was dominant in its action, as 87.5% of 

heterozygotes at MgSTS173 had blotched leaves. While this was a strong association, it was 

not perfect because 9 of 66 (13.6%) individuals did not have phenotypes that matched the 

expectation of a single dominant Mendelian locus.

Among population variation in calyx spotting

Single-marker analysis established that calyx spotting in the LMC × SWB cross is also 

associated with PLA1. Overall, 107 (70%) of the F2’s had calyx spotting, while 46 (30%) 

had no spotting. There was a very strong association between calyx spotting and Micro6046 
(χ2 = 78.22, df = 2, P < 0.0001, Table 3). These results are consistent with Griffiths and 

Ganders (1983) in that a single dominant locus controls the calyx spotting polymorphism. 

However, there was not a perfect association between this locus and color spotting in that 

21 (13.7%) had genotypes that were discordant with their phenotype. Our progeny testing 

of the IM × LMC cross established that the calyx spotting locus maps between the markers 

MgSTS571 and MgSTS278.

Red corolla banding polymorphism

In the IM × LMC F2 mapping population, genetic analysis revealed that calyx spotting and 

red corolla banding are associated with alternative alleles linked to PLA1 (Table 3). Calyx 

spotting was under dominant control of the LMC allele (MgSTS278, χ2 = 47.18, df = 2, P 
< 0.0001), while red corolla banding is under dominant control of the IM allele (MgSTS278, 

χ2 = 80.78, df = 2, P < 0.0001). Only individuals heterozygous at PLA1 expressed both 

calyx spotting and red corolla banding phenotypes. Heterozygous individuals were defined 

as plants containing both LMC and IM alleles at MgSTS278 and/or MgSTS571.

Location of anthocyanin genes in Mimulus genome

Every homologue of anthocyanin structural genes are located on chromosomes other than 

8, except for dihydroflavonol 4-reductase (DFR) and a homologue of F3′,5′H, which are 

both located at the opposite end of chromosome 8 from the three R2R3-MYB arrays (Fig. 2; 

Table 4). The homologue of DFR has been made into a marker that has been confirmed to 

segregate independently (100.77 cM) of the chromosomal inversion in the DUN × IM RIL 

mapping population (Lowry et al., 2009). It should be noted that we cannot rule out one 

homologue of the F3′H or F3′,5′H as being located on chromosome 8 because it blasts to a 

small sequence scaffold (1476), which has not yet been mapped to a chromosome.

Other potential regulatory genes that interact with R2R3-MYB genes to control anthocyanin 

production are bHLH- and WD40-type genes. Homologues of anthocyanin bHLH genes 

were all located on chromosomes other than eight. One anthocyanin WD40 type was found 

on chromosome 8 (Fig. 2). This WD40 gene was located on scaffold 12 between the 

markers MgSTS288 and MgSTS381. Those markers are located at 33.01 cM and 52.42 cM, 
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respectively, from the chromosomal inversion in the DUN × IM RIL mapping population 

(Lowry et al., 2009).

Geographic distribution of calyx spotting

Overall, we scored the presence or absence of calyx spotting in 155 accessions from 

the Duke University seed stock center and 200 vouchers from the California Academy 

herbarium collections. Calyx spotting is a widespread polymorphism found throughout 

much of the range of the M. guttatus species complex, occurring in 27% of the population 

accessions surveyed (Fig. 3). Spatial distribution of calyx spotting was significantly 

spatially autocorrelated (Moran’s I = 0.11, P < 10−12). Spotting was more common in 

plants from within 100 km of the coast (χ2 = 6.04, df = 1, P = 0.01). Spotting also 

occurred nonrandomly with respect to ecoregion (Fisher’s exact test, P < 10−4). Among 

the ecoregions with a large number of collections (>55), mediterranean California and the 

North American desert ecoregions differed most with respect to proportion of plants with 

spotting, 41% compared to 14%, respectively. Plants with vs. without spots had significantly 

different climates along the second (Wilcoxon test, W = 7378, P < 10−4) and third PC 

(Wilcoxon test, W = 13 025, P < 10−4; Fig. 4) but not for other PC (α = 0.05). Plants 

with spotting had higher values for the second PC, which was positively correlated to winter 

precipitation, wet precipitation extremes, and negatively correlated to annual temperature 

variability (explaining 26% of climate variation). Plants with spotting had lower values 

along the third PC, which was positively correlated to summer precipitation and negatively 

correlated to precipitation and temperature variability (explaining 7% of climate variation). 

Among individual climate variables, over half (41/80) were significantly different among 

plants with vs. without spotting. The two climate variables that differed most according to 

spotting were the variability (CV) of monthly precipitation (Wilcoxon test, W = 6751.5, P 
< 10−6; Fig. 3), which was greater among plants with spotting and negatively correlated to 

PC3, and temperature annual range (Wilcoxon test, W = 13133.5, P < 10−5), which was 

lower among plants with spotting and negatively correlated to PC2.

DISCUSSION

Overall, this study has contributed to a more detailed understanding of causes and 

distribution of anthocyanin phenotypic variation in M. guttatus. In our study, unlike most 

other studies of anthocyanins, we examined the genetic basis of both floral and vegetative 

variation (but see Albert et al., 2011). All three vegetative anthocyanin polymorphisms and 

two floral polymorphisms are controlled primarily by the same major locus, PLA1, and in 

all cases the presence of the anthocyanin phenotype is dominant. This variation is distributed 

within and among populations, and for at least two phenotypes, PLA1 mediates genotype 

× environment interactions for anthocyanin production. The cluster of three R2R3-MYB 
genes in the PLA1 region is likely to be involved in the evolution of natural variation in 

these traits, which is consistent with prevailing theory on the evolution of the anthocyanin 

production pathway. Finally, calyx spotting was correlated with multiple climate variables, 

thus generating hypotheses for future inquiry to determine the evolutionary causes of 

maintenance of this widespread polymorphism.
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The genetic architecture of anthocyanin polymorphisms

While our study provides strong evidence for a major role of the PLA1 locus in the evolution 

of the anthocyanin polymorphisms, there was not always a perfect association of markers 

and traits in our study. Possible reasons for this imperfect association include effects of 

modifier loci, incomplete penetrance, residual heterozygosity (in the case of the RILs), 

genotyping error, phenotyping error, and/or recombination between the causative gene and 

the polymorphic marker. Regardless, a gene or genes in the region of PLA1 controls a major 

component of variation in all five of the M. guttatus traits as well as petal lobe pigmentation 

in M. cupreus (Cooley et al., 2011).

But why does a single locus control variation in so many traits? Probably the best 

explanation is that the simple genetic architecture of the anthocyanin traits contrast with 

the complex inheritance of most naturally varying traits in Mimulus (Fishman et al., 2002; 

Hall et al., 2006; Lowry et al., 2009). This genetic architecture is likely a result of the 

very simple metabolic pathway that underlies anthocyanin production (Rausher, 2008). With 

so few genes involved in anthocyanin production, the genome-wide mutational target size 

to change anthocyanin traits is relatively small compared with other traits. The target size 

may be further limited if mutations cause deleterious pleiotropy (Brakefield, 2006; Kalisz 

and Kramer, 2008), as appears to be the case for many of the genes in the anthocyanin 

pathway (Coberly and Rausher, 2008; Streisfeld and Rausher, 2011). Of the three types 

of anthocyanin regulatory genes (WD40, bHLH, MYB), mutations in R2R3-MYB genes 

are expected to incur the least pleiotropic effects and thus are predicted to be involved in 

tissue-specific phenotypic evolution more often (Schwinn et al., 2006; Espley et al., 2007; 

Stracke et al., 2007; Gonzalez et al., 2008; Streisfeld and Rausher, 2011).

Candidate anthocyanin genes

Functional mutations within the coding region of the six structural genes in the anthocyanin 

pathway are typically highly pleiotropic and lead to plant-wide effects on anthocyanin 

production (Zufall and Rausher, 2004; Streisfeld and Rausher, 2009; Martin et al., 2010). 

The traits examined in this study were all restricted to specific regions of plant structures 

and thus do not fit the predictions of coding mutations in a structural gene. Such specific 

distributions of pigmentation could be the result of cis-regulatory mutations in structural 

genes that lead to expression in particular plant modules (Wray, 2007; Kalisz and Kramer, 

2008; Stern and Orgogozo, 2008). Alternatively, the specific pattern of expression could be 

due to mutations in regulatory genes that control the anthocyanin pathway (Hoekstra and 

Coyne, 2007; Rausher, 2008).

From our scan of the Mimulus guttatus genome, we can rule out most candidate anthocyanin 

genes as being involved in control of the five phenotypes examined in this study simply 

because they are located on other chromosomes. The WD40 transcription factor on the 

middle of chromosome 8 can also be ruled out for the calyx spot phenotype because it is 

outside of the flanking markers. This gene also maps far from the QTL peak for adaxial and 

abaxial phenotypes (Fig. 2). The three tandemly arrayed R2R3-MYB genes located within 

the chromosomal inversion are thus the strongest candidates for controlling the anthocyanin 

phenotypes. R2R3-MYB transcription factors are known to be involved in natural variation 
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in a wide array of plant anthocyanin traits across many species (Kobayashi et al., 2002; 

Schwinn et al., 2006; Espley et al., 2007; Rausher, 2008; Albert et al., 2011; Hopkins and 

Rausher, 2011) and are preferentially involved in the evolution of the intensity of floral 

anthocyanin pigmentation (Streisfeld and Rausher, 2011). Future functional analysis should 

be conducted to determine whether these R2R3-MYB transcription factors or some other 

genes are responsible for natural variation in the five anthocyanin polymorphisms.

Demonstration that the R2R3-MYB genes are involved in the evolution of the five 

anthocyanin phenotypes would be particularly interesting as these genes are located within a 

geographically widespread adaptive chromosomal inversion (Lowry and Willis, 2010). Few 

genes have been identified within chromosomal inversions that are involved in the evolution 

of adaptive phenotypes (Hoffmann and Rieseberg, 2008), even though such identification 

would be very important for distinguishing between different theoretical models for the 

evolution of inversions (Kirkpatrick, 2010).

The function of anthocyanin traits and geographic distribution of variation

Ascribing ecological function to anthocyanin traits is a difficult endeavor and the role of 

vegetative anthocyanins has been contentious in the literature (Chalker-Scott, 2002; Gould, 

2004). Vegetative anthocyanin traits are thought to be involved in the tolerance of a suite 

of plant stresses (Chalker-Scott, 2002; Gould, 2004; Umbach et al., 2009; Jaakola and 

Hohtola, 2010). Many of these traits are quickly inducible, which has been suggested 

as a mechanism of coping with fluctuating environmental conditions without incurring a 

constitutive physiological cost (Chalker-Scott, 2002). Even for flower color, where pollinator 

preferences are usually thought to drive pigmentation evolution, other environmental factors 

may often be the ultimate cause of trait evolution (Strauss and Whittall, 2006; Rausher, 

2008). For example, flower color differences in Linanthus parryae appear to be the result of 

local adaptation to differing soil substrates (Schemske and Bierzychudek, 2001, 2007).

Griffiths and Ganders (1983) documented that various anthocyanin leaf coloration 

polymorphisms are distributed widely within and among populations of M. guttatus, but 

they did not find any geographic pattern of the distribution of these phenotypes that might 

suggest an adaptive role. In this study, we found that calyx spotting has a nonrandom 

distribution, with the highest densities of spotting found in regions with the most monthly 

variability in annual rainfall (Fig. 3). Accordingly, calyx spotting was most common in the 

mediterranean regions of California. In the field, we have most commonly observed calyx 

spotting in populations that dry out quickly due to the onset of summer drought in California 

(D. B. Lowry, personal observation). Whether the climate correlations are indicative of an 

adaptive role for calyx spotting, such as drought tolerance, cannot be determined with the 

data from this study. However, knowledge of the simple genetic architecture underlying this 

trait will help to determine whether it is adaptive. An alternative to an adaptive role for 

calyx spotting is that its nonrandom distribution is due solely to genetic drift processes, 

such as stochasticity during a demographic expansion (e.g., Klopfstein et al., 2006). Further, 

calyx spotting might have no fitness effects, but its distribution could be driven by linkage 

to an adaptive locus, such as the known adaptive chromosomal inversion within which the 

PLA1 is contained (Lowry and Willis 2010). To resolve these alternative hypotheses, future 
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studies should aim to determine whether the anthocyanin traits examined in M. guttatus have 

adaptive ecophysiological functions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Anthocyanin phenotypes associated with the PLA1 locus in M. guttatus. (A) Adaxial leaf 

coloration indicated by arrow. (B) Abaxial leaf coloration (left), leaf blotching indicated by 

arrow (center), no coloration (right). Calyx (C) without and (D) with spotting. Corolla tube 

(E) without and (F) with banding (indicated by arrow).
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Fig. 2. 
Quantitative trait locus map of chromosome 8 with LOD scores for adaxial leaf coloration 

in 8-h days (solid) and abaxial coloration in 18-h days (dashed) mapped in the DUN × IM 

recombinant inbred lines. Locations of anthocyanin candidate genes and the chromosomal 

inversion are marked on the map. Below the map is the location of markers and R2R3-MYB 
genes on scaffold 11 inside of the inversion in the orientation of an annual population. 

MgSTS571 is located on scaffold 46 outside of the inversion.
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Fig. 3. 
The distribution of calyx anthocyanin spotting across western North America compared to 

intra-annual variability (CV) of monthly precipitation, which was the climate variable most 

strongly differentiated among spotted (black circles) vs. nonspotted plants (white circles). 

Eight accessions from Canada and Alaska are not shown.
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Fig. 4. 
The distribution of climate conditions for spotted (shaded boxes) vs. nonspotted (white 

boxes) calyx plants. PC2 and PC3 were the only principal components of climate that 

differed significantly between spotted vs. nonspotted plants. The two climate variables with 

the strongest differentiation between spotted and nonspotted plants, variability (CV) in 

monthly precipitation and temperature annual range, are also shown.
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Table 2.

Locations of populations used in this study for genetic crosses and genetic analysis of anthocyanin 

polymorphisms.

Pop ID Location Latitude (N) Longitude (W)

AWP Anacortes Park, Skagit Co., WA 48°29′28″ 122°41′36″

IM Iron Mountain, Linn Co., OR 44°24′03″ 122°08′57″

DUN Oregon Dunes, Lane Co., OR 43°53′35″ 124°08′16″

LMC Yorkville, Mendocino Co., CA 38°51′50″ 123°05′02″

SWB Irish Beach, Mendocino Co., CA 39°02′09″ 123°41′25″
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Table 3.

Single marker analysis to test the association of PLA1 and three anthocyanin polymorphisms with a 

likelihood-ratio χ2 test.

Polymorphism Cross Marker N χ2

Abaxial leaf blotching Within AWP MgSTS173 66 27.08***

Calyx spotting LMC × SWB Micro6046 107 78.22***

Calyx spotting LMC × IM MgSTS278 88 47.18***

Calyx spotting LMC × IM MgSTS571 88 53.58***

Corolla tube band LMC × IM MgSTS278 88 80.78***

Corolla tube band LMC × IM MgSTS571 88 47.01***

Notes:

*
P < 0.05

**
P < 0.01

***
P < 0.001
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Table 4.

Chromosomal location of non-MYB candidate anthocyanin genes in the genome of Mimulus guttatus based on 

tBLASTx searches.

Gene Chromosome Location E-value Species

DFR 8 24776552 4.00E-113 Arabidopsis thaliana

CHS 7 4164533 0.00E+00 Arabidopsis thaliana

CHI 4 708243 3.00E-79 Arabidopsis thaliana

CHI 12 12768174 1.00E-71 Arabidopsis thaliana

CHI 10 2853951 3.00E-67 Arabidopsis thaliana

ANS 5 12488615 2.00E-170 Arabidopsis thaliana

F3H 14 25228267 5.00E-169 Arabidopsis thaliana

F3H 3 15914369 3.00E-165 Arabidopsis thaliana

F3′H 1476 a 3330 2.00E-144 Ipomoea purpurea

F3′H 4 14367934 8.00E-172 Ipomoea purpurea

F3′,5′H 8 24118026 4.00E-98 Vinca major

F3′,5′H 1476 a 3345 3.00E-93 Vinca major

F3′,5′H 4 14367943 5.00E-113 Vinca major

WD40 8 15650422 0.00E+00 Arabidopsis thaliana

WD40 13 20494216 0.00E+00 Arabidopsis thaliana

WD40 6 670553 2.00E-120 Arabidopsis thaliana

bHLH 4 1299979 2.00E-55 Mimulus aurantiacus

bHLH 5 13522474 4.00E-31 Mimulus aurantiacus

a
Chromosome location of this homologue of F3′H or F3′,5′H is unknown because scaffold 1476 has yet to be mapped to a chromosome.
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