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Abstract

Histograms are frequently used to perform a preliminary study of data, such as finding outli-

ers and determining the distribution’s shape. It is common knowledge that choosing an

appropriate number of bins is crucial to revealing the right information. It’s also well known

that using bins of different widths, which called unequal bin width, is preferable to using bins

of equal width if the bin width is selected carefully. However this is a much difficult issue. In

this research, a novel approach to AIC for histograms with unequal bin widths was pro-

posed. We demonstrate the advantage of the suggested approach in comparison to others

using both extensive Monte Carlo simulations and empirical examples.

Introduction

Histograms, introduced by Pearson (1985), are widely used for both density estimator and

data presentation. This kind of a graphical representation of data can help to reveal informa-

tion which cannot be discovered from standard summary statistics. Histograms are a helpful

tool that is typically computationally straightforward and widely accessible, for instance in the

majority of statistical computer applications.

In essence, a histogram’s columns, also known as “bins”, show the frequencies of the range

of their base [1]. Based on this, an equal bin width histogram has two parameters: the bin

width h and the bin origin x0. Accordingly, the intervals of bins are defined as [x0 + mh, x0 +

(m + 1)h] for integers m [2]. The information of data stored in the histogram depends on the

bin width and can be either too much or too little. For instance, larger h leads to hide valuable

information while smaller h shows the data too random. These issues, which are referred to as

undersmoothing and oversmoothing, respectively, prevent the histogram from revealing the

pertinent information that it is capable of doing [2, 3].

The oversmoothing and undersmoothing problems make it more important to determine

the number of bins (or, more precisely, the ideal bin width). Data driven methods for deter-

mining the number of equal width bins includes e.g. [3–10]. More advanced methods have

been proposed which depends on the underlying distribution [11–14], cross validation [15,

16] or Bayesian theory [17, 18]. In addition to these techniques, Taylor (1987) made a signifi-

cant advance to histogram analysis by determining the ideal bin width using the Akaike
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Information Criterion (AIC). The purpose of the method is to estimate the best bin width

through the maximization of likelihood function [19]. Taylor (1987) demonstrated that the

performance of AIC is better than other data-based methods under the equal bin width condi-

tion. This originated AIC to be used in relation to histograms in different contexts [9, 10, 20–

27].

All of the aforementioned strategies take only equal bin width into account. It can be far

more useful in some circumstances to have various bin widths, though. For instance, Scott

and Scott (2008) claimed that creating equal bin width histograms can be misleading when

attempting to comprehend the underlying density information because the majority of fre-

quency tables and the histograms that correspond to them are constructed using unequal

widths [28]. Similar to this, Scott (2010) reported that using equal bin widths can result in

bins that are too close to the modes [29]. However, only a small amount of study has exam-

ined at unequal bin width for histograms because it is more challenging to determine an

unequal bin width than an equal bin width in practice. Amongst unequal bin width studies,

Davies et al. (2009) argued that the reason for the rare unequal bin width preference is due to

the decision theory framework. Accordingly, in this setting, there are many regular histo-

gram procedures and these procedures are more difficult to adjust to unequal bin width in

histograms (in other words irregular histograms) [10]. Having automatic procedures, com-

putationally faster methods and having a variety of methodologies turns to an advantage to

equal bin width histograms against the cost of getting the true distribution wrong. Some

research which takes this issue into account is highly technical, like Engel (1997). In his

paper, an adaptive version of multiresolution analysis for histogram (referred as multiresolu-

tion histogram) is proposed and the benefits of choosing unequal bin width are stressed [30].

Moreover, Barron et al. (1999) developed a methodology based on risk bounds which is used

for model selection via penalization. This is applied on unequal bin width histograms but it

is a purely theoretical exercise [31]. In a sequence of papers, Kanazawa has made important

contributions. He derived optimality in the construction of histograms for both equal and

unequal bin sizes [32, 33]. Furthermore, AIC is the focus in one of his papers [21] but not in

the context of unequal bin widths. Rissanen and Speed (1992) extend the minimum descrip-

tion length principle to an unequal bin width histogram for density estimation by minimiz-

ing the largest absolute deviation between the histogram and its density [34]. Here it should

be noted that the estimation of the density function is given a lot of attention in the majority

of publications on unequal bin width histograms.

Besides the all literature, studies on penalized methods that account for unequal bins, such

as AIC, are scarce [26, 27, 35]. Only Rozenholc et al. (2010) are regarded as AIC in this context

out of the novel and aforementioned studies [26]. Their study aimed to combine equal and

unequal histograms and may be considered as a comprehensive study as they examined the

performances of 15 methods. The methods used are included in R-package histogram [36].

When the literature for histograms with different bin widths is examined, it has been realized

that a technical improvement is restricted about determining the bin width. Therefore, the pri-

mary motivation of this research is to introduce the restricted AIC method which is a modified

approach by using AIC for histograms with different bin widths. It has been thought that

improving the AIC in this field, may increase its usage area.

Based on the aim of this study, the paper is structured as follows: in Section 2, the bino-

mial model and the corresponding AIC is derived for unequal bins. Then, in Section 3,

Monte Carlo experiments compare the proposed AIC method with other unequal bin width

approaches. In Section 4, empirical examples are examined through the proposed AIC

method and the other methods used in Section 3. Finally, Section 5 contains the

conclusions.
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Determining the bin size of a histogram with unequal bin sizes via

restricted AIC

Konish and Kitagawa (2008, p. 78) note that a histogram with k bins can be seen as multino-

mial distribution. Let nj denote the number of observations in bin j and n ¼
Pk

j¼1
nj the total

number of observations then the likelihood is

lðp1; . . . ; pkÞ ¼ C þ
Xk

j¼1

nj ln ðpjÞ

where C ¼ lnðn!Þ �
Pk

j¼1
lnðnj!Þ. The maximum likelihood estimates are p̂j ¼ nj=n. Then it is

easily seen that

AIC ¼ � 2 C þ
Xk

j¼1

nj lnðp̂jÞ

 !

þ 2ðk � 1Þ:

Konish and Kitagawa (2008, p. 78) also noted that if two bins were merged, say bin 1 and 2,

then the maximum likelihood estimator is

p̂1 ¼ p̂2 ¼
n1 þ n2

2n

� �
:

First we need to decide upon the maximum number of bins. We set it to k = bn/log(n)c

(where bxc denotes the largest integer not larger than x) as for example in [26]. The thresholds

for the bins are created such that the bins has equal widths. In the first step, we compare all

possible merges of bins that will end up in two bins. The best one is the one that minimizes the

AIC and we select that one as our model if there were only two bins. There are k − 1 of possible

ways to merge them. If we would like to merge into three bins then there would be (k − 1)(k
− 2)/2 possible ways to merge. In general there arePK

i¼1
ðk � iÞ=K! ways to divide k bins into K

groups. This becomes computationally very expensive. Our proposal is to fix the threshold

given when considering two bins for the case of three bins. Then the best three bins model is

compared to the best two bins model. If the best three bins model has a better AIC then con-

tinue by fixing also that threshold when considering four bins. Continue until the next number

of bins does not improve AIC. This procedure is simple, computationally feasible and relies on

sound statistical theory.

A Monte Carlo experiment

The Monte Carlo simulation is made for analyzing the properties of proposed methods under

a known setting. The setup is based on the previous studies, e.g. [10, 26]. The distributions

included are: N(0,1), exp(1), U(0,1), a distribution where half of the observations are from N

(0,1) and half from N(4,1), which we denote 0.5N(0,1)+0.5N(4,1), a t-distribution with 3

degrees of freedom and a Beta(1.5,1.5). The sample sizes are n = (50, 100, 200, 400, 800) and

the number of replicates is 5000 for each scenario. To discuss the performances of methods,

loss functions are needed. We use the Hellinger distance, the L1 and L2 norms, between the

true density and the estimated density as the results from previous studies show that the choice

of the loss function is important for the results. The simulation is carried out in the R program

[37] and all methods we compare with are implemented in the histogram package [36], except

for TS where the ftnonpar package was used [38].

We compare our method with the 9 methods used for determining bin width for the

unequal histogram in the [26] study. Further information on the methods compared and their
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abbreviations are given in the Supporting information. The simulation results displayed in

Tables 1–3. Table 1 demonstrates the results based on the Hellinger distance while Tables 2

and 3 demonstrate the results based on L1 and L2. The values in the tables show the relative dis-

tances compared to our AIC, which is abbreviated as AICr. This implies that a value above one

indicates that the distance of the method was larger than AICr.

Simulation results for common distributions are consistent with Davies et al. (2009) and

Rozenholc et al. (2010). When the comparison approaches are reviewed first, Hellinger dis-

tance is defined as a pessimist while L1 and L2 are defined as optimists for AICr. Also, there is

an almost full agreement when we compare the number of cases L1 and L2 agreed in being

larger or smaller than 1. Hence, the qualitative results are basically the same and we conclude

that it doesn’t matter if L1 or L2 is used. However, there are some notable differences between

the Hellinger distance and them. AICr is the best method in 60.4% according to the Hellinger

distance while 72.6% and 72.9% respectively for L1 and L2. Based on the general results, at least

one condition can be found where AICr performs better compared to any other methods.

If the tables are examined in terms of distributions, AICr showed its superiority in almost

every condition on t based on L1 and L2. The only exception for t distribution is TS method

Table 1. The AICr column reports the average Hellinger distance while other reports the relative Hellinger distances compared to AICr.

distr n AICr B R CV Bc Rc CVc AIC BIC TS

0.5N(0,1)+0.5N(4,1) 50 0.052 1.032 1.015 1.283 1.015 1.010 0.942 1.767 1.294 1.031

0.5N(0,1)+0.5N(4,1) 100 0.035 1.242 1.187 1.569 1.231 1.187 0.933 2.303 1.300 1.100

0.5N(0,1)+0.5N(4,1) 200 0.023 1.198 1.133 2.045 1.186 1.130 0.911 3.049 1.283 0.807

0.5N(0,1)+0.5N(4,1) 400 0.017 1.060 1.015 2.503 1.052 1.013 0.868 3.449 1.195 0.692

0.5N(0,1)+0.5N(4,1) 800 0.012 0.972 0.940 2.587 0.968 0.939 0.834 3.250 1.051 0.582

B(1.5,1.5) 50 0.038 0.713 0.705 1.555 0.695 0.702 0.957 2.251 1.313 0.718

B(1.5,1.5) 100 0.024 0.758 0.759 2.094 0.746 0.756 1.056 3.174 1.350 0.759

B(1.5,1.5) 200 0.016 0.876 0.862 2.827 0.870 0.861 1.142 4.311 1.308 0.879

B(1.5,1.5) 400 0.011 0.853 0.801 3.529 0.850 0.800 1.203 4.931 1.146 0.901

B(1.5,1.5) 800 0.008 0.661 0.648 3.516 0.658 0.648 1.187 4.492 0.933 0.607

exp(1) 50 0.048 1.179 1.099 1.353 1.130 1.101 0.857 1.865 1.319 0.837

exp(1) 100 0.032 1.137 1.079 1.664 1.081 1.066 0.786 2.492 1.309 0.739

exp(1) 200 0.021 1.098 1.058 2.191 1.063 1.048 0.739 3.281 1.245 0.659

exp(1) 400 0.015 1.005 0.984 2.740 0.987 0.980 0.694 3.732 1.156 0.581

exp(1) 800 0.011 0.895 0.882 2.822 0.884 0.878 0.655 3.615 1.006 0.493

N(0,1) 50 0.047 1.215 1.138 1.386 1.199 1.139 0.943 1.930 1.327 1.233

N(0,1) 100 0.032 1.115 1.064 1.707 1.102 1.063 0.896 2.479 1.305 0.943

N(0,1) 200 0.022 1.136 1.091 2.162 1.132 1.089 0.861 3.225 1.251 0.802

N(0,1) 400 0.016 1.036 0.992 2.616 1.030 0.991 0.825 3.584 1.137 0.737

N(0,1) 800 0.012 0.924 0.886 2.606 0.920 0.885 0.783 3.326 1.004 0.636

t(3) 50 0.056 1.202 1.139 1.281 1.213 1.183 1.059 1.689 1.262 0.937

t(3) 100 0.038 1.232 1.189 1.524 1.275 1.245 0.995 2.164 1.273 0.819

t(3) 200 0.026 1.206 1.177 1.927 1.262 1.235 0.965 2.834 1.272 0.752

t(3) 400 0.018 1.166 1.149 2.373 1.216 1.200 0.887 3.180 1.239 0.699

t(3) 800 0.012 1.108 1.114 2.553 1.149 1.149 0.809 3.163 1.111 0.629

U(0,1) 50 0.037 0.587 0.551 1.616 0.542 0.547 0.930 2.327 1.309 0.576

U(0,1) 100 0.022 0.479 0.460 2.243 0.453 0.457 1.081 3.402 1.248 0.480

U(0,1) 200 0.014 0.363 0.355 3.277 0.350 0.353 1.273 5.013 1.166 0.380

U(0,1) 400 0.009 0.246 0.243 4.469 0.241 0.242 1.483 6.195 1.000 0.256

U(0,1) 800 0.006 0.119 0.119 4.917 0.118 0.119 1.610 6.316 0.761 0.128

https://doi.org/10.1371/journal.pone.0289822.t001
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even though AICr has better performance for a small sample size. Similarly, the AICr method is

best for 0.5N(0,1)+0.5N(4,1), N(0,1) and exponential distributions for the small and moderate

sample sizes. For these distributions, AICr performed weakly only against CVc and TS based

on the Hellinger distance. This situation mostly changed for the L1 and L2 distances. AICr is

more successful for small samples when compared to TS while CVc only stayed strong for the

exponential distribution. If the U(0,1) and the B(1.5,1.5) distributions are considered in general,

the results of these distributions are close to each other and AICr performed well compared

with CV, CVc, AIC and BIC. However, the noteworthy point here is that AICr’s estimated the

density at least 2 times better than these methods. The distances of AIC and BIC methods reach

maximum values for all three tables and it is followed by CV. This is expected for only AIC as

[9, 26, 39] indicated that AIC underpenalize even for regular histograms. To sum up, these

methods are weakest against AICr based on the Monte Carlo results. On the contrary, TS is one

of the most successful methods and it is followed by CVc if we consider the Hellinger distance.

As can be observed in general, AICr typically performs better on small and moderate sample

sizes, whereas the success of the other approaches varies depending on the distribution and

sample size. Conversely, AICr occasionally performed poorly at large sample sizes.

Table 2. The AICr column reports the average L1 distance while other reports the relative L1 distances compared to AICr.

distr n AICr B R CV Bc Rc CVc AIC BIC TS

0.5N(0,1)+0.5N(4,1) 50 0.407 1.075 1.067 1.224 1.065 1.062 0.972 1.396 1.176 1.072

0.5N(0,1)+0.5N(4,1) 100 0.332 1.265 1.230 1.390 1.261 1.229 1.017 1.616 1.168 1.135

0.5N(0,1)+0.5N(4,1) 200 0.270 1.219 1.172 1.622 1.215 1.170 1.048 1.895 1.157 0.927

0.5N(0,1)+0.5N(4,1) 400 0.226 1.112 1.089 1.799 1.110 1.087 1.057 2.018 1.123 0.852

0.5N(0,1)+0.5N(4,1) 800 0.191 1.097 1.082 1.777 1.096 1.082 1.066 1.905 1.075 0.777

B(1.5,1.5) 50 0.290 0.696 0.700 1.499 0.688 0.697 1.092 1.795 1.156 0.705

B(1.5,1.5) 100 0.241 0.838 0.842 1.771 0.834 0.841 1.219 2.118 1.173 0.850

B(1.5,1.5) 200 0.202 0.997 0.982 2.060 0.997 0.983 1.307 2.455 1.116 1.020

B(1.5,1.5) 400 0.173 0.980 0.937 2.260 0.980 0.937 1.369 2.563 1.017 1.028

B(1.5,1.5) 800 0.151 0.852 0.846 2.103 0.852 0.845 1.345 2.276 0.922 0.752

exp(1) 50 0.359 1.261 1.222 1.351 1.230 1.215 0.993 1.544 1.243 0.945

exp(1) 100 0.290 1.266 1.244 1.547 1.230 1.229 0.970 1.806 1.234 0.883

exp(1) 200 0.236 1.275 1.267 1.817 1.252 1.255 0.963 2.144 1.219 0.837

exp(1) 400 0.194 1.258 1.263 2.066 1.247 1.258 0.960 2.328 1.185 0.793

exp(1) 800 0.162 1.231 1.240 2.048 1.223 1.236 0.969 2.201 1.139 0.742

N(0,1) 50 0.353 1.235 1.175 1.360 1.227 1.176 1.042 1.571 1.222 1.259

N(0,1) 100 0.294 1.137 1.107 1.551 1.131 1.105 1.046 1.810 1.202 0.995

N(0,1) 200 0.242 1.193 1.167 1.786 1.192 1.166 1.071 2.099 1.181 0.886

N(0,1) 400 0.203 1.151 1.129 1.982 1.150 1.129 1.088 2.219 1.130 0.834

N(0,1) 800 0.172 1.121 1.102 1.923 1.121 1.101 1.098 2.065 1.069 0.764

t(3) 50 0.401 1.189 1.156 1.283 1.199 1.181 1.071 1.441 1.194 1.023

t(3) 100 0.323 1.247 1.227 1.463 1.272 1.260 1.081 1.680 1.209 0.919

t(3) 200 0.262 1.257 1.254 1.697 1.294 1.289 1.103 1.971 1.212 0.885

t(3) 400 0.213 1.282 1.291 1.932 1.316 1.323 1.109 2.149 1.217 0.862

t(3) 800 0.172 1.293 1.324 1.972 1.327 1.350 1.103 2.109 1.209 0.827

U(0,1) 50 0.277 0.307 0.307 1.552 0.293 0.302 1.048 1.880 1.068 0.321

U(0,1) 100 0.214 0.202 0.205 1.939 0.196 0.202 1.262 2.358 0.971 0.217

U(0,1) 200 0.169 0.126 0.130 2.418 0.124 0.128 1.495 2.922 0.890 0.151

U(0,1) 400 0.136 0.078 0.080 2.840 0.078 0.079 1.693 3.232 0.767 0.091

U(0,1) 800 0.110 0.048 0.050 2.816 0.048 0.050 1.770 3.062 0.628 0.059

https://doi.org/10.1371/journal.pone.0289822.t002
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Empirical examples

This section presents the comparison of the AICr method with the other methods (B, R, CV, Bc,

Rc, CVc, AIC, BIC, TS) through some real empirical data sets. There are six datasets chosen to

illustrate different features often encountered in real applications from the histogram literature.

The datasets represented a wide range of sample sizes, and their references are given in Table 4.

Among these data sets, especially Weisberg’s (1980) study has been widely used to analyze histo-

gram bin widths [40], e.g. Azzalini and Bowman (1990), Davies et al. (2009), Scott (2015), Silver-

man (2018) and Li et al. (2020) [2, 10, 41–43]. Similarly, the Buffalo snowfall data was also

analyzed in e.g. Atilgan (1990), Scott (2015) and Silverman (2018) [2, 20, 42] and it was updated

by using data from US National Weather Service in 2021 (https://www.weather.gov/buf/

BuffaloSnow). The suicidal risk data set was also used in Davies et al. (2009) and Silverman

(2018) [2, 10]. The last data set is from Scott et al. (1978) and has two variables for 371 male

patients; concentration of plasma cholesterol and plasma triglycerides (mg/dl) [44]. There are two

groups of patients that depend on whether those with narrowing of the arteries or not and in this

present study we use only the 320 patients without narrowing (for detail see Table B3 in [42].).

Table 3. The AICr column reports the average L2 distance while other reports the relative L2 distances compared to AICr.

distr n AICr B R CV Bc Rc CVc AIC BIC TS

0.5N(0,1)+0.5N(4,1) 50 0.028 1.107 1.002 2.790 0.974 0.974 0.957 15.273 6.732 1.050

0.5N(0,1)+0.5N(4,1) 100 0.019 1.429 1.309 3.737 1.341 1.292 1.013 44.671 4.159 1.232

0.5N(0,1)+0.5N(4,1) 200 0.013 1.397 1.255 5.302 1.324 1.246 1.057 153.131 3.314 0.850

0.5N(0,1)+0.5N(4,1) 400 0.010 1.141 1.076 6.789 1.109 1.070 1.061 67.384 7.027 0.666

0.5N(0,1)+0.5N(4,1) 800 0.007 1.043 1.011 6.658 1.030 1.008 1.065 37.281 2.834 0.522

B(1.5,1.5) 50 0.151 0.637 0.474 4.090 0.450 0.465 1.053 34.513 16.774 0.672

B(1.5,1.5) 100 0.106 0.700 0.620 6.615 0.597 0.611 1.269 113.643 19.338 0.652

B(1.5,1.5) 200 0.079 0.847 0.790 7.116 0.804 0.790 1.414 61.436 12.289 0.835

B(1.5,1.5) 400 0.060 0.817 0.728 8.186 0.787 0.727 1.496 60.910 10.639 0.851

B(1.5,1.5) 800 0.049 0.573 0.550 7.362 0.560 0.549 1.425 35.979 5.934 0.468

exp(1) 50 0.072 2.477 1.423 4.866 1.355 1.348 1.020 45.877 27.386 1.205

exp(1) 100 0.046 1.910 1.472 6.742 1.385 1.409 0.987 64.935 15.813 1.060

exp(1) 200 0.030 1.723 1.518 9.833 1.434 1.472 0.959 199.342 8.611 0.844

exp(1) 400 0.020 1.583 1.513 12.317 1.432 1.493 0.943 145.737 6.164 0.723

exp(1) 800 0.014 1.468 1.465 12.359 1.380 1.446 0.938 72.781 3.894 0.622

N(0,1) 50 0.039 1.606 1.285 3.946 1.363 1.271 1.058 26.257 10.123 1.573

N(0,1) 100 0.027 1.311 1.139 5.292 1.185 1.131 1.084 67.288 9.027 0.941

N(0,1) 200 0.019 1.303 1.211 7.462 1.250 1.206 1.139 159.647 6.187 0.690

N(0,1) 400 0.014 1.166 1.100 9.220 1.132 1.097 1.163 49.997 2.906 0.573

N(0,1) 800 0.010 1.055 1.004 8.760 1.031 1.003 1.170 37.379 1.889 0.453

t(3) 50 0.031 1.811 1.343 3.940 1.416 1.379 1.154 29.200 8.119 1.388

t(3) 100 0.021 1.677 1.496 5.461 1.579 1.563 1.209 66.353 8.259 0.869

t(3) 200 0.013 1.669 1.585 8.037 1.670 1.678 1.290 122.217 8.370 0.789

t(3) 400 0.009 1.725 1.741 11.655 1.796 1.844 1.353 59.854 4.067 0.741

t(3) 800 0.005 1.804 1.927 13.112 1.897 2.017 1.382 54.284 2.688 0.655

U(0,1) 50 0.164 0.475 0.288 3.872 0.266 0.274 0.940 36.447 15.831 0.451

U(0,1) 100 0.108 0.283 0.219 5.770 0.202 0.207 1.181 54.243 18.418 0.278

U(0,1) 200 0.075 0.174 0.148 8.338 0.140 0.143 1.414 97.139 38.224 0.193

U(0,1) 400 0.053 0.105 0.101 9.207 0.098 0.099 1.643 95.629 16.172 0.120

U(0,1) 800 0.038 0.069 0.070 8.877 0.068 0.069 1.750 78.499 1.912 0.081

https://doi.org/10.1371/journal.pone.0289822.t003
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The main problem with the empirical analysis is that we do not know the true underlying

distribution. However, we can interpret the trade-off between being able to detect valuable pat-

terns and patterns arising from noise. In Fig 1, the number of bins change between 6 to 22

while the proposed AICr method has 15. It can be seen from the figure that, there are two

peaks and AICr has captured one of them, the one on the right. This peak was captured by

almost every method, but the same cannot be said for the decay to the right side of the right

peak. B, R, Bc, Rc can not detect this decay and all of them have bins lower than 10, which is

defined as oversmoothing problem. Also, TS has the maximum bin number in Fig 1 which is

the same as for Fig 2 (22 and 34 bins respectively). This gives rise to the suspicion of under-

smoothing as it seems too random. This is followed by AIC with 18 bins. On the other hand,

B, R, Bc, Rc and BIC, which have 5 and 6 bins, seem oversmoothing. Besides, even though

both AICr and CV have the almost same amount of bins, CV shows the fluctuations better and

the situation of CVc is similar to CV with just 11 bins.

The snowfall data is also an interesting example for evaluating methods since there is an

outlier on the right-hand side at about the 199th order of data. It means that if there are too

few bins the outlier will be connected with other large observations. This happened for every

method in Fig 3 except the proposed AICr. It is an important finding that, for all methods

except AICr, it seems like there are some patterns displaying that are not really there between

the range of (150–200). Also, B, R, Bc, Rc, BIC and TS hide the shape of distribution since they

have fewer bins. The suicidal data which can be seen in Fig 4 is an example of a heavily skewed

distribution. It means that the fewer bins imply doesn’t enough reveal how the data looks like

for the left-hand side and oversmooth on the right-hand side, like B, R, Bc and Rc. On the con-

trary, CV and AIC display too many going up and down patterns with 12 and 13 bins respec-

tively. According to this, TS with 10 bins, brings the question that whether the distribution

first goes up and then down as for AICr or down all the time as for CVc and BIC.

The cholesterol data can be taken as a representative of symmetrical data, with a few outliers

to the right side, see Fig 5. As happened above, too few bins (such as those given by B, R, Bc,

Rc and BIC) display a nonrandom shape while too many bins (such as CV and AIC) display

the distribution too random. Further, in AIC and CV, they appear as if there are some patterns

that aren’t actually there because of outliers in the 300 to 400 range. Also, they have very small

fluctuating bins at around 220 and this leads to an unsymmetrical pattern. However, it is hard

to know that these movements are due to a lower density in this region of the data. TS also

doesn’t seem to reveal enough information although it has 15 bins and is similar to AICr with

8 bins. For this data set, CVc looks like fairly good to catch the symmetrical patterns with 9

bins and it is closer to the AICr. Finally, the triglycerides concentration data, in Fig 6, is slightly

positively skewed. The methods B, R, Bc, Rc and BIC (5 and 6 bins) have too few bins to reveal

the underlying pattern of the data. TS has the same patterns even though it has 19 bins. Sur-

prisingly, as above, TS has almost the same patterns with histograms that have too few bins.

Table 4. The determined amount of bins for different data-based methods through real data set.

Variable n Reference

Geyser dur. 299 [40]

Geyser wait 299 [40]

B. snowfall 112 [45]

Suicidal 86 [46]

Cholesterol 320 [44]

Triglycerides 320 [44]

https://doi.org/10.1371/journal.pone.0289822.t004
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Also, CV and AIC look too random since they have too many bins, 22 and 25 respectively. For

these data examples, AICr and CVc seem like doing a fairly good job (AICr has 14 while CVc

has 8 bins). The only difference between them, AICr has a decreasing move in the range 150 to

250. But again, it is hard to know whether this movement is due to whether there is a lower

density in this region of the data.

To sum up, it can be shown from the examples too, that deciding the number of bins is an

important issue. Undersmoothing can show noisy results while oversmoothing can hide some

interesting clues about data. In general, B, R, Bc, Rc and BIC tend to produce histograms with

very few bins while CV and AIC produce them with too many bins. Also, TS is competing

Fig 1.

https://doi.org/10.1371/journal.pone.0289822.g001
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with the methods that have too many bins and the histograms of TS looks displays similar pat-

terns to the rough histograms that have few bins. In these methods, only AICr and CVc gener-

ate bin numbers between these two extreme points and AICr often tends to have higher bins

than CVc.

Conclusions

In this study, we introduced a procedure, based on the very well-known AIC, for histograms

that have unequal bin width. Therefore, after the introduction of the restricted likelihood

Fig 2.

https://doi.org/10.1371/journal.pone.0289822.g002

PLOS ONE Restricted AIC for irregular histogram

PLOS ONE | https://doi.org/10.1371/journal.pone.0289822 May 1, 2024 9 / 15

https://doi.org/10.1371/journal.pone.0289822.g002
https://doi.org/10.1371/journal.pone.0289822


based AIC (AICr) in Section for AICr, the performance of AICr is compared with 9 other

methods that are used by [26] for unequal histograms through both Monte Carlo simulations

and using empirical data. The evaluation of methods is made by calculating distances between

estimated and its true ones e.g. Hellinger distance.

Data is generated from a wide range of distributions for the simulation study: Normal, half-

normal, exponential, uniform, t and Beta. Also, sample sizes are arranged to include a wide

range: 50, 100, 200, 400 and 800. According to the simulation results, the success rate of AICr

method is over 60% for each distance. It has been observed that AICr performs best, especially

Fig 3.

https://doi.org/10.1371/journal.pone.0289822.g003
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for the t, exponential, normal and half-normal distributions and it is superior for small and mod-

erate sample sizes. On the contrary, the B(1.5,1.5) and U(0,1) distributions are the only ones

where AICr is often weak. For these distributions, AIC and CV’s have the worst performance fol-

lowed by BIC among all the methods used in this study. The method denoted as TS performs

well for moderate and large sample sizes while it performs worse for small sample sizes.

In the empirical part of the paper, six datasets are used to exemplify the different features of

methods. The AICr method performs best among all methods as it is neither oversmooth nor

undersmooth. The B, R, Bc, Rc and BIC methods tend to be oversmoothing since they have

Fig 4.

https://doi.org/10.1371/journal.pone.0289822.g004
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few bins while CV and AIC tend to be undersmoothing with too many bins. One of the impor-

tant findings is that TS tends to produce histograms with a high amount of bins however they

display almost the same patterns with fewer bin histograms, which means it can be hard to

detect important information of data. This result produces a devastating effect against the posi-

tive results of TS in the simulations. Only two methods, AICr and CVc, choose a moderate

amount of bins for the histograms and avoid histograms that are too noisy or too rough. Fur-

ther, only AICr could catch the outlier in the snowfall data.

In brief, the proposed AICr method performs very well according to both simulations and

empirical examples. The performance of the method shows that AICr can be used to

Fig 5.

https://doi.org/10.1371/journal.pone.0289822.g005
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determine the bin size of unequal histograms. Future studies are needed to get a more com-

plete understanding of the situations when the different methods perform best.
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