Skip to main content
. Author manuscript; available in PMC: 2024 May 1.
Published in final edited form as: Simul Synth Med Imaging. 2022 Sep 21;13570:43–54. doi: 10.1007/978-3-031-16980-9_5

Table 1.

Summary of the anomaly detection results. We have compared HealthyGAN with 6 state-of-the-art anomaly detection methods using 5 metrics on 3 medical imaging datasets. The best results are in bold and the second best results are underlined.

Datasets Metrics ALAD ALOCC f-AnoGAN Ganomaly Padim PatchCore HealthyGAN
COVID-19 AUC 0.58 0.63 0.64 0.58 0.56 0.52 0.84
Prec. 0.49 0.63 0.55 0.59 0.56 0.52 0.76
Rec. 0.89 0.63 0.53 0.60 0.56 0.53 0.76
Spec. 0.09 0.63 0.56 0.59 0.56 0.51 0.76
F1 0.64 0.63 0.54 0.60 0.56 0.52 0.76
X-ray 14 diseases AUC 0.53 0.48 0.55 0.49 0.54 0.53 0.56
Prec. 0.53 0.48 0.55 0.49 0.54 0.53 0.55
Rec. 0.53 0.48 0.55 0.49 0.54 0.53 0.55
Spec. 0.53 0.48 0.55 0.49 0.54 0.53 0.55
F1 0.53 0.48 0.55 0.49 0.54 0.53 0.55
Migraine AUC 0.60 0.40 0.50 0.70 0.35 0.60 0.75
Prec. 0.60 0.40 0.50 0.70 0.36 0.60 0.78
Rec. 0.60 0.40 0.50 0.70 0.40 0.60 0.70
Spec. 0.60 0.40 0.50 0.70 0.30 0.60 0.80
F1 0.60 0.40 0.50 0.70 0.38 0.60 0.74