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SUMMARY

Characterizing somatic mutations in the brain is important for disentangling the complex 

mechanisms of aging, yet little is known about mutational patterns in different brain cell 

types. Here, we performed whole-genome sequencing (WGS) of 86 single oligodendrocytes, 
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20 mixed glia, and 56 single neurons from neurotypical individuals spanning 0.4–104 years 

of age and identified >92,000 somatic single-nucleotide variants (sSNVs) and small insertions/

deletions (indels). Although both cell types accumulate somatic mutations linearly with age, 

oligodendrocytes accumulated sSNVs 81% faster than neurons and indels 28% slower than 

neurons. Correlation of mutations with single-nucleus RNA profiles and chromatin accessibility 

from the same brains revealed that oligodendrocyte mutations are enriched in inactive genomic 

regions and are distributed across the genome similarly to mutations in brain cancers. In 

contrast, neuronal mutations are enriched in open, transcriptionally active chromatin. These stark 

differences suggest an assortment of active mutagenic processes in oligodendrocytes and neurons.

Graphical Abstract

In brief

By employing single-cell whole-genome sequencing and integrating single-nucleus RNA-seq and 

single-nucleus ATAC-seq from the same individuals, this study uncovers distinct aging-related 

patterns of somatic mutation in human oligodendrocytes and neurons, which contribute to a deeper 

understanding of the mechanisms involved in human brain aging.

INTRODUCTION

Somatic mutations accumulate in every tissue of the human body throughout life, via 

mechanisms that depend on intrinsic tissue physiology and exogenous agents.1-8 Because 

Ganz et al. Page 2

Cell. Author manuscript; available in PMC 2024 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



human tissues comprise diverse cell types with unique properties, quantifying cell-type-

specific rates and mechanisms of somatic mutation is fundamental to understanding aging 

and disease initiation at the tissue level. Although previous studies have addressed somatic 

mutations in aging human neurons,4,9-11 mutations in glial cells, which represent more than 

half of the cellular content of the brain and play primary roles in several brain disorders, 

have not yet been examined.

Oligodendrocytes (OLs) are the main cell type of the white matter (WM),12 

whose degeneration is considered to be a hall-mark of normal brain aging13-15 and 

neurodegenerative disorders.16-18 A recent multi-omic study in mice reported accelerated 

glial aging in cortical regions, implicating WM as vulnerable foci during aging.19 

Abnormalities in OLs have been reported in age-related20-22 and psychiatric disorders,23,24 

glial-derived brain tumors,25,26 and immune-related multiple sclerosis.27,28 OL generation 

in humans begins during the first trimester of gestation, peaks at birth and during the first 

years of life, and continues into adulthood, though at reduced rates.29-32 Unlike neurons, 

which mostly arise before birth, OLs are replenished throughout postnatal life by resident 

OL-precursor cells (OPCs),29,33 with the rate of replenishment diminishing with age.34,35 

Dysregulation of proliferation and differentiation in the OL lineage is involved in brain 

cancer, and OPCs are recognized as the cell of origin in some gliomas.25,26,36,37 Thus, in 

contrast to neurons, OLs may be subject to mutational processes related to DNA replication 

and can potentially undergo positive selection relevant for cancer insurgence.38 Consistent 

with this notion, recent findings have shown enriched clonal oncogenic mutations within the 

WM of non-diseased human brains.39

In this study, we assessed genome-wide rates and patterns of aging-related somatic 

mutations in OLs compared with neurons isolated from the same individuals using single-

cell whole-genome sequencing (scWGS). In addition, we generated single-nucleus assay 

for transposase-accessible chromatin with sequencing (snATAC-seq) data from these brains 

and integrated new as well as published8 single-nucleus RNA sequencing (snRNA-seq) data 

from individuals in the same cohort (Figure 1A). With joint analysis of these data, we 

inferred OL- and neuron-specific rates and patterns of somatic mutation accumulation, with 

DNA replication and transcription playing significant roles in OL and neuronal mutagenesis, 

respectively. We also captured features of mutational processes in the differentiated OLs 

as well as in precursor OPCs. The substantial differences in somatic mutation rate and 

localization between these two adjacent and interacting cell types are likely to be vital for 

elucidating cell-type-specific contributions to age-related diseases.

RESULTS

OLs accumulate somatic mutations at different rates than neurons

OLs were isolated by antibody staining of nuclei prepared from post-mortem cortical 

brain tissue, selecting SOX10-positive and NEUN-negative nuclei by fluorescence-activated 

nuclear sorting (FANS). snRNA-seq performed on the sorted populations confirmed 

>99% purity for both mature OLs and neurons sorted by SOX10 and NEUN positivity, 

respectively. Further assessment by droplet digital PCR of SOX10-positive, NEUN-negative 

nuclei indicated at least 89% purity for mature OLs, while 6.9% expressed CSPG4 and/or 
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PDGFRA (possible OPCs), 1.3% were negative for OPC and OL markers, and 2.6% were 

positive for both OLs and OPC markers, likely indicating developmental transitions between 

these cells (Figure S1; STAR Methods).

Overall, 86 OLs were obtained from the prefrontal cortex (PFC) of 13 neurologically 

normal individuals spanning 0.4–83 years of age (Tables S1 and S2): 66 single-OL genomes 

were amplified by primary template-directed amplification (PTA), a recent technique 

that substantially improves amplification quality,10,40 and 20 were amplified by multiple-

displacement amplification (MDA) before PTA became available. An additional set of 20 

GFAP-positive, NEUN-negative single cells, which represent a mixed population that are 

predominantly OPCs (Figure S1B), were also amplified by MDA. Due to the higher rate of 

technical artifacts caused by MDA,10 we focused on PTA-amplified samples except where 

indicated. For OL vs. neuron comparison, we used 56 PTA-amplified neurons (52 previously 

generated10 and 4 new) from 19 individuals, 12 of which overlap our OL cohort.

Following scWGS, somatic single-nucleotide variants (sSNVs) and small (1–30 base pair 

[bp]) insertions/deletions (indels) were identified genome-wide using SCAN210 (Figure 

1B; STAR Methods), an algorithm we recently developed to call somatic mutations in 

PTA-amplified single cells with high specificity and to accurately extrapolate the total 

mutation burden per cell from the observed number of mutations by adjusting for sensitivity 

(Table S3). To focus on somatic mutations acquired during aging rather than development, 

high allele frequency clonal sSNVs and indels were excluded by removing somatic calls 

supported by one or more reads in matched 30–45× bulk DNA sequencing. One component 

of SCAN2 mutation calling involves analysis of mutational signatures. These mutation 

calls were used only for enrichment analyses (with appropriate adjustment) but not for any 

analysis of mutational spectra or total burden. Finally, unless otherwise noted, recurrent 

somatic calls were either removed if they appeared in multiple individuals (suggesting 

artifactual origin) or downsampled to a single representative occurrence if limited to one 

individual (suggesting shared line-age, STAR Methods). PTA and SCAN2 enabled broad 

coverage of the genome and accurate mutation calling (48% sensitivity and 6%–8% false 

positive rate for sSNVs; 41% sensitivity and 3%–7% false positive rate for indels; Figure 

S2; STAR Methods). In addition to our estimates of mutation detection accuracy, two recent 

studies employing different duplex sequencing approaches to study somatic mutations in 

human neurons9,41 confirmed our estimates of neuronal mutation rates, per-cell mutation 

burdens, and mutational signatures (Figure S3), providing orthogonal confirmation of our 

approach.

Compared with neurons, scWGS of OLs revealed higher yearly rates of sSNV accumulation 

but lower rates of indel accumulation. As is the case with neurons and many other cell 

types,3,4,9-11,42 the increase in OL sSNV burden was remarkably linear with respect to 

age, with a rate of 29 sSNVs/year (95% confidence interval [CI]: 27.6–30.9), which is 

significantly greater than the neuronal rate of 16 sSNVs/year (CI: 15.2–17.5, Figure 1C; for 

the difference, p = 1.54 × 10−26, t test for coefficients in a linear mixed model [LMM], 

see STAR Methods). At birth, OLs contained 54% more sSNVs per genome compared with 

neurons (intercept: 165 vs. 107), though this difference was not significant (p = 0.24, LMM 

t test). Similar rates were observed for MDA-amplified OLs (30 sSNVs/year) and mixed 
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glia (30 sSNVs/year) (Figure S4A; STAR Methods). Unlike sSNVs, indels accumulated 

more slowly in OLs than in neurons (2.1 [CI: 1.90–2.34] versus 2.9 [CI: 2.47–3.40] 

indels/year, respectively, p = 0.0006, LMM t test, Figure 1C). Indel burdens at birth were 

comparable between cell types. Deletions were more prevalent than insertions in both cell 

types, consistent with previous reports10,43 (Figure S4B); however, OL indels were mostly 

single-bp deletions, while neurons carried greater numbers of 2–4 bp deletions and 1 bp 

insertions (Figure S4C), likely representing distinct mechanisms of indel generation.

OL and neuronal mutations showed opposite biases for genic regions, suggesting different 

mechanisms of mutagenesis and different consequences for gene integrity. After correcting 

for local mutation detection sensitivity (Figure S4D; STAR Methods), OL sSNVs were 

significantly enriched in intergenic regions, with 15.8% more mutations than expected 

(Figure 1D; p < 10−4, all p values for enrichment analyses based on permutation tests, see 

STAR Methods) and depleted in genic regions, with 11.9% fewer than expected (p < 10−4). 

This pattern was replicated in MDA-amplified OLs from elderly individuals (Figure S4E; 

STAR Methods). In contrast, neuronal sSNVs were overrepresented in genes (3.6%, p < 

10−4) and depleted in intergenic regions (4.6%, p < 10−4). Indels mirrored these patterns 

but with greater effect sizes in neurons: OL indels were enriched by 8.9% (p = 0.003) in 

intergenic regions and depleted by 6.8% (p = 0.001) in genes. Neuronal indels were instead 

depleted by 20.6% (p < 10−4) in intergenic regions and enriched by 15.9% (p < 10−4) in 

genes, as previously reported.10 In general, a larger fraction of neuronal mutations were 

predicted by SnpEff44 to functionally impact genes (Figure 1E). Strikingly, the rate of indels 

with the most severe gene-altering effects was ~2-fold higher in neurons than in OLs. Due 

to the small number of mutations in genes and large effect of multiple hypothesis testing 

correction, no significant mutation enrichment or depletion was detected for any individual 

gene (Figure S4F).

OL mutagenesis is marked by signatures of cell proliferation and aging

Analysis of mutational spectra and signatures indicated shared and cell-type-specific 

mutational mechanisms in OLs and neurons. The spectrum of OL sSNVs matched the 

spectrum of highly proliferative hematopoietic stem and progenitor cells (HSPCs, cosine 

similarity 0.96)9,42,45,46 more closely than the spectrum of neuronal sSNVs did (cosine 

similarity 0.77, Figure 2A). The OL spectrum was less similar to neurons (cosine similarity 

0.89) than to HSPCs, suggesting shared somatic mutagenic processes between OLs and 

HSPCs.

To explore mutagenic mechanisms, we quantified exposure to single-base substitution (SBS) 

mutational signatures from the COSMIC catalog (v3.3)47 using SigProfilerExtractor.48 We 

identified five active COSMIC SBS signatures in either OLs or neurons (Figure 2B; STAR 

Methods). Signature SBS5, a clock-like signature that accumulates independently of cell 

division, was the most prevalent signature in both cell types and it accumulated at a 

significantly higher rate in OLs compared with neurons (22.7 versus 14.5 sSNVs/year, p 

< 10−16, Figures 2B and 2C, LMM t test). Signatures SBS1 and SBS32 were strongly 

associated with age in OLs (p < 10−16 for SBS1, p = 1.3 × 10−12 for SBS32, LMM t 

test) but were nearly absent in neurons (p = 0.001 and p = 0.03, respectively, LMM t test). 
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SBS1 is a clock-like signature associated with cell division49 and accumulated at rates of 

2.77 and 0.29 sSNVs/year in OLs and neurons, respectively (Figures 2B and 2C). Because 

mutations in mature OLs represent a mixture of mutations gained at the OPC stage and 

the post-mitotic OL stage, it is possible that SBS1 mutations were generated primarily 

during the OPC stage as a result of OPC mitosis. SBS32 is a C>T signature that was 

recently found to differentiate the mutational spectrum of HSPCs from that of the colon, 

liver, and intestine.42 Only SBS16, a signature associated with transcription, accumulated 

at a higher rate in neurons (2.0 sSNVs/year) than in OLs (0.18 sSNVs/year), consistent 

with the enrichment of neuronal mutations in transcribed genomic regions and in line with 

previous reports.4,10 SBS19 is a rarely observed signature of unknown etiology, though 

it has been observed in small numbers of low-grade gliomas and pilocytic astrocytomas. 

Recently, SBS19 was estimated to contribute 2–4 mutations per year in HSPCs as a result of 

lesion bypass mechanisms interacting with persistent DNA damage.50 In our data, it featured 

primarily in outlier OLs and did not significantly correlate with age (p = 0.10). Two possible 

explanations for our observed SBS19 levels are (1) technical artifacts—though this does not 

explain why SBS19 was not observed at appreciable levels in any of our 56 neurons—or 

(2) an atypical mutational process. Age-related accumulation of SBS signatures was similar 

between PTA OLs, MDA OLs, and MDA mixed glia, with the notable exception of SBS1, 

which was elevated in MDA mixed glia (Figure S4G), consistent with the higher proportion 

of OPCs (58%)—a mitotic cell type—in this population.

Three pairs of closely related OLs, which likely trace their ancestry to common OPCs, 

allowed us to investigate the differences between early- and late-life mutational processes. 

Despite filtering high allele frequency clonal sSNVs, three OL pairs from two individuals 

(subjects UMB5559 and UMB5657, 19.8 and 82 years, respectively) shared unusually high 

levels of sSNVs (70, 263, and 64 sSNVs, respectively, Figure 3A), indicating common 

ancestry. We estimated the age at which the most recent common ancestor (MRCA) OPC 

divided for each pair by comparing the number of shared sSNVs, corrected for detection 

sensitivity, to the OL aging trend line (see STAR Methods). This placed the MRCAs of 

pairs 1 and 3 near birth and at ~12 years for pair 2 (Figure 3B). In both subjects, the 

shared sSNVs were mostly C>T transitions at CpG sites, with a 30% contribution from the 

cell-division-related signature SBS1 (Figure 3C). Each pair of OLs also contained similar 

numbers of private sSNVs, consistent with equal lifetimes for each of the cognate OLs after 

the division of their MRCA. The mutational spectrum of private sSNVs was similar to the 

OL spectrum (Figure 2A) and was primarily explained by SBS5 (79%), followed by SBS1, 

SBS32, and SBS19 (7.7%, 7.6%, and 5.8%, respectively, Figure 3C).

Further comparisons of mutation spectra provided additional insight into MRCA timing 

and cell-type-specific mutational processes. First, we confirmed the timing of MRCAs 

by comparing the spectra of pre-MRCA mutations to those of neurons and OLs from 

infant subjects (aged 0–2 years old), which should contain mostly developmental signatures 

(Figure 3C). Indeed, the spectrum of shared sSNVs resembled the OL infant spectrum 

(cosine similarity = 0.89) more than the neuron infant spectrum (cosine similarity = 0.76). 

Crucially, the neuronal sSNV spectrum from the same infant subjects contained far fewer 

SBS1-like C>Ts at CpGs, implying that increased SBS1 is an indicator of OL-specific 

lineages and does not reflect early clonal sSNVs that may have evaded our filters. Next, 
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because the MRCA of pair 2 occurred later in life than pairs 1 and 3, its shared sSNV 

spectrum should reflect greater exposure to OPC aging signatures while pairs 1 and 3 

should be dominated by OPC developmental signatures. Comparison of the spectra revealed 

a noticeably larger exposure to SBS1-like mutations (C>Ts at NpCpG dinucleotides) in 

pairs 1 and 3, consistent with greater cell proliferation in the perinatal period29 (Figure 

3E). Pair 2’s spectrum was more similar to the OL aging signature (cosine similarity 0.73 

vs. 0.87), indicating a shift in OPC mutational processes during the first decade of life 

and suggesting that our OL mutation catalog contains a considerable number of mutations 

acquired at the OPC stage, though quantifying this is difficult without direct sequencing of 

OPCs. In summary, the mutational spectra provide further evidence that the MRCA lineages 

split during a burst of OPC proliferation and OL generation that occurs in the young human 

brain (0–10 years of age).29 The relationships of these three pairs of cells suggest that shared 

mutations mark a permanent forensic lineage tree, while non-shared mutations represent a 

linear timer of when any two cells separate from a common progenitor.

Indel signatures revealed shared and cell-type-specific mutational processes, further 

distinguishing OLs from neurons (Figures 4A-4C). ID4, a signature representing ≥2 bp 

deletions and associated with transcriptional mutagenesis,51 was most strongly correlated 

with age in neurons, as previously reported,9,10 but was almost completely absent in OLs 

(0.09 indels/year, p = 0.0007, LMM t test; Figure 4C). ID5 and ID8, two clock-like indel 

signatures, were present in both cell types, with ID8 correlated more strongly with age in 

neurons than in OLs. The two remaining clock-like indel signatures, ID1 and ID2, were 

either not detected (ID1) or detected at low levels (ID2, 0.02 indels/year and 0.1 indels/year 

in neurons and OLs, respectively), but they are difficult to identify due to similarity with 

sequencing artifacts.10 ID9, which is characterized by 1 bp deletions, was the most prevalent 

signature in OLs and accumulated at a rate of 0.69 indels/year; in neurons, the accumulation 

was significantly lower at 0.25 indels/year (p = 0.004, LMM t test). Interestingly, this ID9 

signature is also found in a large fraction of adult gliomas52 as well as in a considerable 

fraction of other brain tumors.47

OL sSNVs are enriched in inactive genomic regions

Our earlier observation that OL mutations were depletedin genes—opposite to the pattern 

of neuronal mutations (Figure 1D)—suggested different determinants of mutagenesis in 

these two cell types. Comparison of somatic mutation density, after correction for location-

specific mutation detection sensitivity (Figure S5A), to additional data types, including 

snRNA-seq, snATAC-seq, replication timing, and chromatin marks, revealed that OL 

mutations are enriched in chromatin that is either inaccessible, untranscribed, or which 

harbors repressive histone marks—which we refer to as inactive chromatin—in striking 

contrast to neuronal mutations. We first compared somatic mutation densities with gene 

expression levels from brain snRNA-seq data for three subjects in our cohort (UMB1465, 

UMB4638, and UMB4643; 40,083 PFC cells in total; Figure 5A; STAR Methods).8 OL 

sSNVs were depleted by 29%–33% in the top few deciles of expression measured in OLs 

(Figure 5B, p < 10−4; all p values in this section are from permutation tests) and similar 

depletion trends were observed for all other cell types. However, we note that power to 

detect cell-type-specific mutation enrichment signals is limited due to a high correlation 
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between transcription levels (Pearson correlation range between pairs of cell types, 0.859–

0.939). The negative association between transcription level and somatic mutation density 

in OLs was confirmed using bulk RNA-seq data from 54 diverse tissue types from the 

Genotype Tissue Expression Consortium (GTEx)53 (Figure S5B). Indels in OLs were not 

significantly enriched or depleted, possibly due to a lack of statistical power caused by the 

relatively low number of somatic indels in OLs (Figure 5B).

Next, brain snATAC-seq data representing ~82,000 cortical cells obtained from ten subjects 

in our cohort (see STAR Methods) revealed a strong depletion of OL sSNVs in open 

chromatin (Figures 5C and 5D). In the decile of the genome with the highest chromatin 

accessibility from OLs identified in snATAC-seq data, OL sSNVs were depleted by 30% (p 

< 10−4). Slightly weaker sSNV depletions were observed for the remaining cell types (mean 

21% for the top decile of chromatin accessibility), with OPCs showing the second-strongest 

depletion signal (26%, p < 10−4). A weak but negative trend between OL indel density and 

chromatin accessibility was also observed (Figure 5D).

Data from the Encyclopedia of DNA Elements (ENCODE)55 and the Roadmap Epigenomics 

Project56 further confirmed enrichment of OL mutations in inactive chromatin. First, OL 

sSNVs were significantly enriched in late-replicating regions of the genome (which tend 

to be less transcriptionally active), as determined by RepliSeq data from the ENCODE 

project (mean 38% in the latest replicated decile, p < 10−4; Figures 5E and S5C). 

Comparison with histone marks from the Roadmap Epigenomics Project revealed negative 

associations between OL sSNVs and marks of open chromatin, transcription, and active 

regulatory elements (H3K27ac, H3K36me3, H3K4me1, H3K4me3, and H3K9ac) and 

positive associations with the repressive mark H3K9me357 (Figures 5F and 5G). Chromatin 

state annotations from ChromHMM,57 which classify chromatin based on an ensemble of 

histone marks, further confirmed the pattern of OL mutation enrichment in inactive or 

inaccessible genomic regions, with OL sSNVs overrepresented in heterochromatin (state 9, 

23% enrichment, p < 10−4) and quiescent regions (state 15, 11% enrichment, p < 10−4) 

and depleted in transcriptionally active states 1–7 (Figure 5H). The strongest depletion of 

OL sSNVs across all genomic covariates analyzed in this study was observed for active 

transcription start sites (ChromHMM state 1, 47.2% depletion). An orthogonal dataset 

of active promoters in neurons, OLs, microglia, and astrocytes from flow-sorted cell 

populations54 further confirmed the strong depletion of OL sSNVs in promoters (mean 

depletion 53.7%), and again there was no marked preference for the cell type from which the 

promoters were measured (Figure 5I).

The distribution of neuronal mutations differed from OLs across all the genomic 

covariates we tested: neuronal sSNV and indel rates increased with gene expression, 

chromatin accessibility and active histone modifications and decreased with inactive histone 

modifications (Figures 5A-5G). Unlike OLs, somatic mutations in neurons were more 

specifically associated with transcription levels measured in brain tissues (Figure S5B) and 

especially with single-cell transcriptomic and chromatin accessibility signals from neurons 

(Figures 5B and 5D). Neuronal mutations showed little association with replication timing 

(Figure 5E), which is unsurprising because most neuronal mutations are acquired in the 

post-mitotic state, and clonal somatic mutations were largely removed by our bulk filters.
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To further understand the action of mutational processes in the two cell types, we correlated 

SBS mutation signature exposures (rather than total mutation density) to the previously 

discussed genomic covariates (STAR Methods). To account for the smaller number of 

mutations assigned to individual signatures and to obtain sufficient mutations for signature 

fitting, the genome was binned into just three quantiles rather than ten. In OLs, SBS1 

density generally followed the patterns of total mutation density, with positive associations 

with inactive chromatin and late replication timing (Figure 6A). The distribution of SBS1 

in neurons mimicked that of OLs and was strongly positively associated with replication 

timing, suggesting that neuronal SBS1 may have accumulated during cell divisions in 

neurogenesis. SBS16 (a T>C signature associated with transcriptional activity) exposure in 

neurons was positively associated with active histone marks, gene expression, and chromatin 

accessibility levels from excitatory and inhibitory neurons (Figure 6B). Consistent with 

the known transcribed-strand bias of SBS16, neuronal T>C mutations exhibited significant 

transcribed-strand bias (p = 0.0005, Wilcoxon rank-sum test, Figure S6). Interestingly, 

despite neurons being post-mitotic, SBS16 density trended negatively with replication 

timing, likely reflecting higher gene density in early replicating regions.

Although SBS5 is the most prevalent signature in both OLs and neurons, it did not 

accumulate in the same genomic regions in these two cell types, particularly with respect 

to expression levels (Figure 6C). In OLs, patterns of SBS5 exposure showed little 

difference from the aggregate somatic mutation density, with negative associations with 

active epigenetic marks, gene expression, and open chromatin and positive associations with 

inactive marks and late-replicating regions. However, in neurons, unlike aggregate mutation 

density, SBS5 was only moderately associated with the covariates tested (enrichment or 

depletion < 8%), with the strongest associations deriving from snRNA-seq expression 

(Figure 6C). These observations suggest that either SBS5 is generated by cell-type-specific 

mechanisms or that SBS5 may not be a fully decomposed signature—in particular, it may 

be contaminated by the transcription-associated SBS16, consistent with the marginally 

significant association with expression levels in neurons—as previously suggested.9

The OL mutation density profile resembles that of glial-derived tumors

Patterns of somatic mutation in cancer often contain sufficient information to identify the 

cell type from which a tumor emerged58; thus, we explored whether our normal OL sSNV 

densities resembled those from a large collection of cancer WGS data from the Pan-Cancer 

Analysis of Whole Genomes (PCAWG) project.52 OL sSNVs were positively correlated 

with somatic mutation densities of all cancer types from PCAWG, whereas neuronal sSNVs 

were not correlated with any tumor type (Figure 7A). Specifically, for OL mutations, the 

highest correlations observed corresponded to glioblastoma multiforme (CNS-GBM) for 

which OPCs are thought to be the cell of origin.25,26,36,37

Our snATAC-seq data allowed further cell-type-specific evaluation of cancer sSNV 

densities. Among all tumor types in PCAWG, GBM sSNV density was best predicted (with 

a negative coefficient) by OPC-specific snATAC-seq tracks using a regression model, with 

47% of variance in GBM sSNV density explained (Figure 7B). The correlation between 

cancer sSNV density and snATAC-seq accessibility was negative in all cases, consistent with 
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the negative association between OL mutations and snATAC-seq accessibility. This provides 

additional evidence that OPCs are the cell of origin for GBM tumors and that snATAC-seq is 

a powerful approach for determining the cell of origin for a tumor.58 Expression levels from 

snRNA-seq were far less effective in explaining cancer mutation density, explaining only 6% 

of variance in the best case (Figure 7C).

Finally, we tested whether cancer-associated genes were more likely tobe mutated in OLs 

compared with neurons. For each tumor type, we determined the 100 most-frequently 

mutated genes and computed an odds ratio (OR) to assess whether mutations in OLs (OR 

> 1), neurons (OR < 1), or neither cell type (OR = 1) were more likely to occur in the 

frequently mutated genes. In general, OL sSNVs were biased toward cancer-associated 

genes (OR near 1.1, Figure 7D) for most cancer types, likely reflecting the overall 

correlation between OL sSNVs and cancer mutation densities. Because the gene ranking 

was not controlled for gene length, the mutations in the most frequently mutated genes 

may be driven by shared background mutation rates (e.g., increased mutation density 

in closed chromatin38) rather than gene-specific effects. Nevertheless, OL sSNVs were 

clearly biased toward genes mutated in CNS tumors, with the highest ORs observed for 

oligodendrogliomas (CNS-Oligo, OR = 1.23, p = 5.3 × 10−6, Fisher’s exact test) and 

pilocytic astrocytomas (CNS-PiloAstro, OR = 1.22, p = 2.0 × 10−5). Analysis of the top n 

cancer mutated gene lists for n = 1–500 confirmed that these findings did not depend on our 

choice of cutoff n = 100 (Figure S7). Altogether, the similarities between OL—especially 

those acquired at the OPC stage— and cancer mutation patterns point toward the possibility 

of a contributory relationship to tumorigenesis.

DISCUSSION

Our integrative analysis of somatic mutations uncovered OL-specific mutational processes 

during aging compared with neurons; furthermore, similarities between enriched locations 

of OL mutations and cancer mutations in the genome suggest that OL mutagenic processes 

may be related to cancer initiation or progression. Our study design provides an opportunity 

to explore how different cell types sharing the same microenvironment for years—or 

even decades—can exhibit contrasting mutational features. An additional advantage of our 

design is that comparison of OLs and neurons using the same single-cell DNA sequencing 

technology helps to rule out the possibility that differential mutation rates or genomic 

distributions reflect technical artifacts or biased representation of specific genomic regions.

Somatic mutation burdens increase linearly in both OLs and neurons with age; however, OLs 

accumulate 81% more sSNVs and 28% fewer indels than neurons. The apparently lower 

indel rate in OLs may reflect a high rate of indel mutagenesis in neurons compared with 

other cell types, as reported by previous studies.9 Although some of the excess sSNVs in 

OLs (e.g., those attributed to SBS1) are likely associated with cell division in ancestral 

OPCs,59 it is not clear what biological processes account for the remaining excess sSNV 

burden in OLs. A recent study highlighted the importance of cell proliferation-independent 

sources of somatic mutations in normal cells and hypothesized that the interplay between 

cell-type-specific DNA damage and repair processes may underlie differences in mutation 

burden between cell types.9 Hence, less-efficient DNA repair processes in OLs—rather than 
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additional DNA damage—may be a plausible explanation for the excess OL sSNV burden 

compared with neurons. Follow-up studies mapping DNA repair sites in OLs vs. neurons 

might be needed to address this question.60-62

Mutational signature analysis was helpful in identifying some factors that contribute to the 

overall mutational burden and to its accumulation over time. OL mutagenesis was primarily 

characterized by SBS1, SBS5, and SBS32, whereas neurons exhibited mostly SBS5 and 

SBS16. SBS1 was prevalent in OLs and nearly absent in neurons, consistent with previous 

characterizations of SBS1 as a cell-division-dependent mutational clock49 but at odds with 

a recent study that estimated a nearly 10-fold greater SBS1 rate in human neurons.9 

SBS5 made up the majority of mutations in both OLs and neurons, but accumulated at 

significantly different rates (14.5 vs. 22.7 sSNVs/year in neurons and OLs, respectively) 

and in different areas of the genome in the two cell types. One attractive explanation 

for this is differential repair: SBS5-associated DNA damage may occur throughout the 

genome but be more efficiently repaired in certain genomic regions in a cell-type-specific 

manner. However, measurements of SBS5 exposure may reflect incomplete deconvolution 

of SBS5, as represented in the current COSMIC catalog. For example, because COSMIC 

signatures were generated primarily by cancer exomes and genomes, the signatures present 

in post-mitotic cells are likely to be under-represented. In addition, despite the dozens of 

single cells we sequenced, the total number of mutations is not large enough to confidently 

identify signatures that are present at low exposures.

Mature OLs capture mutations accumulated in both ancestral OPCs—which continue to 

proliferate throughout life, though at lower rates than in early development—and terminally 

differentiated OLs. Our analysis of shared sSNVs in OL pairs suggests that the earliest 

mutagenic processes in OPCs strongly feature SBS1, but that SBS5-like processes emerge 

later in life. Elevated SBS1 in the MDA-amplified mixed glia population also point to SBS1 

as a feature of OPCs, despite only ~58% of this sorted population being OPCs (this increase 

in SBS1 is unlikely to be explained by differences in PTA and MDA amplification because 

SBS1 levels were similar in MDA-amplified OLs and PTA OLs). OPC-specific mutagenesis 

also suggests a greater role for selective forces during aging in OLs. Although aging 

non-proliferating neurons cannot be subject to positive selection, and negative selection 

is likely limited to highly deleterious mutations that induce cell death, mutations seen 

in OLs but gained in OPC ancestors are subject to both positive and negative selective 

effects. Thus, the subset of OL somatic mutations acquired at the ancestral OPC stage, 

which can expand clonally and amplify deleterious effects, are of particular importance. 

Although the implications of these remain unclear, they may prove pertinent to age-related, 

cell-type-specific pathologies in the human brain.

OL mutations are more prevalent in transcriptionally inactive and/or inaccessible chromatin. 

OL mutations also resemble patterns reported in cancer38 — including mutational signatures 

active in CNS tumors47 and the distribution of mutations across the genome, particularly 

for GBM, a tumor type for which OPCs are believed to be the cell of origin—and other 

proliferative cells,58 possibly reflecting the propagation of somatic mutations acquired 

by proliferative OPC ancestor cells into mature OLs. Associations between OL somatic 

mutation density and genomic covariates generally were not cell-type- or tissue-specific. 
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Neuronal mutations were characterized by strongly contrasting patterns of enrichment in 

transcriptionally active, open chromatin preference for genomic covariates measured in brain 

tissue—particularly excitatory neurons—and did not mirror the genomic distribution of 

cancer mutations.

Limitations of the study

Because we lack a protocol to reliably sort OPCs, ~400 shared mutations in three related OL 

pairs were used to approximate the characteristics of mutations acquired at the OPC stage. 

Direct sequencing of OPCs will be necessary to quantify the extent of mutagenesis at the 

OPC stage and to confirm the mutagenic features shared between OLs and OPCs. Despite 

the large number of single cells we sequenced, the number of somatic mutations detected 

remains small relative to that of typical cancer sequencing projects, possibly affecting the 

robustness of mutational signature analysis. The relatively low mutation count also limited 

our mutation enrichment analyses to large genomic regions (10s–100s of megabases). 

Future studies with greater numbers of mutations will enhance the resolution of enrichment 

analyses, e.g., to enable analysis of individual genes.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should 

be directed to and will be fulfilled by the lead contact, Christopher A. Walsh 

(christopher.walsh@childrens.harvard.edu)

Materials availability—This study did not generate new unique reagents.

Data and code availability

• De-identified human data (single cell whole genome- and single nucleus ATAC-

seq) have been deposited at the NIAGADS DSS, and accession numbers are 

listed in the key resources table. They are available upon request if access is 

granted. To request access, contact the NIGADS DSS (https://dss.niagads.org/). 

Previously generated de-identified human data (single neuron whole genome 

sequencing, single nucleus RNA-seq and bulk whole genome sequencing) are 

available at dbGaP, and accession numbers are listed in the key resources table. 

They are available upon request if access is granted. To request access, contact 

dbGaP (https://dbgap.ncbi.nlm.nih.gov/aa/).

• All original code has been deposited at Zenodo (https://doi.org/10.5281/

zenodo.10784220) and is publicly available as of the date of publication. DOIs 

are listed in the key resources table.

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Post-mortem human tissues for 20 neurotypical decedents were originally obtained from 

the NIH Neurobiobank at the University of Maryland Brain and Tissue Bank and 

the Boston University UNITE or VA-BU-CLF Brain Bank according to their approved 

institutional protocols and following consent from individuals and/or next-of-kin. We 

preformed secondary, non-human subject research on these de-identified specimens and 

data with approval from the Boston Children’s Hospital Institutional Review Board under 

protocol S07-02-0087. Among the 20 decedents, 12 were assigned male at birth and 8 were 

assigned female at birth (Table S1). Male and female data were analyzed together and sex 

chromosomes were excluded from analysis. The 20 decedents comprised 3 infants (aged 

0-2 years), 3 adolescents (aged 15-20 years), 5 adults (aged 40-60 years) and 9 elderly 

individuals (aged 65-104 years) at time of death. Specific details for all decedents are 

available in Table S1.

METHOD DETAILS

Matched bulk DNA samples—Matched germline reference genome sequences for each 

subject are required for somatic mutation detection by SCAN2. Bulk genomic DNA was 

extracted using the QIAGEN QIAamp DNA Mini or QIAGEN EZ1 kit and sequenced by 

either Illumina HiSeq 2000, HiSeq 2500, HiSeq X or NovaSeq 6000 machines to a target 

mean coverage of 30-45X. Bulk sequencing data for all UMB subjects were previously 

published; new bulk data was generated only for subjects 301159 and 190106.

Nuclear isolation and sorting—Isolation of single nuclei using fluorescence-activated 

nuclear sorting (FANS) for NEUN and SOX10 was performed using a modified version of a 

previously described protocol.66,67 Briefly, nuclei were prepared by dissecting fresh-frozen 

human brain tissue previously stored at −80°C, dissolved on ice in chilled nuclear lysis 

buffer (10mM Tris-HCl, 0.32M Sucrose, 3mM MgAc2, 5mM CaCl2, 0.1mM EDTA, pH 

8, 1mM DTT, 0.1% Triton X-100) using a Dounce homogenizer. Lysates were layered 

on top of a sucrose cushion buffer (1.8M Sucrose, 3mM MgAc2, 10mM Tris-HCl, pH 8, 

1mM DTT) and ultra-centrifuged for 1 hour at 30,000rcf. Pellets containing nuclei were 

resuspended in ice-cold PBS 1X supplemented with 3mM MgCl2, then filtered, blocked 

in PBS 1X supplemented with 3mM MgCl2 and 3% Bovine Serum Albumin (blocking 

solution), and stained with an anti-NEUN antibody (Millipore MAB377) previously used 

for neuronal nuclei isolation,4,66 anti-SOX10 antibody (Novus NBP2-59621R), and DAPI. 

Other antibodies targeting the OL population were also evaluated, KLK6 (Bioss bs-5870R) 

and CNP (Bioss bs-1000R). Nuclei were washed once with blocking solution, centrifuged at 

500rpm for 5 minutes and resuspended again in blocking solution. Single nuclei were sorted 

into 96-well plates, with one nucleus per well.

Whole-genome amplification and sequencing—Whole-genome amplification was 

performed using Primary Template-directed Amplification (PTA) (ResolveDNA EA Whole 

Genome Amplification Kit, BioSkryb) or Multiple-Displacement Amplification (MDA) 

(REPLI-g Single Cell Kit, QIAGEN) following manufacturer guidelines. Libraries for 

sequencing were generated using the KAPA HyperPlus kit (Roche) using dual indexes and 

were sequenced across 5 lanes of Ilumina NovaSeq 6000 (2x150bp), targeting 30x coverage 
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(~100 Gbp) per sample. FASTQs were aligned to hs37d5, a variant of hg19 with decoy 

sequences, using bwa mem 0.7.17-r1188 and postprocessed with GATK 4.0.3.0 following 

the GATK Best Practices (Picard MarkDuplicates, indel realignment and base quality score 

recalibration).

10x Single nucleus RNA-seq

Sample processing and sequencing: snRNA-seq was performed using the 10X Genomics 

Chromium Next GEM Single Cell 3' Reagent Kit v3.1. Fresh frozen human brain tissue 

from the prefrontal cortex of individuals UMB1465, UMB4638 and UMB4643 was 

processed to obtain nuclear pellets. Briefly, tissue was dissociated on ice in chilled nuclear 

lysis buffer (10 mM Tris-HCl, 0.32 M Sucrose, 3 mM MgAc2, 5 mM CaCl2, 0.1 mM 

EDTA, pH 8, 1 mM DTT, 0.1% Triton X-100) using a Dounce homogenizer. Homogenates 

were layered on top of a sucrose cushion buffer (1.8 M Sucrose, 3 mM MgAc2, 10 

mM Tris-HCl, pH 8, 1 mM DTT) and ultra-centrifuged for 1 hour at 30,000 rcf. Pellets 

containing nuclei were resuspended in 250 ml ice-cold 1X PBS supplemented with 3 mM 

MgCl2, 3% Bovine Serum Albumin (BSA) and 0.2 U/μl RNAse inhibitor (Thermo Fisher 

Scientific ref.10777019), then filtered. After filtering, suspension volume was completed to 

1 ml using the same solution, and nuclei were stained with DAPI before sorting to select for 

intact nuclei. Some of the UMB1465 samples were additionally stained with the following 

antibodies: two samples with anti-NEUN antibody (Millipore MAB377) for neuron sorting, 

one sample each for anti-CX43/GJA1 (Novus Biologicals, FAB7737R-1 00UG AF647), 

anti-SOX9 (Abcam, ab196450 AF488) and anti-GFAP (Millipore, MAB3402 AF647) to 

enrich for glial cells, and one sample with anti-SOX10 (Novus Biologicals, NBP2-59621 

AF647) for oligodendrocyte sorting. 10,000 to 15,000 single nuclei were sorted for each 

experiment directly in a tube containing the 10X RT mastermix, and immediately processed 

for gel-bead in emulsion (GEM) generation, barcoding, cDNA amplification and library 

preparation following manufacturer instructions. Each library preparation was submitted for 

paired-end single indexing sequencing on Illumina HiSeq X or NovaSeq 6000 targeting 

~50,000 read pairs per nucleus.

Data analysis: snRNA-seq data were demultiplexed using bcl2fastq. snRNA-seq FASTQ 

files were then processed using the 10x Genomics cellranger count pipeline (v6.0.0) for 

gene expression to perform alignment to hg19, barcode counting, UMI counting, and 

generation of feature-barcode matrices. Cell Ranger filtered count matrices were used for 

downstream analysis using Seurat 3.0.63 For each library, we further filtered for cells with 

> 200 and < 3000 genes and <5% mitochondrial genes, and genes with <10,000 UMI 

counts and >3 cells. RNA counts were normalized using the LogNormalize method and 

the 2000 most highly variable features were identified using the vst method. Data were 

then scaled by regressing out the percentage of mitochondrial genes. We then performed 

non-linear dimensional reduction and clustering. To remove doublets from our datasets, we 

ran DoubletFinder68 using optimal parameters as per the paramSweep function. Finally, 

cell-type identities were assigned to each cluster in the Uniform Manifold Approximation 

and Projection (UMAP) based on expression of known brain cell-type markers. To compute 

the Pearson correlation of gene expression between pairs of cell types, row means were 
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computed on the expression matrix for cells belonging to each cell type and correlation was 

computed on the log10-scaled mean expression vectors.

Nuclear sorting purity

Assessment by snRNA-seq: Sorting purity is critical when performing single-cell whole-

genome (scWGS) studies. Seven populations of nuclei from individual UMB1465 (two 

samples stained for NEUN+ and one sample each stained for DAPI, SOX10+/NEUN−, 

CX43+/NEUN−, SOX9+/NEUN− and GFAP+/NEUN−; see 10x single nucleus RNA-seq; 

sample processing and sequencing), representing a wide variety of brain cell types, were 

integrated to determine cell type from gene expression (Figure S1). The control nuclei 

stained for DAPI+ (3447 nuclei) obtained from a mix of grey and white matter from the PFC 

identified all the cell-types anticipated for this region; OLs were present at expected levels 

for white matter.12 Of 3739 NEUN+ sorted nuclei, 99% were neurons (Figure S1B), ~1% 

(40 out of 3739 nuclei) showed markers of the OL population (PLP1/MBP/MOG+), and 

0.1% (3 out of 3739 nuclei) expressed the endothelial marker NOSTRIN+. NEUN sorted 

nuclei can be broadly classified into 60% excitatory and 40% inhibitory neurons consistent 

with recent reports of excitatory/inhibitory ratios.69 Evaluation of 9227 SOX10+/NEUN− 

sorted nuclei confirmed 99.9% purity for mature OLs, with the absence of other cell-type 

markers (Figure S1B). The SOX10+/NEUN− sorted nuclei showed homogenous distribution 

of classic mature OL-markers such as PLP1, MOG, MALAT1, among others. Although 

SOX10 is expressed in all stages of OL development, including in OPCs, our strategy 

consistently recovered mostly mature OLs.

Assessment by ddPCR: We further confirmed the purity of our oligodendrocyte sorting 

strategy by droplet digital PCR (ddPCR). Nuclei preparation for FANS was performed as 

previously described from fresh-frozen brain tissue from individual UMB1465. 2.2 μL cell 

lysis buffer (0.2 μL lysis enhancer and 2 μL resuspension buffer, Thermo Fisher 11739010) 

was added to each well of 96-well plates and kept on ice. A total of 232 DAPI+/SOX10+/

NeuN− single nuclei and 44 DAPI+ control single nuclei were sorted directly into each well 

and kept on ice. 3 empty (no nuclei) wells and 9 wells containing 100 nuclei each were 

additionally prepared as negative and positive controls, respectively. Plates were centrifuged 

at 500 × g for 1 min. at 4 °C to ensure nuclear placement in buffer, followed by lysis 

at 75 °C for 10 min. A select group of transcripts, corresponding to genes expressed 

in OLs (PLP1, MBP) and OPCs (CSPG4, PDGFRA) and housekeeping genes (ACTB 
and GAPDH), were reverse transcribed to generate cDNA using the CellsDirect cDNA 

synthesis kit (Thermo Fisher 18080200) and TaqMan probes for the transcripts of interest. 

60 μL 1X TaqMan probe mix was prepared with 27 μL nuclease-free (NF) water and the 

following probes: 2X GAPDH (Thermo Fisher 4448490; Assay ID: Hs02786624_g1; Dye: 

VIC-MGB), ACTB (Thermo Fisher 4448490; Assay ID: Hs01060665_g1; Dye: VIC-MGB), 

CSPG4 (Thermo Fisher 4351370; Assay ID: Hs00361541_g1; Dye: FAM-MGB), PDGFR1 

(Thermo Fisher 4448490; Assay ID: Hs00998018_m1; Dye: VIC-MGB), MBP (Thermo 

Fisher 4448490; Assay ID: Hs00921945_m1; Dye: VIC-MGB), PLP1 (Thermo Fisher 

4351370; Assay ID: Hs01555268_m1; Dye: FAM-MGB). 7.8 uL CellsDirect master mix 

containing 5 mL 2X SYBR Green Reaction Mix, 0.5 μL 1X probe mix, 2 μL NF H2O 

and 0.3 μL SuperScript III Platinum Taq Mix (Thermo Fisher 11736051) was added to 
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each well of the 96-well plates after cell lysis while the plate was kept on a plate cooler. 

The plate was centrifuged at 500 × g for 1 min. at 4 °C followed by incubation at 50 

°C for 1 hour, followed by 95 °C for 2 minutes, followed by 23 cycles of 95 °C for 15 

seconds and 60 °C for 4 minutes, and an infinite 4 °C step. For ddPCR droplet generation, 

the CellsDirect-generated cDNA was diluted 1:10 with nuclease-free H2O on ice. 19.5 μL 

ddPCR master mix containing 10.5 μL 2X ddPCR supermix (Bio-Rad 1863026), 1.05 μL 

VIC probe, 1.05 μL FAM probe, and 6.9 μL nuclease-free H2O was added to each well in 

a new 96-well plate. FAM probes included PLP1 (OL marker) and CSPG4 (OPC marker), 

while VIC probes included MBP (OL marker) and PDGFR1 (OPC marker). 1.5 mL 1:10 

cDNA was added to each well, mixed, and collected by centrifugation. Droplet generation 

was then performed per the manufacturer protocol, followed by incubation at 95 °C for 10 

minutes, followed by 40 cycles of 94 °C for 30 seconds and 60 °C for 1 minute, increasing 1 

°C each cycle, followed by 98 °C for 10 minutes, and an infinite 4 °C step. Plates were then 

read using a ddPCR plate reader (Bio-Rad 1864003).

A total of 44 DAPI+ and 232 DAPI+/SOX10+/NeuN− nuclei were tested for 2 OL markers 

(PLP1 and MBP) and 2 OPC markers (CSPG4 and PDGFRA). We classified single cells 

from each population into 4 mutually exclusive groups: 1) OL+/OPC+ cells that expressed at 

least one of the tested OL and at least one OPC marker; 2) OL−/OPC− cells that expressed 

none of the tested OL and OPC markers; 3) OL−/OPC+ cells that expressed none of the 

tested OL markers and at least one OPC marker; 4) OL+/OPC− cells that expressed none of 

the tested OPC markers and at least one OL marker. Thus, group 1 likely represents cells 

that are transitioning from OPCs to mature OLs; group 2 represents cell types other than 

OLs and OPCs; group 3 represents OPCs, and group 4 represents OLs.

10x Single nucleus ATAC-seq

Sample processing and sequencing: Nuclei from 10 individuals (infants UMB1278, 

UMB5817, UMB 5871; adolescents UMB1465, UMB4638, UMB5559; adults UMB4643, 

UMB5087; elders, UMB5219, UMB5823) from our aging cohort were obtained from the 

same brain region as used for single cell whole-genome amplification. Tissue was processed 

as described in nuclear sorting, and nuclei were re-suspended in diluted nuclei buffer 

provided by the manufacturer. Nuclei derived from different individuals were processed 

for transposition separately, before loading to the 10x Chromium Controller for GEM 

generation, barcoding, and library construction, as per manufacturer instructions. Libraries 

were submitted for paired-end dual index sequencing on one flow cell of Illumina S2 

NovaSeq 6000 (100 cycles) to obtain ~50,000 reads per nucleus.

Data analysis: Sequencing data were demultiplexed using bcl2fastq and mkfastq. 

cellranger-atac count v1.1.0 was run separately on the resulting FASTQ files for each 

snATAC-seq library (one per individual) with default parameters and the vendor-provided 

hg19 reference. Results from the individual library analyses (Cell Ranger output files 

fragments.tsv.gz and singlecell.csv from each library) were then merged by cellranger-atac 

aggr –normalize-depth. snATAC-seq data were analyzed by Signac v1.1.064 and Seurat v3 

following the authors’ instructions. Briefly, the merged Cell Ranger output was imported 

via Read10X_h5 and CreateChromatinAssay; analyzed by RunTFIDF, FindTopFeatures, 
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RunSVD and RunUMAP with LSI reduction; and integrated with our snRNA-seq to assign 

cell types via GeneActivity, FindTransferAnchors and TransferData.

Single neuron whole genome sequencing data—Sequencing data for 52 

PTA-amplified single neurons and matched bulks from 17 previously sequenced 

individuals were downloaded from dbGaP accession phs001485.v3.p1. For individual 

UMB1465, two matched bulks were used (1465-cortex_BulkD-NA_WGSb and 1465-

heart_BulkDNA_WGSb). An additional 4 neurons and 2 bulks from 2 neurotypical 

individuals were generated for this study (individuals 190106 and 301159) for a total of 

56 neurons from 19 individuals. Neurons were re-analyzed by SCAN2 jointly with OLs 

as described in somatic mutation calling with SCAN2. For a single additional individual 

(identifier 5171), no PTA neurons or OLs were generated nor were previously sequenced 

single-cell data used (see Table S1).

Somatic mutation calling with SCAN2—SCAN2 v1.1 (commit ID 79ec476) and the 

associated R package r-scan2 (commit ID aa3d90e) were used for analysis. First, a cross-

sample panel (required for indel calling with SCAN2) was built using all 183 BAMs (56 

PTA neurons, 66 PTA OLs, 40 MDA OLs and 21 bulks) across 20 individuals. The run 

was configured via scan2 config with parameters –analysis makepanel –gatk=sentieon_joint; 

the GRCh37 human reference genome with decoy hs37d5 (–ref), dbSNP v147 common 

(–dbsnp) and 1000 Genomes phase 3 SHAPEIT2 phasing panel (–shapeit-refpanel) as 

described in Luquette et al.10; one –bam argument for each of the 183 BAMs; and a 

metadata file passed to –makepanel-metadata mapping each sample ID to an individual 

ID and amplification type (PTA, MDA or bulk). The panel was then generated via 

scan2 makepanel. Next, SCAN2 was run in –analysis=call_mutations mode for each 

individual separately as follows. First, scan2 config was run with –analysis=call_mutations 

–gatk=sentieon_joint –abmodel-n-cores=10 –sensitivity-n-cores=10; the same GRCh37 

reference, dbSNP and phasing panels used for cross sample panel building; and all MDA, 

PTA and bulk files from the individual were supplied via either –sc-bam (PTA and MDA 

single cells) or –bulk-bam (matched bulk). The cross-sample panel created above was 

supplied via –cross-sample-panel. Notably, the –gatk=sentieon_joint option causes SCAN2 

to use sentieon driver from Sentieon, Inc. in place of GATK HaplotypeCaller, which greatly 

reduces runtime. After configuration, SCAN2 mutation calling was then run via scan2 

run. Finally, SCAN2 mutation signature-based rescue was run in two batches, one for 

PTA neuron- and one for PTA OL calls, using scan2 config –analysis=rescue –rescue-target-

fdr=0.01 and one –scan2-object flag for each of the 56 PTA neurons or 66 PTA OLs 

followed by scan2 rescue. MDA OLs and GFAP+/NEUN− mixed glia were also rescued 

(each as a separate batch) to create uniform data output, but all indel calls and rescued sSNV 

calls were discarded since SCAN2 does not support these analyses for MDA-amplified 

single cells. Importantly, SCAN2 does not use mutation signature-based rescue calls for total 

mutation burden extrapolation and rescued calls were excluded prior to mutational signature 

analysis. Rescued calls were only used for enrichment analyses in which the mutation 

spectrum of permuted mutation sets used to model the null distribution is forced to match 

the spectrum of called mutations, thus controlling for rescue-related biases.
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Single-cell quality metrics

Bulk-accessible autosomal regions: The fraction of the genome amenable to analysis by 

short read sequencing data was defined by the mean sequencing depth of the unamplified 

matched bulk WGS data. In more detail, the GRCh37 reference genome was tiled with non-

overlapping 100 bp windows and the mean sequencing depths for each of the 21 matched 

bulk samples was computed in each window. A window was considered bulk-accessible if 

all bulk samples had mean depth >= 5 (bulk samples were sequenced to ~30X). The fraction 

of genome passing the minimum depth cutoff for sSNV calling (6 reads) and indel calling 

(10 reads) in single cell i was defined as the number of bulk-accessible basepairs passing 

these thresholds in cell i.

Median absolute pairwise difference (MAPD): MAPD quantifies amplification 

uniformity: a low value indicates high-quality, uniform amplification. For each single cell, 

the genome is binned into approximately 50 kb bins using the variable-size method, which 

aims to create bins of equal numbers of alignable bases, following Baslan et al.70. Copy 

numbers CNi are computed in each bin i, also following Baslan et al.70, and a single MAPD 

value per single cell is computed via MAPD = median(∣ log2CNi − log2CNi + 1 ∣).

SCAN2 global VAF-based sensitivity: For each single cell, global sensitivity estimates are 

computed for SCAN2 somatic mutation detection both including and excluding mutations 

called by SCAN2’s signature-based rescue procedure. The first estimate SV , which excludes 

signature-based rescue calls and is referred to as VAF-based sensitivity, is computed 

internally by SCAN2. See location-specific sensitivity correction for further discussion. 

The second estimate SM includes VAF-based and signature-based calls and is given by 

SM = min (1, SV ((NM + NV )/NV )), where NV  and NM are the number of VAF-based mutation 

calls and mutation signature-based rescue calls, respectively.

SCAN2 false discovery rates: SCAN2 false positive rates were previously10 estimated 

for PTA single cells, yielding 0.0131 sSNV errors per megabase and 0.00073 indel errors 

per megabase for combined VAF-based and mutation signature-based calls. The estimated 

number of false positive calls per PTA single cell was obtained by multiplying the false 

positive rate by the number of bulk-accessible megabases (defined above) passing the 

minimum depth cutoff; the false discovery rate per PTA single cell was the number of 

false positive calls divided by the total number of VAF-based and rescue calls, capped at a 

maximum value of 100%. The false discovery rate of the total catalog of mutations for each 

cell type was the sum of estimated false positive counts over all cells divided by the total 

number of calls.

Total mutation burden estimation—SCAN2 provides estimates of the total somatic 

SNV and indel burden for each single cell (i.e., the estimated total number of mutations 

per cell after adjusting for sensitivity of mutation calling). These estimates were obtained 

from each SCAN2 output RDA file by first load()ing the file in R, then running the SCAN2 

function mutburden(). For total sSNV burden estimates in MDA-amplified cells (indels 

are not called in MDA data), it was necessary to estimate the contribution of the MDA 

artifact signature and remove it as performed previously.10 Briefly, for each MDA cell, 
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sSNVs were fit to the set of active COSMIC signatures with the MDA artifact signature 

added (see mutational signature analysis), all exposures were then scaled by SCAN2’s total 

burden extrapolation factor (SCAN2’s mutburden() estimate divided by the number of called 

sSNVs), and finally the scaled exposures to all signatures except the MDA artifact signature 

were summed to produce the corrected total mutation burden.

Age-related accumulation models—To estimate mutation accumulation rates with age, 

a mixed-effects linear model was used. These models were fit separately for sSNVs and 

indels by the R lme4 package71 using lmer(genome.burden ~ age*celltype + (1∣individual)), 

where celltype was either pta_oligo or pta_neuron, individual was the individual ID and 

age was the numeric age of individual. For analysis of total mutation burden in PTA cells, 

genome.burden was the value returned by SCAN2’s mutburden() function. For MDA cells, 

genome.burden was the corrected burden described in total mutation burden estimation. 

Finally, for aging-related accumulation of individual COSMIC signatures, genome.burden 

was the value estimated by least squares fitting to the reduced COSMIC catalog. Outlier 

single cells, defined as cells with abnormally high total sSNV burden and SBS19 burden 

(n=4, outlier=HIGH) or near absence of any sSNV or indel calls (n=2, outlier=LOW), were 

excluded from all models of age-related accumulation since they may represent technical 

artifacts or amplification failure (Table S2). The (1∣individual) component helps to account 

for variability within and between individuals. Confidence intervals were estimated by 

confint. For linear mixed models, statistical tests of significance comparing each coefficient, 

interaction term and intercept to a null hypothesis of 0 were calculated by the lmerTest R 

package,72 which uses a t-test based on the Satterthwaite approximation. Throughout the 

text, these t-tests are referred to as LMM (linear mixed model) t-tests. When MDA aging 

rates were estimated, the additional 40 MDA cells were added to the set of PTA cells for 

model fitting and celltype was allowed to take on the additional values of mda_oligo or 

mda_gfap to assign these cells to separate groups.

Recurrent somatic mutation filtration—Prior to all analyses except quantification of 

per-cell mutation burden and discovery of closely related oligodendrocyte pairs, somatic 

mutation calls were filtered to remove duplicates and clusters of mutations in single cells 

using the digest_calls.R script distributed with SCAN2. VAF-based SCAN2 calls and 

mutation signature-based rescue SCAN2 calls were combined for the purposes of defining 

recurrent calls. Exact duplicate mutations (i.e., the same position and base change or indel) 

that are limited to a single individual likely represent a clonal mutation. In this scenario, a 

single representative mutation was retained. If the duplicate mutations were instead observed 

across multiple individuals, we interpreted this as a likely artifact and therefore discarded 

all instances of the mutation. Clusters of calls within the same single cell, defined as any 

mutation call within 50 bp of another mutation, were also removed since they suggest 

underlying alignment artifacts or structural variants. Duplicate and clustered mutations were 

determined separately for PTA neurons, PTA OLs, MDA OLs and MDA GFAP+ cells. 

For MDA OLs only, all SCAN2 mutation calls from the 20 OLs from infant brains were 

additionally filtered prior to duplicate and cluster filtering. These were removed because 

the mutation burden of young OLs is too small to sufficiently outnumber MDA technical 

artifacts.
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SnpEff annotation—Recurrence-filtered SCAN2 somatic mutation calls were annotated 

for functional impact via SnpEff version 4.3t using the hg19 database. Reported functional 

impacts were taken from the first ANN field in the SnpEff annotated VCF.

Mutational signature analysis—First, SCAN2’s VAF-based mutation calls were 

converted to VCF format for each single cell. Importantly, SCAN2’s mutational signature-

based rescue calls were excluded to avoid possible bias in signature analysis. VCFs 

were then converted into SBS96 or ID83 spectra using SigProfilerMatrixGenerator version 

1.2.17.65 Next, the spectra were divided by SCAN2’s total genome burden scaling 

factor (a single value which maps the number of observed sSNVs or indels to the 

genome-wide mutation burden estimate). Finally, indel spectra (context_type=ID83) were 

additionally corrected for SCAN2-specific sensitivity differences between the ID83 channels 

as described in Luquette et al.10

The set of active COSMIC mutational signatures was determined by de novo signature 

extraction and mapping to COSMIC signatures as performed by SigProfilerExtractor 

version 1.1.2148 to the scaled (and corrected, for indels) spectra. The spectra 

for all 56 PTA neurons and 66 PTA OLs were provided to a single run of 

SigProfilerExtractor with parameters: reference genome=GRCh37, minimum_signatures=1, 

maximum_signatures=6 and nmf_replicates=100 and either context_type=SBS96 or ID83. 

The suggested solution by SigProfilerExtractor provides the set of COSMIC signatures in 

the following path: Suggested_Solution/COSMIC_{SBS96,ID83}_Decomposed_Solution/

Signatures/COSMIC_{SBS96,ID83}_Signatures.txt. This procedure detected 5 active SBS 

signatures (1, 5, 16, 19, 32) and 6 active ID signatures (2, 4, 5, 8, 9, 11).

Signature exposure levels were calculated by fitting the scaled (and corrected, for indels) 

spectra to the set of active COSMIC signatures via non-negative least-squares. For MDA 

cells only, the MDA artifact signature (Signature B)4 was added to the set of active COSMIC 

signatures. Fitting was performed by the lsqnonneg function from the R library pracma.

Location-specific sensitivity correction—SCAN2 does not detect somatic mutations 

with uniform sensitivity across the genome for several reasons. Some factors are intrinsic to 

whole-genome amplification (e.g., changes in sequencing depth and allelic imbalance) while 

others are intrinsic to SCAN2’s mutation model (e.g., the need for germline heterozygous 

SNPs near candidate somatic mutations). Since differences in location-specific sensitivity 

could give the appearance of somatic mutation enrichment, it is necessary to control for 

differences in detection sensitivity. Below, we describe a process by which heterozygous 

germline variants can be treated as candidate somatic mutations to provide location-specific 

estimates of somatic detection sensitivity.

A special property of single-cell sequencing data is that germline heterozygous variants 

and heterozygous somatic mutations should both be present on all sequencing reads from 

one of two haplotypes. This is a significant difference from somatic mutation detection 

in bulk sequencing, in which heterozygous germline variants are present at ~50% variant 

allele fraction (VAF) in diploid regions and somatic mutations are present at a variety 

of VAFs. Thus, SCAN2’s VAF-based somatic mutation calling procedure is applicable 
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to heterozygous germline variants so long as: (1) SCAN2 filters that remove mutation 

candidates with support in matched bulk or present in dbSNP are skipped; (2) the germline 

variant is left out of SCAN2’s local model of allele balance, which is trained at heterozygous 

SNP (hSNP) sites; and (3) only the single germline variant under assessment is left out of 

the allele balance model at a time to ensure minimal impact to the model. SCAN2 now 

applies this “leave-one-out” procedure to all germline heterozygous variant sites determined 

from the matched bulk (~2 million hSNPs and heterozygous indels per individual) by 

default, which provides an opportunity to measure sensitivity as a function of genomic 

position, i.e., location-specific sensitivity.

For a sufficiently large (i.e., containing enough germline variants to estimate sensitivity to 

a few decimal places) genomic region R, SCAN2’s somatic mutation detection sensitivity 

in single cell i, SR, i, is given by the fraction of heterozygous germline variants passing the 

minimum sequencing depth requirements in R that are called by SCAN2 in cell i under the 

leave-one-out procedure:

SR, i = 1
∣ G ∣ ∑

g ∈ G
I(g is called by the leave‐one‐out procedure),

G = {germline het . variants with sequencing depth ≥ min . req . depth},

where I is the indicator function. SR . i is calculated separately for somatic SNVs (where G
is the set of hSNPs) and indels (where G is the set of heterozygous germline indels). The 

condition that G contain only germline variants that meet the minimum sequencing depth is 

imposed to correspond to SCAN2’s permutation tool, in which permuted mutations for cell i
are uniformly distributed over the subset of the genome that meets the minimum sequencing 

depth requirements (6 reads for somatic SNV calling; 10 reads for somatic indel calling).

The same procedure does not apply to mutation signature-based SCAN2 rescue calls 

because the use of signatures in calling may introduce signature-related sensitivity bias. 

Therefore, germline variants, which in general do not have the same signature as somatic 

mutations, are inappropriate controls for determining sensitivity of signature-based rescued 

calls. Instead, we make the simplifying assumption that the false discovery rate (FDR) 

among VAF-based SCAN2 calls is similar to the mutation-signature based rescue calls. 

The validity of this approximation is supported by analyses presented in Luquette et al.10 

in which the FDR of VAF-based SCAN2 calls was comparable to the FDR of combined 

VAF-based and rescued SCAN2 calls (Extended Data Figure 2 of Luquette et al.10). Under 

this assumption, the rescue sensitivity SR, i
∗  in region R for cell i can be approximated by 

scaling the VAF-based sensitivity SR, i by the relative increase of mutation signature-based 

rescue calls Mi compared to VAF-based calls V i:

SR, i
∗ = min 1, SR, i ⋅ V i + Mi

V i
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To compute sensitivity for a group G of single cells, the sensitivities of individual cells are 

weighted by the fraction of mutations contributed to G by cell i . W R, G
∗ = ∑i ∈ G

Ni
∑i ∈ G Ni

SR, i
∗

where Ni = V i + Mi. When only VAF-based calls are used for enrichment analysis (e.g., 

COSMIC signature exposure analysis), the calculation proceeds by replacing Ni with V i and 

SR . i
∗  by SR, i.

Mutation enrichment analysis

Defining genomic regions: Regions for enrichment analysis were defined by first 

constructing a mask for short, paired-end read alignability and then mapping quantitative 

and non-quantitative covariates onto the alignable subset of the genome. To determine 

alignable regions, the human reference genome GRCh37 with decoy sequences hs37d5 

was divided into non-overlapping windows of 100 bp and the average sequencing depth 

across all PTA neurons and OLs as output by SCAN2 (file path: path/to/scan2_output/

depth_profile/joint_depth_-matrix.tab.gz) was computed for each 100 bp window. A single 

mask applicable to all samples was created by classifying windows with low average depth 

(<6 reads averaged across all PTA cells) or excessive average depth (in the top 2.5% of 

average depth) as unalignable. Next, genomic regions were derived from non-quantitative 

genomic covariates (genic and intergenic spaces, Figures 1D and S4E; genes, Figure S4F; 

ChromHMM classes, Figure 5F; and cell-type-specific promoters and enhancers, Figure 5G) 

and quantitative covariates (GTEx transcription levels, Figure S5B; snRNA-seq transcription 

levels, snATAC-seq accessibility, RepliSeq replication timing and histone mark levels, 

Figures 5B and 5D-5G). For non-quantitative covariates, regions R were defined by the 

union of genomic intervals for each unique covariate state (e.g., all exons or all regions 

annotated as ChromHMM state 1) and unalignable windows were subtracted from these 

unions. For quantitative covariates, the genome was first tiled with non-overlapping 1 kb 

windows (corresponding to 10 100 bp windows from the alignability mask). 1 kb windows 

containing >2 unalignable windows were discarded. For each remaining 1 kb window i, a 

single quantitative value V i was derived for each covariate in a covariate-dependent manner 

(described in detail for each covariate below). The distribution of values V i were then 

discretized into n = 10 (for enrichment analysis of total mutation burden) or n = 3 quantiles 

(for enrichment analysis of mutation signatures) and each window i was assigned its quantile 

rank Qi. Finally, a region RQ was defined for each quantile Q = 1…n by taking the union of 

windows with rank Q. Genomic region construction and the following enrichment analyses 

were always performed using one covariate at a time.

Genomic covariates: GENCODE genes version 26 was 

downloaded from https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_26/

GRCh37_mapping/gencode.v26lift37.annotation.gtf.gz. The GTF was fed into 

the GTEx project’s transcript collapse script to create one unified 

transcript per gene (https://raw.githubusercontent.com/broadinstitute/gtex-pipeline/master/

gene_model/collapse_annotation.py), after which only “gene” records (column 3=gene) 

located on an autosome were retained. This gene model was used for the per-

gene enrichment analysis in Figure S4D (due to the small size of individual 

genes, somatic detection sensitivity correction was not performed). Genic regions, 
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as analyzed in Figure 1D, were then defined as the union of all transcripts 

in this gene model; intergenic regions were defined as the complement. 15-state 

ChromHMM annotations were downloaded for epigenome ID E073 (dorsolateral prefrontal 

cortex) from https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/

ChmmModels/coreMarks/jointModel/final/E073_15_coreMarks_mnemonics.bed.gzhttps://

egg2.wustl.edu/roadmap/data/byFileType/chromhmmSegmentations/Chmm Models/

coreMarks/jointModel/final/E073_15_coreMarks_mnemonics.bed.gz. Active promoter and 

enhancer elements for specific brain cell types were extracted from Supplementary 

Table 5 of Nott et al.54. Duplicate lines in these tables were removed prior to 

analysis. Median gene expression levels from 54 tissue types were downloaded 

from the GTEx project at https://storage.googleapis.com/gtex_analysis_v8/rna_seq_data/

GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.gz. For each 

tissue type, the median transcription level of each gene G was mapped to the genome 

by applying it over G’s collapsed transcript (defined by GENCODEv26 gene transcripts, 

see above). That is, each basepair in the genome overlapped by gene G was assigned 

the transcription level of G (in TPM). Bases not overlapped by any gene were assigned 

an expression level of 0. When multiple genes overlapped, the basepairs in the overlapping 

area were assigned maximum expression value among the overlapping genes. The genome 

was then tiled into 1 kb windows and windows for which <20% of the window was 

overlapped by a transcript—regardless of expression level—were removed. Finally, each 

1 kb window was assigned a single TPM value by averaging the assigned TPM values over 

the 1,000 basepairs in the window. Cell type-annotated gene-expression matrices for each 

snRNA-seq library were concatenated column-wise and average expression levels for each 

gene were calculated for each cell type. Gene names were then matched to the GTEx gene 

model and transcription levels for each cell type were mapped to the genome as described 

above for GTEx transcription levels. snATAC-seq transposition events output by cellranger-

atac (file: fragments.tsv.gz) were first separated by cell type (see 10x single nucleus ATAC-

seq; data analysis) and then converted to BED format. The BED file of fragments for each 

cell type was then converted to bedGraph format using bedtools genomecov-bga and finally 

to bigWig format by bedGraphToBigWig. The bigWig signal files were then mapped to 

the 1 kb genome tiles or quantitative covariates described in Definition of genomic regions 

by the bigWigAverageOverBed tool. WaveSignal RepliSeq bigWigs were downloaded 

from http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeUwRepliSeq/

wgEncodeUwRepliseq{cell_line}WaeSignalRep1.bigWig for 15 cell_lines (the full set of 

available cell lines at the time of analysis): BG02ES, BJ, GM06990, GM12801, GM12812, 

GM12813, GM12878, HUVEC, HeLa-S3, HepG2, IMR90, K562, MCF-7, NHEK and 

SK-N-SH. The bigWig signal files were then mapped to the 1 kb genome tiles for 

quantitative covariates described in mutation enrichment analysis: defining genomic regions 

by bigWigAverageOverBed; quantile values were then reversed so that Q = 1 corresponded 

to the earliest replication timing quantile. bigWig signal files representing ChIP-seq fold-

change versus a no-IP control were downloaded for epigenome ID E073 (dorsolateral 

prefrontal cortex) from https://egg2.wustl.edu/roadmap/data/byFileType/signal/consolidated/

macs2signal/foldChange/E073-{histone_mark}.fc.signal.bigwig for 7 histone_mark values 

H3K27ac, H3K27me3, H3K36me3, H3K4me1, H3K4me3, H3K9ac and H3K9me3. 

The bigWig signal files were then mapped to the 1 kb genome tiles for quantitative 
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covariates described in mutation enrichment analysis: defining genomic regions by 

bigWigAverageOverBed.

Estimating mutation enrichment: Enrichment analyses following the methodology 

described in Luquette et al.10 were carried out to determine whether somatic mutations or 

exposures to COSMIC signatures accumulate preferentially in certain areas of the genome. 

First, to act as a null hypothesis, a set of permuted somatic mutations was generated for each 

single cell i by randomly shuffling the positions of the mutation calls in cell i over the subset 

of the genome meeting the minimum sequencing depth requirements for mutation calling. 

Only VAF-based calls were permuted for COSMIC signature exposure enrichment analysis; 

VAF-based and mutation signature-based rescue calls were used for total mutation density 

enrichment analysis. In both cases, only calls that passed recurrence filtration were permuted 

(see recurrent somatic mutation filtration). Permuted mutation sets were constructed such 

that both the number and mutation signatures of the provided calls were preserved. 10,000 

such iterations of permuted sets were created via scan2 –analysis=permtool –permtool-n-

permutations 10000 for each group G of single cells: PTA neurons, PTA OLs, MDA OLs 

and MDA GFAP+/NEUN− mixed glia.

Adjustment for location-specific sensitivity: Adjustments were made to account for 

differences in mutation detection sensitivity between genomic regions. Briefly, observed 

mutation counts in each individual region were first adjusted using region-specific sensitivity 

estimates defined above. Similar adjustments are not applicable to the null hypothesis 

mutations created by permutation which were uniformly distributed (i.e., represented no 

difference in calling sensitivity) over the subset of the genome meeting the minimum 

depth requirements for SCAN2 calling. Instead, to make the sensitivity-adjusted counts 

comparable to permuted null counts, the sum of sensitivity-adjusted counts across regions 

was normalized to maintain the original number of observed mutations across regions. Thus, 

the null hypothesis mutations represent no region-specific sensitivity bias and the observed 

mutations are adjusted to remove bias to enable a proper comparison.

In more detail, given a region RC defined by genomic covariate C (see mutation enrichment 

analysis: defining genomic regions) and a group of single cells G, let NRC, G be the count of 

observed mutations in region RC over cells in G:

NRC, G = ∑single cell i in G NRC, i

The uncorrected enrichment level is given by dividing NRC, G by the mean number (over 

the 10,000 permutation iterations) of null hypothesis, permuted mutations from group G in 

region RC. To adjust the mutation count for the sensitivity of cells in group G in region RC, 

the observed count is divided by the weighted group-wide sensitivity estimate defined in 

location-specific sensitivity correction:

ARC, G =
NRC, G

NRC, G
∗
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However, adjusting the counts in this way renders them incomparable to the null hypothesis 

permuted mutations. To enable this comparison—and thus the calculation of enrichment 

level, defined as the excess or paucity relative to the null—the sum of adjusted counts 

must be normalized by setting it equal to the original sum of counts. I.e., given sensitivity-

adjusted counts ARC, G for all regions RC defined by the single genomic covariate C, the 

normalized scaling factor FRC, G is

FRC, G =
ARC, G

∑RC ∈ C ARC, G

The final corrected mutation count is FRC, G ⋅ NRC, G and the enrichment level is given by 

dividing this quantity by the mean (over the 10,000 permutation iterations) number of null 

hypothesis, permuted mutations in RC for group G.

Mutational signature enrichment analysis: For enrichment analysis of COSMIC 

mutational signature exposures, the above steps were followed, except: (1) somatic 

mutations called by SCAN2’s mutation signature-based rescue method were not used (i.e., 

only VAF-based SCAN2 calls were used) and (2) rather than counting the number of 

mutations in each region R, the mutations in R were fit to the catalog of active COSMIC 

SBS or ID signatures (see mutational signature analysis) by non-negative least squares 

(using lsqnonneg from the pracma R package) and the exposure value for each signature was 

used in lieu of mutation counts. Furthermore, signature exposure analyses were not corrected 

for somatic detection sensitivity; instead, the regions used for signature exposure enrichment 

were made larger (classifying the genome into just 3 quantiles rather than 10 deciles) to 

reduce the extent of differences in mutation detection sensitivity.

Enrichment significance tests: Two-sided tests of enrichment significance for each region 

R and group of cells G were obtained via a permutation test strategy, described in Luquette 

et al.10 The distribution of enrichment values in region R for group G under the null 

hypothesis was approximated by computing the 10,000 uncorrected enrichment values for 

each of the 10,000 permutation iterations. The P-value PR, G describing the significance of 

enrichment (or depletion) of mutations from group G in region R is then the fraction of null 

enrichment values with more extreme enrichment (or depletion) values than the sensitivity-

adjusted enrichment ER, G for observed mutations. To avoid P-values of 0, a minimum of P = 

0.0001 was enforced.

PR = max 1
10000, i : log ER

(i) > ∣ log ER ∣
10, 000 .

Analysis of related oligodendrocyte pairs

Detection of shared somatic SNVs: Shared somatic SNVs were determined for each pair 

of single cells within each individual. A shared sSNV was defined as a SCAN2 call present 

in at least one of the two cells and for which 2 or more mutation supporting reads appear 
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in the other cell. Private mutations were SCAN2 calls that: (1) did not meet the shared 

mutation criteria and (2) were supported by 0 reads and a total depth of 6 or greater in 

the paired cell. The remaining mutations were classified as indeterminate. These heuristics 

identified three pairs of oligodendrocytes with exceptionally high numbers of shared sSNVs: 

5559-Oligo-5 and 5559-Oligo-8, PTA-amplified OLs from individual UMB5559; 5657_OL4 

and 5657_OL6, PTA-amplified OLs from individual UMB5657; and GliaLC-4-F11 and 

GliaLC-4-G10, MDA-amplified OLs from individual UMB5657.

Time to most recent common ancestor (MRCA): The mutation counts shown in Figure 

3 represent actual mutation calls. However, to estimate time to the most recent common 

ancestor (MRCA) by comparison to the rate of mutation accumulation with age, it is 

necessary to extrapolate the calls to total mutation burden. First, to quantify shared versus 

private misclassifications, we classified germline heterozygous SNPs (hSNPs) using the 

same criteria applied to somatic mutations. Essentially all germline hSNPs are shared 

between single cells from the same individual, thus hSNPs identified as private or 

indeterminate likely represent amplification-related dropout and allow estimation of the 

rate of erroneous classifications. Let N be the (unknown) number of shared mutations 

between two cells, f be the fraction of hSNPs classified as either indeterminate or private 

(which we regard as a misclassification of a truly shared variant), and s be the number 

of somatic mutations classified as shared. Then, assuming f equally predicts the rate of 

misclassification among shared somatic mutations, the total number of shared mutations 

N = s + fN. Solving for N gives the adjustment N = s ∕ (1 − f). The opposite error, a private 

sSNV classified as shared, should occur rarely since it requires a random artifact to intersect 

with a true mutation; we thus assumed this rate to be approximately 0. For comparison to 

the aging trend line, the shared sSNV count was extrapolated to a genome-wide burden 

by multiplying N by SCAN2’s calls-to-burden scaling factor S (see total mutation burden 

estimation; note that pair 3, which was MDA-amplified, was adjusted for signature B). 

The time to MRCA was calculated as T = (NS − I) ∕ R, where I and R are the intercept 

and slope of the OL aging linear model (described in Age-related accumulation models), 

respectively. An interval estimate for T  was estimated by replacing I and R with all 

combinations of their 95% confidence interval bounds (determined by confint) and taking 

the maximum possible interval among these values. This does not produce a statistical 

confidence interval, but rather provides some insight into how the uncertainty in our trend 

line parameters might affect T .

Comparison to infant mutational spectra: For comparison to infant neuron and OL SBS 

spectra, a higher confidence set of VAF-based sSNV calls was created to reduce the impact 

of PTA artifacts on the spectra. Although PTA and SCAN2 are effective at removing 

technical artifacts, cells from infant subjects have extremely few somatic mutations and are 

thus the most challenging cells to analyze. The high confidence sSNV set was created by 

increasing SCAN2’s calling stringency threshold from the default target.fdr=0.01 to 0.001 

by rerunning SCAN2’s call.mutations() method with target.fdr=0.001.
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Cancer mutation density analysis

Defining tumor mutation density: PCAWG cancer somatic SNV and indel mutation 

catalogs were obtained in MAF format from the ICGC portal (https://dcc.icgc.org/

releases/PCAWG/consensus_snv_indel). Hypermutated tumors within each tumor type were 

identified by Tukey’s method and mutations from these tumors were removed. Next, cancer 

mutations for each sample were mapped to the 100 bp windows used for determining 

alignable genomic regions (described in mutation enrichment analysis: defining genomic 

regions) and the count of mutations in each window was then normalized by the total 

number of mutations in that sample. Finally, a track representing the mutation density 

for each tumor type was created by summing normalized window counts across samples 

from the same tumor type and written in bigWig format via rtracklayer’s export.bw 

function. Because 1 kb windows contain too few mutations for meaningful correlation 

analyses with our neuron and OL somatic mutations, the per-tumor bigWig signal files 

with 100 bp resolution were mapped to a non-overlapping 1 Mb genome tiling by 

bigWigAverageOverBed. Unalignable 1 Mb windows were then removed following the 

same requirements for the 1 kb tiling windows described in mutation enrichment analysis: 

defining genomic regions. Total neuron and OL mutation counts were also determined over 

these 1 Mb windows and calling sensitivity and correction was applied (see location-specific 

sensitivity correction). Correlations were computed between corrected somatic mutation 

density in either OLs or neurons and each tumor type (Figure 7A). A similar downscaling 

of signals from 1 kb resolution to 1 Mb resolution via bigWigAverageOverBed was required 

for comparing cancer mutation densities to snRNA-seq and snATAC-seq signals (scaled by 

−1/x) as shown in Figures 7B and 7C.

Cancer gene odds ratio analysis: Since the sizes of individual genes were too small 

for enrichment analysis given the size of our catalog of somatic mutations from OLs and 

neurons, we created a larger genomic region by considering sets of genes. For each PCAWG 

tumor type T , mutations from non-hypermutated samples were mapped to genes by SnpEff 

and the count NT, G of mutations in each gene G for tumor type T  was tabulated. For each 

tumor type, the genomic region RT corresponding to the top n most mutated genes was 

created. In each region RT, the rates of OL mutations and neuron mutations impacting the 

region were compared using the odds ratio

ORT =
# oligo mutations in RT

# oligo mutations not in RT
# neuron mutations in RT

# neuron mutations not in RT

.

Thus, ORR > 1 implies a preference for OL mutations in the genes represented in R and 

ORR < 1 implies a preference for neuronal mutations in R. Figure 7D presents odds ratios for 

n=100; Figure S7 presents odds ratios for n=1 to 500 to investigate the effect of varying n.

QUANTIFICATION AND STATISTICAL ANALYSIS

All of the quantitative and statistical methods, strategies, and analyses are described in the 

relevant sections of the method details or in the table and figure legends.
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Highlights

• Oligodendrocytes accumulate more sSNVs and fewer sIndels than neurons 

during aging

• Oligodendrocytes and neuronal mutations are enriched in different genomic 

regions

• Different mutagenic processes shape the oligodendrocytes and neuronal 

genome

• Oligodendrocyte mutations are distributed similarly to those in brain cancers
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Figure 1. Somatic mutations in neurons and oligodendrocytes accumulate at different rates and 
in different genomic regions
(A) Experimental strategy. Oligodendrocytes (OL; n = 66 PTA, n = 20 MDA) and neurons (n 

= 56 PTA) were obtained from the brains of 20 neurotypical individuals (0–104 years of age) 

through FANS using NEUN (neurons) and SOX10 (OL) antibodies. Single genomes were 

amplified using PTA or MDA and non-clonal somatic SNVs (sSNVs) and indels were called 

using SCAN2. Mutation distributions were compared with snATAC-seq and snRNA-seq data 

obtained from a subset of the 20 individuals.
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(B) Integrated Genomics Viewer screenshots of two sSNVs identified by SCAN2. Top, an 

sSNV shared by two oligodendrocytes; bottom, a private sSNV in a neuron.

(C) Extrapolated genome-wide sSNV and indel burdens for OLs and neurons as a function 

of age. SCAN2 estimates mutation burdens for each single cell individually by adjusting 

for sensitivity. Trend lines are mixed-effects linear regression models; outlier single cells 

with abnormally high or low mutation burdens, indicated by crosses, were excluded from the 

linear regressions (see STAR Methods).

(D) Distribution of OL and neuronal sSNVs and indels in annotated gene regions. 

Enrichment/depletion levels are calculated by comparison with a null distribution obtained 

by randomly shuffling mutations across the genome followed by correction for somatic 

mutation detection sensitivity; error bars represent bootstrapped 95% CIs (see STAR 

Methods). Percentages give the observed mutation count divided by the expected mutation 

count from the null distribution in each region.

(E) Percent of somatic mutations in the total mutation catalog with HIGH, MODERATE, 

and LOW impact on genes, as determined by SnpEff. See also Figures S1, S2, S3, and S4 

and Tables S1, S2, and S3.
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Figure 2. The composition of somatic SNVs, reflected in exposure to COSMIC mutational 
signatures, also differs between neurons and oligodendrocytes
(A) SBS mutational spectra of neuronal and oligodendrocyte sSNVs identified in this study 

(left column); the spectrum of hematopoietic stem and progenitor cells (HSPCs) identified in 

Lee-Six et al.,45 and a signature derived from an analysis of human lymphocytes (Machado 

et al.46). Cosine similarities are shown for each pair of spectra.

(B) The number of somatic mutations, after extrapolation to genome-wide burdens, 

attributed to each COSMIC SBS signature by SigProfilerExtractor for each PTA single OL 

and neuron. Subjects are ordered from young (left) to elderly (right).

(C) Same signature exposure values in (B) plotted against age. Each point represents one 

single cell. Crosses indicate the outlier cells, in terms of total mutation burden, as identified 

in Figure 1C. Trend lines are linear regression models from which outliers were excluded 

(see STAR Methods).

See also Figure S4.
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Figure 3. Shared somatic sSNVs of oligodendrocyte pairs reveal mutational characteristics of 
oligodendrocyte precursor cells (OPCs)
(A) Number of sSNVs shared between every pair of OLs for each individual in this study.

(B) Schematic of three pairs of related OLs and estimates of the time of division for 

each pair’s most recent common ancestor (MRCA), with the box providing a range 

(not a confidence interval) derived from the 95% confidence intervals on the OL aging 

accumulation model and the point providing a single best estimate (see STAR Methods).

(C) The SBS mutational spectrum and contributions of COSMIC signatures (insets) for 

sSNVs acquired before division of the MRCA (shared sSNVs) and sSNVs acquired after 

division of the MRCA (private sSNVs) shows greater contribution of SBS1 at earlier stages.

(D) SBS mutational spectra for high-confidence mutations from infant (0–2 years of age) 

PTA OLs and neurons (STAR Methods).
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(E) SBS mutational spectra for shared sSNVs from OL pairs with early (pairs 1 and 3) and 

late (pair 2) MRCAs.
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Figure 4. Insertion and deletion COSMIC signatures in human oligodendrocytes and neurons 
suggest differing mutagenic mechanisms
(A) Spectra of somatic indels from human OLs and neurons using the 83-dimensional indel 

classification scheme from COSMIC.

(B) Contribution of COSMIC indel signatures to each single OL and neuron. One bar 

represents one single cell; cells are ordered according to age, with the youngest individuals 

on the left and eldest individuals on the right.

(C) Same as (B), but signature exposure is plotted against age for each single cell; each point 

represents one cell and crosses represent total mutational burden outliers. Trend lines are 

linear regression models from which outliers are excluded (see STAR Methods). ID5 and 

ID8 are annotated as clock-like signatures in COSMIC.
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Figure 5. Oligodendrocyte somatic mutations are associated with inactive chromatin, while 
neuronal mutations associate with active chromatin
(A) Uniform manifold approximation and projection (UMAP) plot of integrated snRNA-seq 

from three subjects (UMB1465, UMB4638, and UMB4643) with cell type annotations.

(B) Enrichment analysis of somatic mutations vs. snRNA-seq transcription level. The 

genome is divided into 1 kb, non-overlapping windows, and each window is annotated 

with an average gene expression level per cell type; windows that are <20% covered 

by a gene are discarded. The remaining windows are classified into 10 deciles, with 1 

representing the least transcribed and 10 representing the most transcribed. In each decile, 

the observed number of somatic SNVs and indels is compared with a null distribution 

of mutations obtained by randomly shuffling mutation positions followed by correction 

for somatic mutation detection sensitivity (see STAR Methods). Each line shows somatic 
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mutation density vs. transcription level from one cell type identified in our snRNA-seq; solid 

lines indicate mutation density measured in PTA neurons and dashed lines indicate PTA 

oligodendrocytes.

(C and D) Same as (A) and (B) for snATAC-seq from the brains of 10 subjects from this 

cohort.

(E) Enrichment analysis of replication timing, as measured by ENCODE RepliSeq; lines 

represent average enrichment across 15 cell lines.

(F and G) Enrichment analysis of 5 epigenetic marks related to gene activity (F) and two 

repressive epigenetic marks (G) measured in dorsolateral prefrontal cortex tissue (Roadmap 

Epigenomic Project, reference epigenome E073).

(H and I) Enrichment analysis of functional genomic regions identified by ChromHMM in 

reference epigenome E073 (H) or active enhancers and promoters identified in Nott et al.54 

for several brain cell types (I).

Numbers in parentheses indicate the ChromHMM state number (H). Error bars represent 

bootstrapped 95% CIs (see STAR Methods).

See also Figure S5.
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Figure 6. Distinct mutational signatures show cell-type-specific enrichment in active or inactive 
chromatin
(A–C) Enrichment analysis of somatic mutations attributed to SBS1 (A), SBS16 (B), or 

SBS5 (C)—rather than total mutation density—vs. the decile-based genomic covariates 

presented in Figure 5. The genome was divided into three quantiles—rather than ten—to 

reduce noise in signature fitting caused by the smaller number of mutations attributed to 

each signature. OLs are not plotted for SBS16 due to near-complete lack of SBS16, leading 

to highly noisy measurements.

See also Figure S6.
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Figure 7. Patterns of oligodendrocyte sSNVs correlate with somatic mutation density in cancer
(A) Correlation of OL and neuronal sSNV mutation density with cancer mutation density. 

For each cell type and cancer type, the genome was tiled with non-overlapping 1 MB bins 

and numbers of mutations per bin were tabulated. Somatic mutations from PTA neurons 

and PTA OLs were tabulated for the same regions and corrected for mutation detection 

sensitivity. CNS tumors are colored: CNS-Oligo, oligodendroglioma, red; CNS-PiloAstro, 

pilocytic astrocytoma, purple; CNS-GBM, glioblastoma multiforme, orange; CNS-Medullo, 

medulloblastoma, black.
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(B and C) Mutation density for each tumor type was fit using a linear regression to cell-type-

specific single-cell chromatin accessibility signals from our snATAC-seq (B) and single-cell 

expression levels from our snRNA-seq (C) using the same 1 MB bins described in (A). For 

each tumor type and cell type, the fraction of variance in tumor mutation density explained 

(R2) by each cell type is shown.

(D) Comparison of OL and neuron somatic mutation rates in frequently mutated cancer 

genes. For each tumor type in PCAWG (y axis), the 100 most-frequently mutated genes 

were determined. For each tumor-specific set of 100 cancer genes (GT), an odds ratio (OR) is 

computed such that OR > 1 indicates that OL mutations are more likely to occur in GT and 

OR < 1 indicates that neuronal mutations are more likely to occur in GT. Formally, OR = (# 

OL sSNVs in GT/# genic OL sSNVs not in GT)/(# neuron sSNVs in GT/# genic neuron sSNVs 

not in GT).

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-SOX10 Alexa Fluor 647 Novus Biologicals Clone SOX10/991; catalog number: 
NBP2-59621

Mouse monoclonal anti-NeuN Alexa Fluor 488 Millipore Clone A60; catalog number MAB377; 
RRID: AB_2149209

Mouse monoclonal anti-Connexin 43/GJA1 Alexa Fluor 
647

Novus Biologicals Clone 578618; catalog number FAB7737R

Rabbit monoclonal anti-SOX9 Alexa Fluor 488 Abcam Clone EPR14335; catalog number 
ab196450; RRID: AB_2665383

Mouse monoclonal anti-Glial Fibrillary Acidic Protein 
Alexa Fluor 647

Millipore Clone GA5; catalog number MAB3402; 
RRID: AB_94844

Biological samples

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB1278

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5817

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5871

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB4638

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB1465

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5559

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB4643

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5087

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB936

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5451

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5666

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5943

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5572

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5219
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REAGENT or RESOURCE SOURCE IDENTIFIER

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5171

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5657

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB5823

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

NIH Neurobiobank at the 
University of Maryland Brain and 
Tissue Bank

UMB4976

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

Boston University UNITE or VA-
BU-CLF Brain Bank

301159

Post-mortem fresh-frozen human brain prefrontal cortex 
tissue

Boston University UNITE or VA-
BU-CLF Brain Bank

190106

Critical commercial assays

ResolveDNA Whole Genome Amplification Kit 
(Formerly SkrybAmpTM EA WGA Kit)

BioSkryb Genomics P00001 - 07292022

KAPA HyperPlus Kit Roche Kit code KK8514; catalog number 
07962428001

PicoGreen binding Quant-iT dsDNA Assay Kit Thermo Fisher Scientific Catalog number P7589

SeqCap Adapter Kit Roche Catalog number 07141548001

TapeStation HS DS100 Screen Tape Agilent Catalog number PN 5067-5584

REPLI-g Single Cell Kit Qiagen Catalog number 150345

Truseq DNA PCR-free (350bp insert) Illumina

Chromium Next GEM Single Cell 3’ GEM, Library & Gel 
Bead Kits v3.1

10X Genomics Catalog numbers PN-1000121 and 
PN-1000128

Chromium Next GEM Chip G Single Cell Kits 10X Genomics Catalog numbers PN-1000120 and 
PN-1000127

Single Index Kit T Set A, 96 rxns 10X Genomics Catalog number PN-1000213

Chromium Next GEM Single Cell ATAC Library & Gel 
Bead Kits

10X Genomics Catalog numbers PN-1000175 and 
PN-1000176

Chromium Next GEM Chip H Single Cell Kits 10X Genomics Catalog numbers PN-1000161 and 
PN-1000162

Chromium i7 Multiplex Kit N, Set A, 96 rxns 10X Genomics PN-1000084

CellsDirect cDNA synthesis kit Thermo Fisher Scientific Catalog number: 18080200

Deposited data

Single neuron (PTA) and matched bulk whole genome 
sequencing data

Luquette et al.10 [dbGaP]: [phs001485.v3.p1]

Single nucleus RNA-seq data for UMB1465 Bizzotto et al.8; This study [dbGaP]: [phs001485.v2.p1]; 
[NIAGADS]: [NG00162]

Single nucleus ATAC-seq data for UMB1465 Bizotto et al.8 [dbGaP]: [phs001485.v2.p1]

Single oligodendrocyte whole genome sequencing data This study [NIAGADS]: [NG00162]

Single neuron and matched bulk whole genome 
sequencing data for samples 301159 and 190106

This study [NIAGADS]: [NG00162]

Single nucleus ATAC-seq This study [NIAGADS]: [NG00162]

Single nucleus RNA-seq for UMB4638 and UMB4643 This study [NIAGADS]: [NG00162]

Oligonucleotides
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REAGENT or RESOURCE SOURCE IDENTIFIER

GAPDH VIC-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs02786624_g1; catalog 
number: 4448490

ACTB VIC-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs01060665_g1; catalog 
number: 4448490

CSPG4 FAM-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs00361541_g1; catalog 
number: 4351370

PDGFR1 VIC-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs00998018_m1; catalog 
number: 4448490

MBP VIC-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs00921945_m1; catalog 
number: 4448490

PLP1 FAM-MGB 2X TaqMan probe Thermo Fisher Scientific Assay ID: Hs01555268_m1; catalog 
number: 4351370

Software and algorithms

cellranger 6.0.0 10x Genomics https://www.10xgenomics.com/support/
software/cell-ranger/latest

Seurat 3.9.9.9010 Stuart et al.63 https://satijalab.org/seurat/

cellranger-atac 1.1.0 10x Genomics https://support.10xgenomics.com/single-
cell-atac/software/overview/welcome

Signac 1.1.0 Stuart et al.64 https://stuartlab.org/signac/

bwa 0.7.17-r1188 https://github.com/lh3/bwa

SCAN2 1.1 Luquette et al.10 https://github.com/parklab/SCAN2

GATK 4.0.3.0 Broad Institute https://gatk.broadinstitute.org

sentieon driver v202112.06 Sentieon, Inc https://www.sentieon.com

SigProfilerExtractor 1.1.21 Islam et al.48 https://github.com/AlexandrovLab/
SigProfilerExtractor

SigProfilerMatrixGenerator 1.2.17 Bergstrom et al.65 https://github.com/AlexandrovLab/
SigProfilerMatrixGenerator

bedGraphToBigWig 2.9 UCSC Genome Browser http://hgdownload.soe.ucsc.edu/
admin/exe/

bigWigAverageOverBed 2 UCSC Genome Browser http://hgdownload.soe.ucsc.edu/
admin/exe/

lme4 1.1_33 (R package) CRAN https://github.com/lme4/lme4/

lmerTest 3.1_33 (R package) CRAN https://github.com/runehaubo/lmerTestR

Custom scripts for figures and analysis v2.0 This study; Zenodo https://doi.org/10.5281/zenodo.10784220

SnpEff 4.3t Cingolani44 http://pcingola.github.io/SnpEff/

rtracklayer 1.54.0 (R package) Bioconductor https://doi.org/10.18129/
B9.bioc.rtracklayer
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