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Introduction

Endometriosis is a chronic condition which affects up to 
10% of women and an unknown proportion of gender-
diverse individuals.1 The delay in diagnosis is on average 
8–12 years, and as a result, many individuals endure long 
spans of debilitating pain and other associated symptoms 
without receiving the proper medical care. Endometriosis, 
like other health conditions that predominantly impact 
individuals who are assigned female at birth, is understud-
ied leading to knowledge gaps and limited treatment 
options.2 As researchers attempt to understand this com-
plex, high-burden disease, new methodologies and advanc-
ing technologies provide an avenue for discovery.

In the past 10 years, with advancing technological capa-
bilities, we have seen a rise in the popularity of artificial 
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intelligence (AI), including in endometriosis research 
(Figure 1). AI is currently being used to aid in drug devel-
opment, assist physicians in analyzing diagnostic imaging 
studies, and support the discovery of new genetic variants 
that underly diseases using precision medicine, among 
other applications.3 While this method of analysis has vast 
capabilities in identifying previously unseen patterns in 
data and facilitating the analysis of large quantities of data, 
there are limits to the power of AI. Limitations associated 
with using AI predominantly revolve around the quality 
and quantity of data, and the expertise required to imple-
ment these algorithms.3–5 The objective of this review is to 
describe the current landscape of endometriosis diagnosis 
and treatment and the possibilities that AI may hold to alle-
viate some of the burdens associated with this disease; 
additionally, common pitfalls when using AI algorithms 
will be noted. If researchers and clinicians implement AI 
appropriately, we hypothesize that advances in the clinical 
understanding and treatment of endometriosis will be 
immense.

Endometriosis research landscape

Research regarding conditions that affect women is dis-
proportionately underfunded; endometriosis being no 
exception. Etiology, symptomology, comorbidities, and 
progression of this disease are poorly defined despite its 
effects on 1 in 10 women.1 Delays in diagnosis increase 
the burden on those struggling to combat this disease and 
increase healthcare costs by thousands of dollars per per-
son6; this is in addition to the many other tangible and 
intangible costs associated with endometriosis, including 
infertility, decreased quality of life, individual financial 

burden, reduced productivity, psychological trauma, and 
other impacts.7

For a common disease with a 10% prevalence, there are 
still significant limitations regarding diagnosis, classifica-
tion, and treatment options for endometriosis.2,7,8 Between 
1973 and 2021, 22 methodologies for classification, stag-
ing, and reporting have been published exemplifying the 
continued need for convergence on a unifying diagnostic 
and treatment process; the breadth of metrics has varying 
utility in terms of clinical implications and patient out-
comes, demonstrating the lack of a comprehensive under-
standing of this condition.8

What is AI?

The term “AI” refers to an extensive set of algorithms, 
encompassing machine learning (ML) and neural net-
works, and containing much overlap with statistical meth-
ods (Figure 2). To understand major pitfalls in the 
landscape of AI utilization in a clinical setting, it is impor-
tant to have a common vocabulary to use and a consensus 
as to what is meant when terms such as “ML” are used.

AI pertains to a collection of algorithms designed to rep-
licate human decision-making processes.9 Within the realm 
of AI, there are two extreme ends; one end involves proba-
bilistic models centered around a single variable, which 
arrives at decisions using predefined probabilities (e.g. 
decision trees) (Figure 2). The other end highlights DL 
algorithms, such as neural networks. Deep neural models 
are not only capable of replicating human-like decision-
making but also possess the ability to generate novel video 
content—this process is referred to as “generative DL” 
(Figure 2).10 ML and AI are often used interchangeably, 
both in research and colloquially since ML is a subset of AI. 
ML refers to a set of algorithms that can learn from data 
without being given explicit instructions (Figures 2 and 3).9 
ML can be further stratified into three classes of algorithms: 
supervised learning, unsupervised learning, and reinforce-
ment learning (Figure 3). Supervised learning is the most 
widely used division: using a labeled dataset, algorithms in 
this class learn relationships between features in the dataset 
and the target class (label) (i.e. identifying factors that pre-
dict a positive diagnosis in patient data of individuals 
known to have an endometriosis diagnosis and control 
patients without an endometriosis diagnosis)9; supervised 
learning algorithms include Random Forest, Support Vector 
Machine (SVM), and logistic regression.11 Unsupervised 
learning uses an unlabeled dataset and can identify group-
ings within your dataset (i.e. stratifying patient data of a 
group of individuals with an endometriosis diagnosis to 
identify similar subsets of patients and the features that dis-
tinguish these groupings)9; unsupervised learning algo-
rithms include K-means, density-based spatial clustering of 
applications with noise (DBSCAN), and hierarchical clus-
tering. Reinforcement learning also uses an unlabeled 

Figure 1. AI studies in endometriosis. Number of studies 
per year on PubMed from 2013 to 2023 using search terms 
(“machine learning” OR “deep learning” OR “artificial 
intelligence” OR “neural network”) AND (“endometriosis” OR 
“pelvic pain” OR “endometrioma”) as of 21 September 2023.
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dataset, and this set of algorithms uses an iterative learning 
method to converge on an optimal behavior based on pen-
alty and reward functions (i.e. predicting disease progres-
sion in endometriosis based on longitudinal symptom 
data)9,12; reinforcement learning algorithms include 
Q-learning, Hidden Markov Models, and Natural Language 
Processing. Unlike traditional statistical methods which 
require the user to give explicit instructions, this set of 
algorithms can learn and adapt once implemented, without 
continued user input.9 Since ML algorithms learn directly 
from data, more data and better data translate to a higher-
quality model. DL is a subset of ML which refers to algo-
rithms that  are based on a neural network architecture; 
neural networks are meant to replicate neurons in the 
human brain and consist of a series of hidden layers that  
transform input data into output data.9,10

The principle of statistics refers to the analysis of data 
to describe and make inferences about an underlying popu-
lation. AI algorithms share commonalities with traditional 
statistical methods regarding data analysis, hypothe- 
sis testing, and particularly, concerning utilization of 

probability theory.13,14 However, fundamental differences 
exist in the objectives, approaches, and the problems that 
these methods are designed to address. Notably, as AI 
algorithms grow in complexity, they combine probability 
with an exploration of the hypothesis space, a term that 
describes the set of all hypotheses which map an input to 
the desired output. In this context, the AI algorithm’s 
objective shifts to identifying the optimal hypotheses that 
facilitate this mapping, serving as a predictive outcome 
rather than an inferential one. This leads to a key distinc-
tion between AI and statistics: statistics is model-driven, 
relying on the a priori assumptions, while AI is largely 
data-driven.14 That is, AI algorithms rely on the scaffold-
ing of a model, which learns patterns from data and can 
apply these patterns to make predictions or decisions, but 
its implementation does not rely on an a priori hypothesis 
of the relationship between features and the target varia-
ble. This flexibility also allows AI algorithms to generalize 
from data and perform tasks without strict a priori assump-
tions about data distribution or hypothesis testing, as com-
monly seen in statistical analysis.

Figure 2. Venn diagram depicting the conceptual overlap between AI, ML, deep learning (DL), and statistics, with examples of 
algorithms within each category. Broadly, AI encompasses algorithms that aim to mimic human decision-making, with ML being a 
subset that learns patterns from data without explicit instructions. DL refers to neural-network-based algorithms. AI and statistics 
share a base in probability theory.
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Current guidelines and standards for 
AI usage in clinical research

The surge in popularity of AI in the medical field has 
necessitated the development of guidelines for use by gov-
erning bodies. Organizations that have guidelines on AI 
usage in healthcare include the World Health Organization 
(WHO) and the EQUATOR Network (Enhancing the 
QUAlity and Transparency Of health Research).15,16 The 
WHO recognizes the immense capabilities of AI in addi-
tion to its potential for misuse and harm.15 The WHO 
developed six guiding principles for their proposal: pro-
tecting human autonomy; promoting human well-being 
and safety and the public interest; ensuring transparency, 
explainability, and intelligibility; fostering responsibility 
and accountability; ensuring inclusiveness and equity; and 
promoting AI that is responsive and sustainable.15

The EQUATOR Network is taking the next steps and 
creating two tools, TRIPOD-AI (Transparent Reporting of 
a multivariable prediction model of Individual Prognosis 
Or Diagnosis) and PROBAST-AI (Prediction model Risk 
Of Bias ASsessment Tool), for individuals who are build-
ing prediction models using AI16; these tools are currently 
progressing through a five-stage development process 
which began in 2021, the goal being to produce a reporting 
guideline for key information regarding the application of 
AI in prediction models. This marks a key milestone in 
moving toward a research landscape where processes that 

contribute to research output are widely understood and 
research output is high quality and replicable. Having a set 
of clear and adherable guidelines allows both researchers 
and readers to have a unified understanding of the expecta-
tions regarding new research using AI.

Current applications of AI in 
endometriosis research (Figure 4)

In the clinical care of patients with endometriosis, diag-
nostic delays come at a great cost to patients and the 
healthcare system.1,6 Diagnostic delays and misdiagnosis 
are caused by compounding issues of varied symptom 
presentation, limited awareness of endometriosis, and a 
culture of dismissing/diminishing women’s pain.17 
Diagnostic imaging backlog contributes to delays in 
accessing care and misdiagnosis, as endometriosis patients’ 
symptoms are then attributed to a variety of other physical 
and mental health conditions.6,18 The Canadian Association 
of Radiologists’ 2023 report for funding and expanded 
access to medical imaging includes the recommendation 
that AI be integrated into medical imaging infrastructure to 
address this diagnostic backlog.18 The use of transfer 
learning and deep neural networks has allowed researchers 
to create models for diagnostic imaging.19 Transfer learn-
ing uses models that are trained on large datasets of images 
that may or may not be related to the topic of interest; in 

Figure 3. Subclassification schematic of ML. This schematic contains three subclasses of ML: supervised learning, unsupervised 
learning, and reinforcement learning. Supervised learning refers to algorithms that detect relationships between features and a 
target within a labeled dataset, consisting of regression and classification algorithms. Unsupervised learning refers to algorithms that 
detect relationships that exist within a dataset with no defined label or pre-existing grouping, consisting of clustering algorithms. 
Reinforcement learning refers to algorithms that learn optimal models through an iterative process of learning through rewards and 
punishments, consisting of policy optimization algorithms.
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the case of Maicas et al., a model was trained on 
Kinetics-400, a dataset of 306,245 videos of a wide range 
of human bodily actions. In transfer learning, it is best to 
use models that are pre-trained on a dataset that is as close 
as possible to the dataset of interest, in this case, transvagi-
nal ultrasound (TVUS) videos.19 The process of pre-train-
ing allows an algorithm to learn features from a large, 
labeled dataset (i.e. textures, movement, depth) and apply 
these general patterns to new datasets.20 It is difficult to 
quantify the relationality between the Kinetics-400 dataset 

and the TVUS dataset since the model is a neural network 
and we cannot extract features used in the analysis. 
However, the performance reported by the researchers 
indicates that the model was able to provide high diagnos-
tic performance (AUC = 0.965 and accuracy = 88.7%) for 
classifying Pouch of Douglas (POD) obliteration verified 
by assessment by two sonologists.19

Another benefit of transfer learning is the ability to use 
knowledge translation across imaging modalities. Both 
TVUS and magnetic resonance imaging (MRI) can be 

Figure 4. Overview of current research in endometriosis using AI. List of selected topics in the field of endometriosis and 
AI research, and selected publications to explore these topics further. For an exhaustive list of references, please refer to the 
“References” section.
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used in the non-invasive diagnosis of endometriosis 
through the identification of POD obliteration, with TVUS 
typically providing an easier diagnosis.21,22 However, 
access to clinicians with expertise concerning image-based 
endometriosis diagnosis is limited, and a single patient 
will not typically have both TVUS and MRI imaging stud-
ies done. Zhang et al. were able to leverage high-perfor-
mance TVUS image analysis models (AUC = 96.9%), as a 
teacher to pre-train a similar model for use on MRI images, 
thereby increasing the model performance for identifying 
the same anomaly on MRI images from an AUC of 65.0% 
to an AUC of 90.6%.22 Comparable studies looked at non-
invasive diagnosis via TVUS or MRI, but required radiol-
ogists with > 10 years of experience reading gynecological 
imaging studies achieving an accuracy of 88% and 55% on 
TVUS and MRI, respectively.21 A pilot study by Balica 
et al. presented DL models that reliably classify endome-
triosis patients retrospectively using ultrasound. The 
DenseNet Convolutional Neural Network (CNN) algo-
rithm was the best-performing algorithm diagnosing endo-
metriosis with an AUC of 90% and an accuracy of 80%.23 
In a study to predict rectosigmoid endometriosis using a 
training cohort of 222 and a testing cohort of 110, a neural 
network algorithm exhibited a 73% accuracy and an AUC 
of 0.82. This study used “soft” ultrasound markers, includ-
ing age and non-bowel-related ultrasound variables as pre-
dictors, wherein the parameters and subsequent best 
models were primarily evaluated by accuracy.24 
Collectively, these studies validate the reliability of AI in 
detecting endometriosis using imaging. While the field 
may not be ready to fully transition to automated image 
analysis at this point, these results provide hope for the 
ability of AI models to approximate human performance. 
These studies, alongside others examining patient-reported 
measures, can act to guide screening of patients with high 
likelihood of endometriosis diagnosis and recommenda-
tions for further care or referral to specialists.25,26,27

The use of AI has extended to investigating other non-
invasive correlates of laparoscopic diagnosis in endometri-
osis and indicators of surgical success in endometriosis 
lesion removal.19,26–32 This research serves as a foundation 
for improving informed clinical decision-making between 
patients and clinicians. In the development of a screening 
tool based on self-reported symptoms to reduce time-to-
diagnosis in endometriosis, Goldstein and Cohen found 
that extreme menstrual bleeding, irregular periods, and 
dysmenorrhea were the most important diagnostic predic-
tors.27 Using decision trees, Random Forest, Gradient 
Boosting Classifier (GBC), and Adaptive Boosting 
(AdaBoost), the study achieved excellent discrimination 
with an AUC ranging from 0.88 to 0.94.27 However, these 
models lacked validation on data external to the model 
training process. In a study using similar predictors, model 
performance was evaluated with validation data using a 
collection of six ML algorithms; the models demonstrated 

excellent performances in distinguishing between endome-
triosis diagnosis and non-diagnosis; the best-performing 
algorithms for this study, Random Forest and a GBC 
achieved an AUC of 0.889 on the validation cohort.33

The prediction of endometriosis outcomes and surgical 
success faces challenges due to factors, such as the multi-
factorial nature of the disease, which impedes the ability to 
make generalizable predictions. Though this area of 
research is still evolving, including studies working on 
clinical prediction models for surgical success based on 
pain reduction and overall quality of life or health status 
(e.g. Creating a Clinical Prediction Model to predict 
Surgical Success in Endometriosis (CRESCENDO) 
study), AI has been a hopeful avenue for identifying relia-
ble predictors.34 ML, specifically least absolute shrinkage 
and selection operator (LASSO) regression, was employed 
to identify pelvic pain comorbidities associated with 
underlying central sensitization (PHQ-9 depression scores, 
abdominal wall pain, and pelvic floor myalgia) as impor-
tant predictors of pain-related quality of life after endome-
triosis surgery. The analysis considered a variety of 
endometriosis-related factors, including revised American 
Society for Reproductive Medicine (rASRM) stage and 
residual endometriosis after surgery.35 Multivariate logis-
tic regression was used in the work by Vesale et al. to pre-
dict the occurrence of voiding dysfunction after surgical 
removal of deep endometriosis lesions. Both clinical char-
acteristics and imaging were used to generate risk predic-
tions in the model.28 Studies using AI have provided a 
richer understanding of predictors of successful treatments 
and are part of a continual effort to change that standard 
and give patients autonomy in choosing their treatment 
path.6,26–28,31

As the power of AI is being harnessed for analysis of 
large datasets, genetic analyses, such as salivary micro-
RNA (miRNA), are emerging as possible avenues of aug-
menting or bettering diagnostic processes.30–32,36 While 
there is currently no blood test to diagnose endometriosis, 
biomarker discovery is one of the research priorities in 
endometriosis that is progressing with the help of AI.17,37 
Biomarkers specific to endometriosis may provide diag-
nostic and mechanistic information, and generate potential 
treatment targets; these biomarkers have been found in 
endometrial tissue, serum, and saliva.31,36,38,39 Five genes 
(CXCL12, PDGFRL, AGTR1, PTGER3, and S1PR1) 
were identified in the work by Jiang et al. through feature 
importance in an SVM model and used to differentiate 
ectopic and eutopic endometrium samples in endometrio-
sis patients. These genes were then analyzed as potential 
immune-mediated drug targets.38 Using 10 binary classifi-
cation algorithms, Su et al. found an mRNA signature con-
taining nine genes to predict endometriosis diagnosis, 
including AGTR1 as found in the work by Jiang et al.;  
the best-performing model used LASSO regression 
(AUC = 0.791).36 On a batch of 22 blood samples, serum 
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protein fingerprints were used in the work by Wang et al.39 
to assess the peripheral markers of endometriosis and 
found to have a sensitivity and specificity of 91.7% and 
90.0%, respectively. In a study involving 200 patients, 
Bendifallah et al.31 reported a salivary miRNA diagnostic 
signature that effectively predicts endometriosis 
(AUC = 0.98) using a Random Forest algorithm. These 
methods, pending further validation, could be a more 
accessible and time-efficient method to screen for and 
diagnose endometriosis, and provide insight into treatment 
targets and disease etiology.

Diagnosis is particularly important in the context of 
accessing care; the availability of healthcare providers 
experienced in recognizing and treating patients with 
endometriosis is highly variable across regions.17 This 
problem of equitable care was further exacerbated during 
the COVID-19 pandemic when access to in-person care 
from medical specialists was restricted, especially when 
patients were required to travel for care.40 Access to the 
proper specialists, pain medication, and support can 
depend on a confirmed diagnosis of endometriosis.6 Thus, 
utilization of algorithms that can accurately detect endo-
metriosis from non-invasive patient data/imaging, inde-
pendent of healthcare provider training specific to 
endometriosis, has the potential to expedite diagnoses, 
avoid surgery, reduce healthcare costs, and give answers to 
women about the source of their pain.6

Common missteps using AI in 
medicine (Figure 5)

The main limitations to using AI in healthcare research are 
related to sample size, data quality, and non-representative 
samples.5 With ML algorithms being data-driven, the qual-
ity of a model is dependent on the quantity and quality of 
data that the model is built on. Acquiring health data for 
conditions with low incidence or studies with low funding 
poses difficulties.5,26 This can result in limited sample 
sizes, or samples that are not representative of the disease 
population, placing limitations on the types of algorithms 
that are applicable.41 In supervised learning, it is standard 
practice to divide the dataset into a training and test set; the 
test set allows analysis of the performance of the model on 
“unseen” data, scoring metrics such as accuracy, precision, 
and recall describe the ability of the model to correctly 
identify data labels.42 Battling with issues of data availa-
bility and algorithm complexity contributes to the problem 
of overfitting, particularly in the context of medical 
research.42,43 Overfitting is when a model is fitted to a 
training dataset and rigidly adheres to nuances in the 
data.43,44 Indications of overfitting include wide gaps in 
training and testing scores and high variance in scoring 
metrics. Gaps between training and testing scores indicate 
that the model is not generalizing well from the training set 
to the test set; similar discrepancies can occur if the dataset 

is too small to accurately characterize variance in the gen-
eral population.42–44

Building models with non-representative samples or 
class imbalance, it is important to consider which scoring 
metric is reported; reported scoring metrics may not com-
municate the whole picture of the analysis.45 Having an a 
priori understanding of which outcome is more “valuable” 
to predict (i.e. in a screening test, you want to identify as 
many potential cases as possible so you want high sensitiv-
ity) can help guide the choice of an appropriate metric to 
report, but it is important to contextualize these results in 
the scope of the problem you are investigating and ensure 
all necessary results are presented. Examples of potential 
metrics include precision, recall, area under the curve 
(AUC), and positive predictive value.46 Hicks et al.45 have 
proposed a set of five pitfalls found when analyzing sets of 
reported and omitted performance metrics for five studies 
implementing ML models; they also discuss reporting 
metrics to support clinician understanding of the contex-
tual use of findings in these studies. While there is no hard 
and fast rule about the size of a dataset, generally the larger 
the dataset the better where a “rule of thumb” for a sample 
size of 10-fold the number of features is recommended, 
such that a model with 10 features requires a sample size 
of at least 100 samples.47,48 In a scoping review of AI use 
in endometriosis studies, there are examples of ML being 
applied with 100 features and a sample size of < 100.26 
Other studies found in this review revealed analyses that 
had half of the sample being endometriosis patients, when 
the population prevalence of endometriosis is estimated at 
5%–10%; such bias in samples introduces further issues in 
generalization to true population parameters. These mod-
els can still provide valuable clinical insight, but when 
looking at the deployment of such models in a “real world” 
setting, it is expected that the performance would decrease.

Strategies to mitigate overfitting when there is low data 
availability include cross-validation, penalizing model com-
plexity, performing pre-analysis feature selection, and using 
ensemble or stacking methods.43,49 Cross-validation follows 
the same premise as a train/test splitting of the data and allows 
reduction of the impact of noise in the training set; cross-val-
idation further divides the training set into, for example, five 
segments within the training process and averages the score 
achieved on each of these segments to elicit a better picture of 
the impact of sampling within the dataset.50 Penalizing model 
complexity and pre-analysis feature selection are both meth-
ods to reduce the complexity of the model by removing fea-
tures from the dataset that have low predictive value for the 
model, such as features that have lots of missing data or fea-
tures that have a low correlation with the measured out-
come.49,51 Ensemble and stacking methods combine or 
average multiple models to reduce variance, improve accu-
racy, or limit bias. While these methods are accessible and 
easy to implement, the lack of training regarding these meth-
ods is a roadblock to proper ML algorithm application.4
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Another limitation is the insufficient training in data sci-
ence, whereby ML algorithms may be applied without 
awareness of best practices for this type of data analysis.52 
This lack of training can lead to data contamination and 
errors in model validation or reporting.46,51 The caveat of 
using powerful, black-box algorithms in research, such as 
AI, is that errors or missteps can occur without the indi-
vidual implementing the algorithm understanding where 
these are happening. There are dangers associated with 
overanalyzing and claiming significance in results that do 

not exist due to the nature of these algorithms.4 The higher 
complexity compared to traditional statistical methods can 
result in the application of AI algorithms without full 
awareness of the precise steps and contextual factors, which 
may affect reproducibility in research. Errors in ML can 
also be perpetuated without transparent reporting, despite 
published and in-progress guidelines.53 Reproducibility 
becomes a central concern when the trial and error in the 
development of a model is not reported, leading to potential 
misrepresentations of the dependencies and other factors 

Figure 5. Summary table containing five examples of common missteps in AI utilization. Divided into categories of sample size, 
non-representative samples, model validation, data quality, and data contamination, this chart describes the issue addressed along 
with its impact on the performance of an AI model.
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affecting model performance.54 Incremental tweaking of 
models throughout the building process after results have 
been assessed causes data contamination, violating a stand-
ard of ML, that data in the test set should not affect the 
training of the model.51 It is important to report validation, 
test, or deployment metrics; this allows a researcher to 
comment on whether a model could be generalizable and 
limitations of the applicability of the model in practice.42,46 
Bias, similar to p-hacking associated with traditional statis-
tical methods, can be introduced into the research process 
when using AI.55 P-hacking refers to the process by which 
data analyses are skewed or selectively reported to favor 
statistically significant (p < 0.05) results.55 In AI model 
development, researchers may try many different algo-
rithms and evaluate model performance with multiple met-
rics, but report only results which support their claims. To 
mitigate these concerns, recommendations for reporting 
results for projects using AI include making both your code 
and your data available publicly.56

AI has quickly become a vital component of medical 
research, but the requirements to effectively implement 
this collection of methods and tools have lagged their 
implementation and publication.3,52 Conclusions drawn 
from models built on small datasets and non-representa-
tive samples need further scrutiny.57

Applicable translation between 
research and clinical practice

Historically, we have seen a lag in the adoption of research 
into clinical care, including best treatment practices, medi-
cation choices, and risk factor identification. This lag is 
exacerbated by the separation between research and clini-
cal practice and inefficiency in research coupled with 
increasing costs.58,59 Utilization of available innovative 
technologies is crucial for the advancement of endometrio-
sis diagnosis, treatment, and etiological understanding. 
Canada-wide and globally, there exists gaps in healthcare 
services, and with AI, the potential exists for augmentation 
and supplementation of clinical care services.60,61 
Organizations such as the Canadian Association for Drugs 
and Technologies in Healthcare (CADTH) and the National 
Institutes of Health (NIH) recognize the importance of 
adopting practices that integrate these new technological 
advances into clinical care.60,61 The best practices of imple-
menting AI into clinical care center on the idea of aug-
menting physician knowledge, practice, and expertise. In 
areas such as medical imaging, pathology, and genomics, 
AI has been able to expedite the analysis of scans, sam-
ples, and genomes. All of these can be useful in the diag-
nosis and treatment of endometriosis, in addition to help 
elucidate pathogenesis. Supporting individuals in training 
to adopt the use of AI, funding applicable necessary tech-
nology, and creating guidelines for implementing AI in a 

clinical setting are all crucial stepping stones to practically 
applying the available technology.

Limitations

This review approaches the topic of AI and endometriosis 
assessing general themes of potential future pathways and 
current missteps in application of this emerging technology. 
As this is a narrative review, a complete analysis of the field 
was not conducted. While growing, the scope of research spe-
cific to AI and endometriosis is narrow and the authors have 
attempted to summarize key findings. Continuing analysis of 
research coming out in the field of endometriosis research is 
pertinent to ensure the patency of changes to clinical care 
guidelines. It is yet unknown how the implementation of AI 
within endometriosis research will change the landscape of 
clinical care. However, following best practices, some of 
which are laid out in this review, will ensure the most benefi-
cial outcome for patients and researchers alike.

Conclusion

In assessing the use of AI in endometriosis, the positive 
potential of adopting these algorithms into research and 
clinical practice can be amplified by understanding com-
mon pitfalls. AI algorithms provide a method of enhancing 
understanding of previously unidentified patterns in data. 
With increased access to analysis software, implementa-
tion of these algorithms can be adopted widely; this acces-
sibility creates opportunities for investigating the many 
unknowns of endometriosis. While these tools have great 
power, proper implementation of AI algorithms must guide 
research endeavors.

Approaching the implementation of AI in endometriosis 
with caution and awareness of common pitfalls will 
improve the validity of research and clinical decision-mak-
ing that relies on these models. Common pitfalls are associ-
ated with limited sample size, non-representative samples, 
model validation, data contamination, and data qual-
ity.42,43,49,57 These challenges are driven by the cost and 
complexity of data acquisition and the need for more AI 
training among researchers. To harness the full potential of 
AI for application in endometriosis, researchers can defer 
to guidelines put forward by the EQUATOR network, the 
NIH, the WHO, and local governing bodies.15,46,60,61

AI algorithms have shown promise in supporting diag-
nostic imaging, etiological understanding, and surgical out-
come prediction in endometriosis.19,26,27,30 Adopting the use 
of technology with the potential to alleviate healthcare 
costs and improve patient outcomes is crucial for progress. 
A focus on data quality, transparency in reporting, and 
awareness of up-to-date guidelines will allow for AI to 
have a maximal positive impact on the care of individuals 
with endometriosis.
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