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Summary

We consider the problem of multiple hypothesis testing when there is a logical nested structure 

to the hypotheses. When one hypothesis is nested inside another, the outer hypothesis must be 

false if the inner hypothesis is false. We model the nested structure as a directed acyclic graph, 

including chain and tree graphs as special cases. Each node in the graph is a hypothesis and 

rejecting a node requires also rejecting all of its ancestors. We propose a general framework for 

adjusting node-level test statistics using the known logical constraints. Within this framework, 

we study a smoothing procedure that combines each node with all of its descendants to form a 

more powerful statistic. We prove a broad class of smoothing strategies can be used with existing 

selection procedures to control the familywise error rate, false discovery exceedance rate, or false 

discovery rate, so long as the original test statistics are independent under the null. When the null 

statistics are not independent but are derived from positively-correlated normal observations, we 

prove control for all three error rates when the smoothing method is arithmetic averaging of the 

observations. Simulations and an application to a real biology dataset demonstrate that smoothing 

leads to substantial power gains.
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1. Introduction

We consider a structured multiple testing problem with a large set of null hypotheses 

structured along a directed acyclic graph. Each null hypothesis corresponds to a node 

in the graph and a node contains a false hypothesis only if all ancestors are false. The 

inferential goal is to maximize power while preserving a target error rate on the entire 

graph and rejecting hypotheses in a manner that obeys the graph structure. We will focus 

on boosting power in existing structured testing procedures by using the graph to share 

statistical strength between the node-level test statistics.

The graph-structured testing problem is motivated by modern biological experiments that 

collect a large number of samples on which to simultaneously test hundreds or even 

thousands of hypotheses. In genetics, for example, biologists are building genetic interaction 

maps (Costanzo et al., 2019). These large networks outline how different genes rely on 

each other to produce or prevent certain phenotypes such as cell growth and death. Recent 

advances such as CRISPR-Cas9 (Wang et al., 2014) and Perturb-Seq (Dixit et al., 2016) 

enable biologists to experimentally disable hundreds of genes, both in isolation and in 

subsets of two or even three genes at once (Kuzmin et al., 2018). Testing the thousands 

of candidate sets of genes for differences from a control population is a classic multiple 

hypothesis testing problem.

Unlike the classical multiple testing problem, there is a rich structure to genetic interaction 

experiments. The biologist wishes to understand the sets as they relate to individual genes 

and subsets. For example, two genes may not produce a decrease in cell survival rates if 

only one of them is knocked out. However, knocking both out simultaneously in the same 

cell may lead to a sudden drop in survival rate (Costanzo et al., 2019). In these cases, the 

biologist would consider the two genes to be interacting and thus the pair would be known 

as a synthetic lethal combination.

Beyond discovering the exact combination that leads to lethality, the biologist would also 

now flag the individual genes as having the potential to contribute to synthetic lethality, 

even though the genes cannot do so on their own. This potential has scientific and medicinal 

importance. For the scientist, if a gene is known to have the potential to contribute to cell 

death, it may be worth investigating it in the context of other knocked out genes that have 

not yet been considered. In medicine, if a specific type of cancer is seen to have a mutation 

in the first gene, a drug may be developed that inhibits the second gene, thereby killing the 

tumor cells. Thus, it is important to learn not just the exact lethal combinations, but also the 

entire ontology of genetic effects.

Modern biological experiments aim to test not just individual genes or gene sets, but all 

entries in this ontology. In this structured testing problem, lower-level hypotheses are nested 

within higher-order hypotheses: if a gene or set of genes is truly associated with a change 

in phenotype, it logically entails that the subsets are also associated. Here we consider 

this nested testing problem in the general case, where a directed acyclic graph encodes an 

ontology of logically nested hypotheses; we will return to the genetic interact map example 

in Section 5.
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The key insight in this paper is that knowing the graph structure should increase power in the 

testing procedure. If every node in the graph represents an independent hypothesis test, then 

nodes should be able to borrow statistical strength from their ancestors and descendants. 

The signal at a non-null node may be too weak to detect on its own, but the strength of 

evidence when combined with the evidence from its non-null children may be sufficient 

to reject the null hypothesis. This strength sharing can also flow in the opposite direction, 

with non-null parent nodes boosting power to detect non-null children. For instance, if the 

non-null signal attenuates smoothly as a function of depth in the graph, it may be possible 

to learn this function. The test statistic for a node can then be adjusted using the estimated 

signal predicted by the function learned from the ancestors. Whether using the descendants, 

ancestors, or both, sharing statistical strength creates dependence between test statistics and 

therefore must be carried out thoughtfully so as to enable control of the target error rate.

This leads us to develop a smoothing approach that implements this sharing of statistical 

strength between connected test statistics in the directed acyclic graph while still controlling 

the target error rate. We focus on descendant smoothing as it requires less prior knowledge 

of the graph and is thus more broadly applicable. We prove that the descendant smoothing 

approach yields adjusted p-values that are compatible with three different selection 

algorithms from the literature on nested testing with directed acyclic graphs (Meijer & 

Goeman, 2015; Genovese & Wasserman, 2006; Ramdas et al., 2019a). Together, these 

techniques enable us to smooth the p-values and control the familywise error rate, the 

false discovery rate, or the false exceedance rate. Simulated and real data experiments 

confirm that smoothing yields substantially higher power across a wide range of alternative 

distributions and graph structures.

2. Background

There is a wealth of recent work on structured and adaptive testing. We focus on the most 

relevant work and refer the reader to Lynch (2014) for a comprehensive review of testing 

with logically nested hypotheses.

Preserving the logical nesting structure after selection is the domain of structured 

testing (Shaffer, 1995). Methods for structured testing can be categorized based on their 

assumptions about the structure of the graph and the type of target error rate. For familywise 

error rate control, Rosenbaum (2008) propose a generic test on a chain graph; Meinshausen 

(2008) propose a procedure for testing on trees in the context of variable selection for linear 

regression; Goeman & Mansmann (2008) propose the focus-level method, blending Holm’s 

procedure (Holm, 1979) and closed testing (Marcus et al., 1976), for testing on general 

directed acyclic graphs; and Meijer & Goeman (2015) propose a more flexible method for 

arbitrary directed acyclic graphs based on the sequential rejection principle which unifies 

the aforementioned tests (Goeman & Solari, 2010). For false discovery rate control, the 

Selective Seqstep (Barber & Candès, 2015), Adaptive Seqstep (Lei & Fithian, 2016), and 

accumulation tests (Li & Barber, 2017) enforce the logical constraint on the rejection set for 

chain graphs, though they do not require the logical constraint to actually hold; Yekutieli 

(2008) propose a recursive procedure for testing on trees which provably controls the false 

discovery rate up to a computable multiplicative factor; Lynch & Guo (2016) adapt the 
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generalized step-up procedure to handle trees, which is further extended by Ramdas et al. 

(2019a) to general directed acyclic graphs.

There is a nascent literature on adaptive testing methods that preserve nested hypothesis 

structure. Lei et al. (2017) describe an interactive adaptive procedure that partially masks 

p-values, enabling the scientist to explore the data and unveil its structure, then use the 

masked bits to perform selection while controlling the false discovery rate at the target 

level. This interactive approach is able to preserve the nested hypothesis structure and take 

advantage of covariates, but comes at the cost of splitting the p-values, potentially costing 

power. Further, the method is only able to control the false discovery rate for independent 

p-values; we will consider a much broader class of error metrics as well as some dependent 

p-value scenarios. The application of descendant smoothing was also studied in Vovk & 

Wang (2020) for familywise error rate control and in Ramdas et al. (2019b) for false 

discovery rate control, though the latter requires a conservative correction to handle the 

dependence induced by aggregation. A suite of methods (Scott et al., 2015; Xia et al., 2017; 

Tansey et al., 2018; Lei & Fithian, 2018; Li & Barber, 2019) enable machine learning 

models to leverage side information like covariates that learn a prior over the probability of 

coming from the alternative; however, these methods do not enforce the logical constraint on 

the rejection set.

Other methods go beyond classical error metrics, defining and controlling a structured error 

metric. Benjamini & Bogomolov (2014) propose a method to control the average false 

discovery proportion over selected groups for a two-level graph, which is further extended 

by Bogomolov et al. (2017) to general graphs. The p-filter (Barber & Ramdas, 2017) and 

the multilayer knockoff filter (Katsevich & Sabatti, 2019) are able to control the group-level 

false discovery rate simultaneously for potentially-overlapping partitions of hypotheses. 

Unlike the methods described in the last paragraph, for which the internal node in the graph 

can encode an arbitrary hypothesis, these four works seek to handle a special hierarchy 

where each internal node encodes the intersection of a subset of hypotheses on the leaf 

nodes. Our proposed approach is fundamentally different from these methods since we allow 

internal nodes to encode non-intersection hypotheses and our goal is to control the overall 

target error rate.

Rather than competing with methods for structured testing, our smoothing procedures are 

complementary. As we will show in Section 4, the descendant smoothing procedure is 

compatible with controlling familywise error rate via Meijer & Goeman (2015), the false 

exceedance rate via an extension to the method of Genovese & Wasserman (2006), and 

the false discovery rate via the method of Ramdas et al. (2019a). In the case of the latter 

method, we explicitly show that the smoothed p-values are positive regression dependent 

on the subset of nulls (Benjamini & Yekutieli, 2001), resolving the issue of dependence 

under the null after smoothing and hence avoiding conservative corrections as suggested by 

Ramdas et al. (2019a). The benefit of smoothing is not to enable a new structured hypothesis 

testing procedure, but to make existing principled methods such as these more powerful by 

leveraging the structure of the problem.
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3. Smoothing Nested Test Statistics

3.1. Smoothed p-values

Let H1, …, Hn  be a large set of null hypotheses. For each v ∈ 1, …, n  we observe a 

random variable pv; if the null hypothesis Hv holds, we assume that pv is super-uniform, i.e. 

pr pv ≤ c ≤ c for any c ∈ 0,  1 . In some cases, we will assume the null p-value is uniform in 

[0, 1]. We will use V = 1, …, n  to index all of the null hypotheses, and let

S− = v ∈ V:Hv is true  ,  S = V ∖ S− = v ∈ V:Hv is false 

denote the unknown set of null hypotheses which hold and do not hold, respectively.

Our task is to estimate which hypotheses are false: to produce an estimator S of the set S
from the random variables pv v ∈ V. To help estimate S, we have access to a directed acyclic 

graph G = V, ℰ  whose edges encode constraints on the hypotheses in the following way: if 

Hv is false and w is an ancestor of v in G, then Hw must also be false. We would like to use 

these logical constraints to our advantage in estimating S.

To do so, we will use the graph G to transform the p-values into a new set of values and 

then apply existing structured testing procedures to the transformed values. We call the 

transformed values smoothed p-values (denoted p), because they will be formed by various 

kinds of averages of the original p-values. In the most general sense, the transformed values 

are created by the following process. First, we select an arbitrary collection of smoothing 

functions fv:ℝ V ℝ (specific examples are given below). For each v ∈ V let Cv denote the 

union of v with all of its descendants in the graph G. The smoothed p-value for node v is 

then given by

Fv c; xV ∖ Cv ≜ pr fv uCv, xV ∖ Cv ≤ c ,  pv ≜ Fv fv pCv, pV ∖ Cv ; pV ∖ Cv ,

(1)

where uCv = uw w ∈ Cv are independent and identically distributed as Uniform[0, 1]. For the 

tailored functions fv discussed in Section 3.2, Fv has a closed form expression. In general, 

it can be computed to arbitrary accuracy for any fv using Monte Carlo simulations. The 

resulting random variable pv is a valid p-value for the hypothesis Hv,

LEMMA 1 (p-VALUES ARE SUPER-UNIFORM). Assume that the null p-values are mutually 
independent and independent of non-null p-values.

a. If the null p-values are independent and identically distributed as as Uniform[0, 

1], pv is super-uniform for every v ∈ S−.

b. If the null p-values are super-uniform and fv is nondecreasing in pCv for any value 

of pV ∖ Cv, then pv is super-uniform for every v ∈ S−.
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We defer the proof to the appendix. Lemma 1 allows us to construct a hypothesis test with 

Type I error control using the smoothed p-values. The value at pv is a function of pv and all 

its ancestors and descendants. This enables p-values to borrow statistical strength from each 

other and, depending on the choice of fv , can lead to more powerful hypothesis tests.

3.2. Descendant smoothing via merging

The optimal smoothing functions fv v ∈ V are application specific. They depend on the 

structure of the graph, alternative hypothesis, and prior knowledge about the experiments. 

We focus our investigation on smoothing functions that use only the descendants at each 

node. Methods using ancestor nodes are left for future work. For notational convenience, we 

will write fv pCv  for fv pCv, pV ∖ Cv  for descendant smoothing hereafter.

Descendant smoothing functions combine the p-values of descendant nodes with the current 

node to obtain smoothed p-values. Many different strategies for combining p-values have 

been proposed in the literature, and it is beyond the scope of this work to investigate how 

each of them might perform as a descendant smoothing function. We instead consider a 

general class of smoothing functions derived by merging,

fv pCv = Gv
c ∈ Cv

Hv, c
−1 pc .

This merging strategy covers many well-known methods for merging (independent) 

p-values. For instance, a Stouffer smoothing strategy would merge p-values following the 

method of Stouffer et al. (1949), converting the p-values to z-scores and adding them,

fv pCv =
c ∈ Cv

Φ−1 pc

where Φ−1 ⋅  is the distribution function of a standard normal. If v corresponds to a null 

hypothesis, the logical constraint implies that pc:c ∈ Cv  are independent and uniformly 

distributed. As a result, Fv ⋅  is the distribution of a mean-zero normal distribution with 

variance Cv .

A Fisher smoothing strategy would merge using the method of Fisher (1925) by considering 

the product of the p-values,

fv pCv =
c ∈ Cv

2 log pc .

When Hv is null, −fv pCv  has a chi-square distribution with degree of freedom 2 Cv . Fisher’s 

method tends to have high power in a wide range of scenarios (e.g. Littell & Folks, 1971), 

though other methods will be more powerful for certain alternative distributions. Other 

popular methods include Tippett’s method, which takes the minimum p-values (Tippett, 

1931; Bonferroni, 1936); Rüger’s method, which is based on an order statistic (Rüger, 
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1978); Simes’ method (Simes, 1986) or higher criticism method (Donoho et al., 2004), 

which combine all order statistics; the Cauchy combination, which aggregates inverse-

Cauchy transformed p-values (Liu & Xie, 2020); and the generalized mean aggregation 

method which aggregates monomial-transformed p-values (Vovk & Wang, 2020; Vesely et 

al., 2021). Heard & Rubin-Delanchy (2018) provide a Neyman-Pearson analysis of optimal 

alternative hypotheses for each smoothing function; see also Vovk et al. (2020) for an 

admissibility analysis of different p-value aggregation methods under general dependence.

This class of descendant smoothing functions are convenient to work with both 

computationally and mathematically. Many have a closed form distribution that enables 

fast calculation of the smoothed statistic. As we will see, theoretical properties for a large 

class of smoothing methods can also be proven, making them compatible with a broad set of 

selection methods.

4. Testing with Smoothed Statistics

4.1. Familywise error rate control

The familywise error rate, controlled at level α, ensures the probability that even one null 

hypothesis was rejected is at most α, i.e. pr S ∩ S− ≥ 1 ≤ α. It is a stringent error metric 

for multiple testing and useful in high-stakes decision-making where false positives are 

prohibitive.

To estimate S while controlling the familywise error rate, we can directly apply the 

algorithm of Meijer and Goeman to the p-values (Meijer & Goeman (2015)), outlined in 

Appendix 2.2. The procedure provably controls the familywise error rate so long as the 

null p-values are marginally all super-uniform. Therefore, by Lemma 1, even though the 

smoothed p-values are dependent, this correction is still valid.

The Lemma 1 result is very general for controlling the familywise error rate. It admits any 

choice of function over the descendant and ancestor p-values. This is possible because the 

innerloop of the Meijer & Goeman (2015) algorithm relies on a Bonferroni correction. The 

union bound strategy of the Bonferroni correction places no requirement on the dependency 

structure of the statistics.

4.2. False exceedance rate control

The false exceedance rate, controlled at level γ, α , ensures the false discovery proportion 

is greater than γ with probability no greater than α, i.e. pr S ∩ S− / S > γ ≤ α. It is less 

stringent than the familywise error rate.

Genovese & Wasserman (2006) propose a generic procedure that turns a familywise error 

control method into a false exceedance rate control method. Specifically, starting from 

any rejection set S0 that controls the familywise error rate at level α, we can append 

any subset S′ ⊂ V ∖ S0 onto S0. Then the expanded rejection set S0 ∪ S′ controls the false 

exceedance rate if S′ ≤ S0 γ / 1 − γ  (Genovese & Wasserman, 2006, Theorem 1). The proof 
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is straightforward: on the event that S0 contains no false discovery, which has probability at 

least 1 − α, the false discovery proportion is at most S′ / S′ + S0 ≤ γ.

To guarantee that S satisfies the logical constraint, we apply Meijer & Goeman (2015)’s 

method to obtain S0, and then append another subset which does not violate the constraint. 

Since there is no restriction on S′, we can greedily add hypotheses based on the topological 

ordering to maintain the constraint. The procedure is outlined in Appendix 2.3.

4.3. False discovery rate control

The false discovery rate, controlled at level α, ensures the expected proportion of rejected 

hypotheses that are actually null is at most α, i.e. E S ∩ S− / 1 ∨ S ≤ α. This is one of the 

most popular error metrics in large scale inference.

To estimate S while controlling the false discovery rate, we apply the Greedily Evolving 

Rejections on Directed Acyclic Graphs method proposed by Ramdas et al. (2019a). The 

method works with the original test statistics by extending the Benjamini & Hochberg 

(1995) procedure to directed acyclic graphs. As with Benjamini & Hochberg (1995), it 

is only guaranteed to control the false discovery rate if the p-values satisfy a special 

property: positive regression dependence on the subset of nulls. Specifically, for any 

x, y ∈ ℝm, let x ⪯ y signify that xi ≤ yi for each i. A set D ∈ ℝm is called non-decreasing 

if x ⪯ y,  x ∈ D y ∈ D. A random object X ∈ ℝm is said to satisfy positive regression 

dependence on T ⊂ 1, ⋯, m  if t ℙ X ∈ D ∣ Xi = t  is non-decreasing for every non-

decreasing set D and every index i ∈ T .

Various multiple testing procedures have been proven to control the false discovery rate 

under positive regression dependence. However, only a few concrete examples have been 

shown to satisfy this condition, such as the one-sided testing problem with nonnegatively 

correlated Gaussian statistics and the two-sided testing problem with t-statistics derived from 

uncorrelated z-values (Benjamini & Yekutieli, 2001). This limits the practical usefulness of 

the theoretical guarantees established under this condition.

In Appendix 1, we establish a general theory of positive regression dependence on the subset 

of nulls based on classical stochastic ordering theory, a widely studied area in reliability 

theory (e.g. Efron, 1965; Kamae et al., 1977; Block et al., 1987). In Section 3.2, we 

introduced a class of p-values derived from descendant smoothing techniques. Theorem 1 

shows that a broad class of these smoothed p-values satisfy positive regression dependence 

on the subset of nulls.

THEOREM 1. Assume that the null p-values are uniformly distributed in [0, 1], mutually 
independent and independent of all non-null p-values. For each node v and its descendant 
c ∈ Cv, let Hv, c x :ℝ 0,1  be a monotone increasing function with the first-order derivative 

Hv, c
′ x  being log-concave, and Gv x :ℝ ℝ be a monotone increasing function. Further let
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fv pCv = Gv
c ∈ Cv

Hv, c
−1 pc .

Then the smoothed p-values are positive regression dependence on the subset of nulls.

Theorem 1 covers a broad class of descendant smoothing functions. For Stouffer smoothing, 

Gv x = x,  Hv, c x = Φ x  and Hv, c
′ x = exp −x2/2 / 2π, which is log-concave; for Fisher 

smoothing, Gv x = x,  Hv, c x = exp x/2  and Hv, c
′ x = exp x/2 /2, which is log-concave; for 

generalized mean smoothing (Vovk & Wang, 2020), Gv x = x/ Cv
1/r,  Hv, c x = x1/r and 

Hv, c
′ x = x1/r − 1/r, which is log-concave if 0 < r ≤ 1. For all these smoothing methods, 

Theorem 1 covers their weighted versions with Hv, c x  replaced by av, cHv, c x  for arbitrary 

av, c ≥ 0, since the log-concavity of the derivative continues to hold.

Theorem 2 presents another class of smoothed p-values based on order statistics. It includes 

Tippett’s method with Gv x = Cv x and kv = 1 and Rüger’s method with Gv x = Cv x/k and 

kv = k.

THEOREM 2. Under the same assumptions as in Theorem 1, the smoothed p-values satisfy 
positive regression dependence on the subset of nulls if

fv pCv = Gv pCv, kv

where pCv, 1 ≤ pCv, 2 ≤ … ≤ pCv, Cv  denote the order statistics of pCv and kv ∈ 1, Cv  is an 

arbitrary integer.

Taken together, Theorems 1 and 2 establish that the Ramdas et al. (2019a) method will 

control the false discovery rate at the nominal level for most smoothing methods outlined in 

Section 3.2.

4.4. Dependent null statistics with Gaussian copulas

So far we have assumed that pS− are independent and (super-)uniform. If this does not 

hold, the smoothed p values are not guaranteed to be super-uniform. This limits our ability 

to use these p-values for hypothesis testing. However, if anything is known about the 

dependency structure of the p-values then it may be possible to use this knowledge to create 

conservative bounds yielding super-uniform p-values. For instance, when the dependency 

structure between p-values is known, Fisher smoothing can be made valid by adjusting the 

critical value (Brown, 1975; Kost & McDermott, 2002). However, when the correlation 

structure is unknown, Fisher smoothing is not recommended as it will likely lead to inflated 

false discovery rates.

In this section we consider the case that pS− carries a Gaussian copula with unknown 

correlation matrix R. In other words, letting Φ−1 denote the quantile function of the standard 
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normal and letting Zv = Φ−1 pv , we will assume that ZS− N 0, R . This case arises naturally 

if the p-values come from correlated z-scores.

When the copula is Gaussian, we can still control any of the three target error metrics by 

using a method we dub conservative Stouffer smoothing,

pv

1 if 
w ∈ Cv

πvwZw ≥ 0

Φ
w ∈ Cv

πvwZw otherwise.

where Φ is the cumulative distribution function of the standard normal and π satisfies 

πvw ≥ 0,  ∑w ∈ Cv πvw = 1.

For familywise error rate and false exceedance rate, it suffices to show that the smoothed 

p-values are marginally super-uniform.

LEMMA 2 (MARGINAL VALIDITY FOR GAUSSIAN COPULAS). Conservative Stouffer smoothing on 
marginally uniform p-values with any Gaussian copula yields super-uniform smoothed 
p-values, i.e. pr pv ≤ α ≤ α for all v ∈ S−.

If we know that the nulls are all non-negatively correlated, we can prove the following 

result, implying that the Ramdas et al. (2019a) method can control the false discovery rate.

LEMMA 3 (POSITIVE REGRESSION DEPENDENCE FOR CONSERVATIVE STOUFFER SMOOTHING). Let R be a 
correlation matrix with no negative entries. Conservative Stouffer smoothing on marginally 
uniform p-values with any Gaussian copula of correlation R yields smoothed p-values which 
are positive regression dependent on the subset of nulls on S−.

Appendix 3.1 shows several examples where this smoothing method yields improved power.

5. Results

5.1. Simulations

To benchmark the power gains for smoothing, we run a set of simulations under different 

graph structures, alternative hypotheses, and target error metrics. In each case, we use Fisher 

smoothing on descendants. We consider the following directed acyclic graph structures:

• Deep tree. A tree graph with depth 8 and branching factor 2.

• Wide tree. A tree graph with depth 3 and branching factor 20.

• Bipartite graph. A two-layer graph with 100 roots and 100 leaves. Each root is 

randomly connected to 20 leaves.

• Hourglass graph. A three-layer graph with 30 roots, 10 middle nodes, and 30 

leaves. Each (root, middle) and (middle, leaf) edge is added with probability 0.2. 
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The graph is then post-processed to ensure each node is connected to at least one 

node, with middle nodes having at least one incoming and one outgoing node.

We generate one-sided p-values from z-scores with the null z-scores drawn from a standard 

normal. For each structure, we consider two scenarios:

• Global alternative. The alternative distribution at each nonnull node is N 2, 1 . 

directed acyclic graphs are populated starting at the leaves and null nodes are 

flipped to nonnull with probability 0.5.

• Incremental alternative. The alternative distribution at each nonnull node is 

N 1 + 0.3 × D − d , 1 , where d is the depth of the node and D is the maximum 

depth of the directed acyclic graph. The graph is populated starting at the leaves 

with nonnull probability 0.5 and internal nodes are intersection hypotheses that 

are null if and only if all their child nodes are null.

For each simulation, we run 100 independent trials and report empirical estimates of power, 

familywise error rate, false exceedance rate, and false discovery rate at

α = 0.01,  0.02,  0.03,  0.04,  0.05,  0.08,  0.1,  0.15,  0.2,  0.25 .

For the false exceedance rate, we fix γ = 0.1 for all experiments. We compare performance 

with and without Fisher smoothing using the method of Meijer & Goeman (2015) for 

familywise error rate control, Meijer & Goeman (2015) with Algorithm 3 for false 

exceedance rate control, and Ramdas et al. (2019a) for false discovery rate control. Both 

structured testing methods are the current state of the art for testing on directed acyclic 

graphs, with both showing the highest power to-date relative to other methods targeting the 

same error rate. We also compare to the structureless method of Benjamini & Hochberg 

(1995), though this method does not preserve nesting structure. However, performance 

relative to this baseline illustrates how smoothing turns the graph structure into an advantage 

rather than just a constraint.

Figure 1 presents empirical estimates of power for each simulation. In each scenario, Fisher 

smoothing boosts the power of all three methods. Moreover, in all simulations the Ramdas et 

al. (2019a) method actually performs as well or better than Benjamini & Hochberg (1995). 

This is particularly promising since Ramdas et al. (2019a) found that the Benjamini & 

Hochberg (1995) method almost always had higher power and only in very limited scenarios 

would the structured method outperform. This is completely reversed in the smoothed case, 

with the Benjamini & Hochberg (1995) method generally having lower power due to being 

unaware of the structure of the method.

Figure 2 confirms that indeed all methods conserve their target error rates empirically. In 

general, smoothing makes each method less conservative but not to the point of violating the 

target rate. This is precisely the desired outcome: given a budget for errors, one would prefer 

to make full use of the budget in order to maximize the number of discoveries.

Fisher smoothing is not guaranteed to increase the power of any of these algorithms, though 

for any given scenario there is always some form of smoothing which will increase power. 
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Smoothing methods can help most when the smoothed values for non-null hypotheses are 

most heavily influenced by p-values from other non-null hypothesis. Appendix 3.2 contains 

intuition and numerical experiments which may help users select smoothing functions which 

are appropriate for their data.

5.2. Application to Genetic Interaction Maps

We demonstrate the gains of smoothed testing on a real dataset of genetic interactions 

in yeast cells (Kuzmin et al., 2018). The data measure the effects of treatments on cell 

population “fitness”– the population size after a fixed incubation window, relative to the 

initial population size before treatment. The treatment in each experiment is a gene knockout 

screen that disables a specified set of genes in the population; experiments in the dataset 

include gene knockout sets of size 1, 2, and 3. For experiments with more than a single 

gene knocked out, the goal is to determine whether there is any added interaction between 

the genes that affects fitness. The outcome of interest is the fitness beyond what is expected 

from independent effects,

ϵij  = δij − δiδj

τijk  = δijk − δiδjδk − ϵijδk − ϵikδj − ϵjkδi,

where δi is the fitness of the population when knocking out the ith gene. The pair score ϵij and 

triplet score τijk capture the added effect on fitness of knocking out the entire set. In words, 

ϵij and τijk model the interaction between the genes in the target set above what would be 

expected by chance if there were no unique interaction between all genes in the set. A set 

of genes with a negative interaction score is known as a synthetic lethal set. See Figure 1 

in Kuzmin et al. (2018) for detailed experimental procedures and details on the definition of 

δ,  ϵ, and τ.

The scientific goal in the yeast dataset is to determine which gene sets have the potential 

to contribute to synthetic lethality if disabled. Individual genes may not always reflect 

this. DNA damage repair mechanisms and other cellular machinery may compensate for an 

individual knocked out gene to lead to minuscule effects on fitness. If that machinery is also 

disabled via a second knockout, the signal may become clearer. If a knockout of a pair i, j
leads to an interaction that produces a synthetic lethal result, the implication is that genes i
and j both have the potential to contribute to synthetic lethality.

Fig. 3 shows the implied directed acyclic graph encoding the null hypotheses in the yeast 

dataset. The graph has three levels. Individual gene knockouts form the root nodes, pair 

knockouts form the middle, and triplet knockouts form the leaves. If any of the leaf nodes is 

rejected, it implies every constituent pair has the potential to contribute to synthetic lethality.

The yeast dataset has 338 single-gene experiments, 31092 pair experiments, and 5451 triplet 

experiments. This leads to a graph with 36881 nodes and 78519 edges. Each experiment 
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is conducted independently across four replicates. A t-test is run for each target outcome 

variable (δi,  ϵij, or τijk) to compare the mean population size to the expected population size.

We use Fisher smoothing and perform selection with familywise error rate control via 

Meijer & Goeman (2015) and false discovery rate control via Ramdas et al. (2019a), each at 

the target error levels,

α = 0.01,  0.02,  0.05,  0.1,  0.15,  0.2,  0.25,  0.3,  0.35 .

Figure 4 shows the results and comparison to the same methods on the original test 

statistics. As in the simulations, the power gains are substantial: between 1.8x and 2.4x more 

discoveries after smoothing. Further, the smoothed the Ramdas et al. (2019a) method power 

is slightly higher than Benjamini & Hochberg (1995); without smoothing, the Ramdas et 

al. (2019a) method would be substantially lower power than Benjamini & Hochberg (1995). 

Smoothing therefore has the important effect of recovering or even surpassing the power of 

Benjamini & Hochberg (1995) while preserving the logical nesting structure.

6. Discussion

6.1. Reshaping for false discovery rate control under dependence

When targeting control of the false discovery rate, we relied on the Ramdas et al. (2019a) 

method for selection after smoothing. There are actually two variants of this method, 

each extending structureless testing methods to the directed acyclic graph testing scenario. 

We focused on the version which extends Benjamini & Hochberg (1995) and requires 

positive regression dependence. Another version extends the Benjamini & Yekutieli (2001) 

procedure to directed acyclic graphs by reshaping the node-level test statistics.

As in the structureless procedure, reshaping controls the false discovery rate regardless of 

any dependency structure among the statistics, so long as they are marginally super-uniform. 

This reshaping procedure can be applied directly to the smoothed p-values to control the 

false discovery rate. However, the reshaping procedure raises the bar for rejection, often 

leading to low power, and will always lead to strictly lower power than the Benjamini & 

Hochberg (1995) extension. Nevertheless, the reshaping variant could be used to control 

the false discovery rate when using smoothing functions for which no positive regression 

dependence guarantee is available. In these cases, false discovery rate control would be 

feasible if the smoothing functions led to p-values that were marginally super-uniform; 

proving this for a given smoothing function may require some knowledge of the dependency 

structure.

6.2. More powerful procedures for false exceedance control

In section 4.2, we proposed a greedy algorithm, outlined in Appendix 2.3, by combining the 

method of Meijer & Goeman (2015) and the generic procedure of Genovese & Wasserman 

(2006). Since any data-dependent topological ordering suffices, it is ideal to choose one 

that yields the highest power. Intuitively, we could iteratively add the most “promising” 

hypothesis, like the one with smallest p-values, which does not break the logical constraint. 
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More generally, we could move beyond greedy algorithms by defining a loss function on 

each subset in V ∖ S0 with cardinality S0 γ / 1 − γ  and finding one that minimizes the loss via 

a combinatorial optimization algorithm. For instance, the loss function can be defined as the 

sum of p-values.

6.3. Ancestor smoothing functions

We described a general framework for smoothing test statistics on directed acyclic graphs by 

sharing statistical strength between related nodes. Our current work focused on descendant 

smoothing functions, which ignore the information contained in ancestor nodes. An 

alternative class of smoothing functions uses ancestor nodes to smooth the node statistics. 

These ancestor smoothing functions use prior knowledge about the experiment to adapt their 

test statistic based on the data in ancestral nodes. Ancestor smoothing functions construct 

pv by fixing all ancestor p-values of pv and fitting a model to the ancestor values. The 

model requires prior knowledge of the alternative hypothesis, such as knowing that the 

alternative signal attenuates with the depth of the graph. We expect this to be the case for 

many real-world scenarios where shallower nodes represent more complex mechanisms or 

stronger interventions.

Ancestor functions have the appeal of potentially incorporating prior knowledge to gain 

higher power, but come with substantial trade-offs. First, they typically do not have a closed 

form null distribution. This makes them computationally expensive, as they require many 

Monte Carlo simulations in which for every trial the adaptive procedure must be re-run. 

They are also much more difficult to analyze theoretically, since the the joint distribution 

of ancestor-smoothed p-values involves contributions from variables associated with false 

hypotheses. Pragmatically, we have not found any practical examples where the prior 

knowledge is so strong that it leads to meaningful increases in performance over descendant 

smoothing. We leave investigation of ancestor smoothing and hybrid ancestor-descendant 

smoothing functions to future work.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Empirical power in each simulation as a function of target error rate. Gray lines are 

unsmoothed results, black lines are smoothed results; dashed lines use Meijer & Goeman 

(2015), dashed lines with arrows use Meijer & Goeman (2015) with Algorithm 3, and dotted 

lines use Ramdas et al. (2019a); the solid gray line is the structureless method of Benjamini 

& Hochberg (1995).
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Fig. 2: 
Empirical target error rates in each simulation. Lines match those in Fig. 1; the solid black 

line is the (0, 1) line (maximum allowable error). To facilitate comparison, each method 

is plotted using its specific target error metric: dashed lines target familywise error rate, 

dashed lines with arrows target false exceedance rate, and solid and dotted lines target false 

discovery rate.

LOPER et al. Page 18

Biometrika. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3: 
Example directed acyclic graph for the genetic interaction study. Individual gene knockouts 

δ s are the top of the graph, pair knockouts τ are in the middle, and triplet knockouts ϵ are 

the leaves. Each node corresponds to an experiment conducted independently and has an 

independent p-value. If any set of genes potentially contributes to synthetic lethality, the null 

hypothesis at that node is rejected; all subsets must implicitly be rejected as well.
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Fig. 4: 
Performance comparison of raw p-values versus smoothed p-values on a biological dataset. 

Left: total discoveries reported by each method at varying error rates. Solid gray line: 

Benjamini & Hochberg (1995); dotted black line: Fisher smoothing with the Ramdas et 

al. (2019a) method, dashed dark gray line: Fisher smoothing with the method of Meijer & 

Goeman (2015); light gray lines at bottom are the same two methods without smoothing. 

Right: relative gain of using smoothed p-values over raw p-values. Solid black line: relative 

improvement for the Ramdas et al. (2019a) method; dashed black line: relative improvement 

for the method of Meijer & Goeman (2015).
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