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Abstract

Multidimensional correlation spectroscopy is emerging as a novel MRI modality that is well 

suited for microstructure and microdynamic imaging studies, especially of biological specimens. 

Conventional MRI methods only provide voxel-averaged and mostly macroscopically averaged 

information; these methods cannot disentangle intra-voxel heterogeneity on the basis of both 

water mobility and local chemical interactions. By correlating multiple MR contrast mechanisms 

and processing the data in an integrated manner, correlation spectroscopy is able to resolve 

the distribution of water populations according to their chemical and physical interactions 

with the environment. The use of a non-parametric, phenomenological representation of the 

multidimensional MR signal makes no assumptions about tissue structure, thereby allowing the 

study of microscopic structure and composition of complex heterogeneous biological systems. 

However, until recently, vast data requirements have confined these types of measurement to 

non-localized NMR applications and prevented them from being widely and successfully used in 

conjunction with imaging. Recent groundbreaking advancements have allowed this powerful NMR 

methodology to be migrated to MRI, initiating its emergence as a promising imaging approach. 

This review is not intended to cover the entire field of multidimensional MR; instead, it focuses 

on pioneering imaging applications and the challenges involved. In addition, the background and 

motivation that have led to multidimensional correlation MR development are discussed, along 

with the basic underlying mathematical concepts. The goal of the present work is to provide the 

reader with a fundamental understanding of the techniques developed and their potential benefits, 

and to provide guidance to help refine future applications of this technology.
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1 | INTRODUCTION

In vivo MRI histology or microstructure imaging are names given to the enterprise of 

obtaining information about tissue composition and distinct components within tissues, 
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which are generally not revealed using conventional MRI methods. There is interest by 

neuroanatomists, neuropathologists and neuroscientists in obtaining such information, eg 

axon diameter distributions, glial and neural cell densities and extracellular matrix fractions.

There are two philosophical approaches that have been employed to “drill down into the 

voxel” to obtain these compositional, structural or architectural features. One entails using 

parametric models of tissue organization or structure, in which one prescribes the number 

and types of cell and structures within a tissue voxel a priori and then collects MRI 

data in order to estimate the parameters of this model. Another approach is to develop 

phenomenological or empirical frameworks in which no a priori assumptions are made about 

what type and how many components are present in a voxel or their relationship, and then go 

about estimating different distributions or spectra of quantitative MR parameters that might 

reveal them. The first approach has an Aristotelian character, in which the modeler imposes 

some assumed foreknowledge about the complex tissue composition, structure, architecture 

and organization a priori, based upon precedent or, in some cases, pure supposition. The 

second approach, a more skeptical one, makes no such a priori assumptions but generally 

requires a plethora of data, more than the former methods require.

Until recently, the second empirical approach described above has been out of reach via 

conventional preclinical and clinical MRI because of the extremely long scan times required 

to obtain enough useful data, and conceptual and mathematical challenges inherent in 

reconstructing such data, owing to the often ill posed character of the inverse problems 

underlying these methods. To reiterate, scalar MRIs, which provide voxel-averaged data, 

usually obtained on the order of a cubic millimeter, conceal details of the various 

physical and chemical microenvironments within the voxel, and the local heterogeneity and 

anisotropy of different properties at multiple length and timescales.

Generally in biological and clinical applications of MRI, one measures features of water, 

as it is so abundant (of the order of 55 M) and produces a strong MR signal owing to the 

large gyromagnetic ratio of water protons. Water pools exist in different microenvironments 

(such as intra- and extracellular spaces) within the voxel, and may have distinct diffusivities 

or relaxivities. While relaxivities are affected by the local composition and chemical 

environment, diffusion-weighted (DW) MR has the potential to probe molecular mobility 

over different length and time scales, and hence inform on tissue microstructure.1–7 There is 

no a priori basis for assuming that only one or a small number of diffusivities or relaxivities 

can characterize a microscopically heterogeneous and/or anisotropic tissue block, owing to 

the fact that there may be multiply exchanging water pools, and active transport processes, 

differences in macromolecular composition and concentration etc. These are expected to 

produce non-mono-exponential T1, T2 and DW signal attenuations.8–15 Thus, moving from 

conventional MRI, which provides voxel-averaged scalar images, to spectral based MRI 

methods, which provide empirical distributions, has great merit, making it possible to 

obtain effectively higher spatial resolution while detecting salient features of different 

microenvironments within each voxel.

While we do not want to give short shrift to analytical modeling approaches, the empirical 

or phenomenological framework for modeling a spatially resolved MR signal and extracting 
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useful features related to exchange, relaxation, diffusion and possibly other features is the 

subject of this review article.

2 | NON-PARAMETRIC INVERSION OF MULTIDIMENSIONAL DATA

The challenge of obtaining spectra from MR data is that the MR signal represents a 

“convolution” of the spectrum with a kernel that embodies the way each MR perturbation 

weights each component of the particular spectrum. The goal of spectral analysis of MRI 

data is to invert this expression and find the spectrum hidden in the signal. In the case of 

finding diffusion or relaxation spectra, where the kernels are assumed to have an exponential 

form, the inversion resembles an inverse Laplace transformation (ILT) of the MR signal. 

Because of the limited spectral bandwidth and the non-negativity constraints that are always 

enforced when solving these problems, an analytical ILT cannot be performed. Nevertheless, 

this method is often termed “Laplace NMR” or “Laplace MRI”. Using this pipeline, one can, 

in principle, obtain a model-free description of the spectral components and their relative 

signal fraction (SF) as a way to quantify intra-voxel variability.

Laplace MR received a significant boost in 1982 with the development of a theoretical 

framework and algorithm for solving constrained, regularized inverse problems by 

Steven Provencher, and the dissemination of his software subroutine called CONTIN.16 

Subsequently, Kroeker and Henkelman were the first NMR physicists to use CONTIN on 

NMR relaxation data to obtain “continuous” T1 and T2 distributions. The first published 

examples were obtained from mouse limbs, as shown in Figure 1.17 The motivation of their 

pioneering work was to explore the expected heterogeneity of these biological samples. 

Following this groundbreaking research, there were many subsequent examples of 1D NMR 

measurements of relaxivity and diffusivity distributions to study different types of biological 

component18–23: most notably, observations of two or three distinct components of the 

water T2 distribution in nerve tissue, which all pointed to the existence of distinct water 

microenvironments. These have been assigned as arising from myelin water,24 extracellular 

water and intracellular water (short to long T2).9–11,24–28

This 1D framework is extendable to two and even higher dimensions through the acquisition 

of MR signals that are weighted by more than one MR parameter, such as diffusion, T2

etc. This idea was first proposed in 1991,29 and subsequently such 2D data without spatial 

localization (ie NMR) have been used by the porous media community to quantify pore size 

distribution, porosity and permeability, primarily of non-biological porous media (Figure 

2).13,31–41 Two dimensional correlation NMR studies, correlating mainly T1 and T2,42–45 

but also diffusion in different directions,46,47 were performed on biological specimens 

as well, in particular neural tissue. These studies have suggested the multicomponent 

character of biological tissue as well, with some examples shown in Figure 3. Recently, 

higher dimensional correlation NMR, mainly focused on pore shape and orientation, were 

developed and applied on phantoms and in simulations.48,49

MR contrasts, based on water diffusivity in particular, can probe different time and 

length scales in addition to exchange between and among different microenvironments, 

so a multidimensional MR framework could have great potential for studying biological 
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tissue. However, characterizing the heterogeneity of tissues such as white matter (WM) 

and gray matter (GM) at macroscopic, microscopic and mesoscopic length scales has 

been challenging. Combining multidimensional NMR-based spectral methods with spatial 

localization via MRI is required in order to be able to assess the heterogeneous properties 

of such tissue. For more than two decades, this challenge has seemed insurmountable, 

owing to the vast amount of data required and other computational challenges. In the next 

section, we cover promising new ways in which investigators have addressed the migration 

of multidimensional correlation methods from NMR to MRI.

3 | THEORY

For 1D MR encoding, we can express the relationship between the measured MR signal, 

g β , and the distribution of the MR relaxation or diffusion parameter, f x , according to 

a distribution governed by the MR parameter x, using the 1D Fredholm integral equation, 

which has the general form

g(β) = ∫
0

∞
f(x)k(β, x)dx,

(1)

where β is the MR experimental variable, and k β, x  is the kernel, which weights 

and relates the MR parameter and variable to the MR signal. Generally, for diffusion, 

T1 and T2-type relaxation processes, the kernels will have the exponential forms: 

k0 b, D = e−bD, k0 τ1T1 = 1 − 2e−τ1/T1 and k0 τ2, T2 = e−τ2/T2, respectively. Here the encoding 

variables are the inversion time, τ1, the echo time, τ2, and the diffusion weighting, 

b = γ2δ2G2 Δ − δ
3 , respectively, where γ is the gyromagnetic ratio, δ is the diffusion pulse 

duration with amplitude G, and Δ is the diffusion time.

To numerically perform the inversion, Equation (1) is discretized as the following discrete 

sum17:

G(βi) = ∑
n = 1

Nx
F xn K0(βi, xn) + ϵ(β),

(2)

where ϵ β  is the experimental noise, which is often assumed to be Gaussian. Because 

K0 β, x  has an exponential form, Equation (2) would have represented a ILT relationship if 

it were not for two spectral constraints that are always imposed: (1) the discrete distribution, 

F , is composed of Nx non-negative components; and (2) xn is defined on a finite range. To 

estimate the 1D distribution of a given MR parameter, x, the corresponding experimental 

parameter β should be sampled Nβ times. In this case, Equation 2 can be written in matrix 

form as
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g = K0f + ϵ,

(3)

where g, ϵ∈ℝNβ × 1, f∈ℝNx × 1 and K0∈ℝNβ × Nx. To find f̂, the estimate of f, the following 

basic optimization problem can be formulated and solved:

f = argmin
f ≥ 0

g − K0f 2
2,

(4)

where ∥ ⋯ ∥2 is the ℓ2 norm. Solving Equation (4) is ill posed in the sense that small changes 

in the data can cause arbitrarily large changes in the solution; this is reflected in the matrix 

K0 of the discrete model being ill conditioned, with this problem increasing as the dimension 

increases. It is therefore necessary to perform some regularization to filter out the influence 

of the noise, which we will touch on after introducing the multidimensional generalization.

Expanding Equation (1) to include n on MR experimental variables, or dimensions, would 

result in

g(β1, …, βn) = ∫
0

∞
…∫

0

∞
f(x1…, xn)k(β1, x1, …, βn, xn)dx1⋯dxn + ϵ(β1, …, βn) .

(5)

Equation (5). can be discretized to matrix notation by ordering the spectral and kernel 

elements in a consistent manner and writing the continuous distribution f x1…, xn  as 

f∈ℝN‾ x × 1, with N‾ x = ∏i = 1
n Nxi, the multidimensional signal as g∈ℝN‾ β × 1, with N‾ β = ∏i = 1

n Nβi, 

and the kernel matrix as K0∈ℝNβ × Nx. Equation (5) can be written as Equation (3) then 

solving Equation (4) we can estimate f̄̂.

Practically, the main limitation of multidimensional inversion is the number of free 

parameters and experimental variables. Typically, the density distribution is sampled over 

a uniform grid, such that N‾ x = Nx
n, leading to polynomial growth in the number of free 

parameters as the number of dimensions increases. The large data burden hampered the use 

of multidimensional NMR, and certainly prevented it from being used in conjunction with 

MRI. We will discuss below several strategies and methods employed to reduce the demand 

for such data.

Now that we have formulated the inversion problem and its clear ill posed nature, we will 

briefly discuss strategies to overcome this obstacle. First, compressing the data using a 

truncated singular value decomposition (TSVD), which is in fact a regularization step that 

enforces a smooth solution (ie non-oscillatory f̄̂),50,51 is commonly used prior inversion. In 

addition, a standard approach to solving ill posed problems is to regularize them.12,16,17,22,25
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Regularization methods apply the principle of parsimony by penalizing oscillatory solutions. 

If the objective function in Equation (4) can be thought of as a fidelity term, regularization 

adds a second term to the objective function that penalizes specific solutions, and is tuned by 

the regularization parameter, α,

f̄̂(α) = argmin
f ≥ 0

g − K0f ∥2
2 + α Lf ∥p

2 .

(6)

Most regularization methods employ the ℓ2 norm, ie Tikhonov regularization52 with p = 2, 

and L is the identity matrix12,16,17,22,25; however, there are cases where the ℓ1 norm is 

preferable.53–55 The regularization term forces neighboring points in f̄̂
α

 to be close to each 

other, while rejecting solutions with large numbers of peaks, thus enforcing the principle 

of parsimony, which is suitable when the underlying distribution is expected to be smooth. 

Tikhonov regularization is especially appealing to use because the quadratic nature of the 

second term in Equation (6) guarantees the existence of a unique solution.56

The choice of a good regularization parameter should yield a fair balance between the 

perturbation error and the regularization error. A variety of optimal α selection strategies 

have been developed and proposed; among them are the Butler-Reeds-Dawson (BRD) 

algorithm56 and its practical application, the S-curve,30 the L-curve method57,58 and 

generalized cross-validation (GCV).59

Recently, it was suggested to repurpose a Monte Carlo (MC) approach60 as an inversion 

technique, to avoid the use of regularization and perform a non-negative least squares 

(NNLS) estimation (Equation (6) without the right-hand term). Because of the adverse 

instability of such an estimation, inversion is achieved using a MC approach by repeating the 

NNLS estimation with multiple data subsets (if these are available), obtaining an ensemble 

of solutions and adopting the average.61

4 | PRECLINICAL AND CLINICAL TRANSLATION OF MULTIDIMENSIONAL 

MRI: PITFALLS AND CHALLENGES

4.1 | Data acquisition

The challenges of translating multidimensional NMR methods to MRI for biological, 

preclinical or clinical applications are manifold. Clinical MRI scans are typically no more 

than 20 min and in vivo small animal studies generally cannot take more than about 1.5 

h. We can perform a “back of the envelope” calculation to estimate the scan time required 

for a typical whole-brain relaxation experiment performed on a 3 T clinical scanner with 

a 32-channel RF receive coil, a single-shot spin-echo EPI readout, 2 mm isotropic voxel 

resolution and a repetition time of 10 s with a single average. Then, the number of data 

points required for a 2D correlation experiment ranges from 102442 to 225 000 62 which 

translates to a scan time from about 3 h to 625 h! Increasing the repetition time increases 

the acquisition time proportionately. Clearly, without massive efficiencies in data acquisition 
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and spectral estimation, 2D spectroscopic imaging using conventional imaging approaches 

is not biologically feasible. One widely used method to accelerate multidimensional NMR 

for T2 spectrum measurements entails using a CPMG acquisition as a way to expedite 

measurements at different echo times, τ2.63 However, this approach requires a train of 180° 

RF pulses, which precludes its use in high field scanners owing to their high specific 

absorption rate, resulting in RF energy deposition above FDA safety limits.64 In addition, 

the CPMG readout can be used for T2 acquisitions, but is not applicable when D or T1

encoding is desired.

The ZEBRA pulse sequence represents a recent advancement of data acquisition 

efficiency.65 ZEBRA is a sequence that efficiently samples the acquisition parameter 

spaces required for T1, T2∗ and diffusion by slice-level interleaved diffusion encoding and 

multiple spin and gradient echoes, thereby reducing the amount of time required to acquire 

multidimensional data.

4.2 | Strategies for dimensionality reduction and spectrum visualization

While multidimensional NMR produces one- to three-dimensional (and even higher) 

spectral data, combining this with MRI necessitates three additional spatial dimensions. 

This further increases the data dimensionality; the need to summarize spectral data begs 

more compact representations.

The most common means of dimensionality reduction is to summarize the spectra by 

reporting the relative SFs for each spectral peak in each voxel and then displaying these as 

an image. This concept was proposed in the early 1990s by Labadie et al66 and Mackay et 

al[9] and has been used widely ever since. This data compression method entails summing 

(ie numerically integrating) over peaks whose boundaries are well defined. It is usually 

assumed that the MR SF is proportional to the volume fraction of water protons, conferring 

a physical meaning to the value of the spectral SF. The relationship between the observed SF 

and the actual water volume fraction depends on many factors, including MR pulse sequence 

and magnetization transfer (MT) efficiency.67,68 Thus, one should report these as SFs.

There are other challenges with measuring and mapping SFs. In many cases, spectral peaks 

may merge or overlap with one another, making it difficult to compute an SF robustly.69,70 

Moreover, an automated method to identify spectral components and determine their 

boundaries is required when there are many voxels and many peaks in each spectrum. 

Parameterizing the empirically measured spectra using a suitable mixture model, for 

example a mixture of lognormal distributions, can help address this issue.70 This can 

provide a more compact representation of the spectra once the features and shapes of 

the various peaks are known, and can help resolve overlapping spectral peaks. In the 

first implementation of this approach, the number of peaks in the spatially resolved 1D 

diffusivity distribution was assumed to be two in ex vivo fixed spinal cord, resulting 

in robust intensity images of SFs of slow and fast diffusion components. This approach 

can also be generalized to higher dimensions when appropriate. Certainly, assuming a 

bimodal distribution when the spectrum may contain more or fewer than two peaks can be 

problematic, and should be addressed in future applications.
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4.3 | Strategies for accelerating and stabilizing the inversion

We should reiterate that reducing the time required to perform a multidimensional scan is of 

paramount importance to be able to translate these methods. Achieving this requires a two-

pronged approach: improving both hardware and pulse sequences, and acquisition and post-

processing strategies. Technological innovations including parallel imaging, multichannel 

coils and novel pulse sequence designs are facilitating the migration of these approaches 

preclinically and clinically; however, the greatest gains appear to be made using novel 

acquisition and post-processing strategies, which aim to reduce the amount of required data 

to reconstruct 2D and higher dimensional spectra with high fidelity.

The need to further reduce the amount of data required for multidimensional MR 

experiments emerged when its integration with MR imaging was first contemplated. In 2014, 

the use of compressed sensing (CS) was proposed to reduce the data needed to reconstruct 

2D spectra by randomly sampling the space of the relevant experimental variables.71 The 

idea was to use a significantly down-sampled version of the original data matrix, G, and 

then use a matrix completion method72 to recover the spectrum using only a fraction of the 

required measurements. The CS approach was used to image a spinal cord sample in which 

a maximal acceleration factor of 3.5 was achieved, reducing the number of T1‐T2 acquisitions 

from 1800 to 450.73 Although this reduction represented a significant improvement, a factor 

of 3.5 could not achieve the promised land of clinical MRI applications.

An alternative strategy to stabilize and reduce the amount of required data to reconstruct 

multidimensional spectra in imaging applications was first proposed in a 2D diffusion–

diffusion correlation study, in which applying additional spectral constraints was 

suggested.74 This approach was later refined and tested using combined relaxation-diffusion 

data and became known as the marginal distributions constrained optimization (MADCO) 

framework.54 MADCO is a general mathematical approach that was first demonstrated 

experimentally on a D‐T1 MRI phantom. It outperformed the conventional inversion method 

so dramatically that even when only 2% to 4% of the full dataset was used spectra 

could be reconstructed faithfully with an acceleration factor of 25 to 50, depending on 

the spectral complexity, as shown in Figure 4.54,75 An intuitive explanation of MADCO 

with respect to CS can be illustrated by considering the Milton Bradley board game 

Battleship. In Battleship, two players place toy ships somewhere on a discrete rectangular 

grid representing a body of water, with the goal of finding all the opponent’s ships first. A 

reasonable search strategy, resembling CS, is for each player to choose random points within 

the grid from a uniform distribution. Suppose we modify the rules of the game so that in the 

first two moves each player obtains additional (1D) projections of the mass distribution of 

the opponents’ ships along the columns and rows of the grid. The optimal search strategy 

then changes considerably. The information from each row and each column would provide 

powerful new constraints to allow each player to find most of the opponent’s ships, usually 

within a few guesses. CS provides a reasonable strategy when no a priori information is 

given about the features of the spectrum. However, when we can acquire projections or 

marginal distributions of the multidimensional spectrum, we have much more information 

to apply in the form of linear constraints with which to force the convergence of the final 

spectral estimate.
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A third approach for improving the robustness of the spectral inversion method is to use 

spatial regularization, which was first suggested in a 1D T1 MRI study76 and subsequent 

applications,14,77 and later extended to study 2D relaxation-diffusion correlations.78 By 

assuming spatial contiguity, this approach employs spatial constraints within the imaging 

domain rather than employing physical constraints in the spectral domain to help minimize 

the cost function. The rationale for this former approach is the relative immunity to noise 

of the Fourier transform as a means to overcome the inherent ill posed nature of the 

multiexponential inversion. Spatial constraints (in the image domain) act as a spatial low 

pass filter by effectively averaging over neighboring voxels. Nonetheless, this method should 

be implemented with great care, particularly when applied on a heterogeneous specimen, 

in which intervoxel variability may contain valuable information that can be smoothed 

or averaged over. In particular, applying a spatial low pass filter to imaging pathological 

tissue may smooth over salient aberrant signals arising from pathological voxels. In an 

attempt to address both the issues of dimensionality reduction and inversion stability, an 

expectation–maximization based method, termed InSpect, was recently suggested.79 Instead 

of estimating non-parametric spectra, with this approach a predefined number of canonical 

spectra are assumed to exist, which are then assigned to individual voxels. Although this 

approach is governed by a subjective choice of the number of clusters (ie the canonical 

spectra), and also may be susceptible to low spectral sensitivity, it is computationally more 

stable and results in low dimensional information that is easier to visualize.

4.4 | Sparse data sampling and its effects on accuracy and robustness

It is clear that the biggest obstacle to wide scale application of multidimensional correlation 

MRI is data requirements. Traditionally, such experiments were designed with uniform 

and dense sampling of the relevant MR parameter space (eg τ2‐b for T2‐D). Before 

multidimensional correlation MR had started to be used in conjunction with imaging, there 

was no particular need to reduce the acquired data. A systematic study of the effects of the 

sparsity of the data collection had therefore never been conducted.

In an attempt to start this important discussion, we performed a numerical simulation study 

that tested the effect of sparse sampling on the most commonly used inversion techniques, 

the ℓ2 and ℓ1 regularizations, the MC NNLS and MADCO. A ground truth T1‐T2 distribution 

with three components that resembles the expected spectral signature from a complex brain 

volume was used, as illustrated in Figure 5. This 200 × 200 distribution was used to create 

synthetic 2D data, to which noise with a Gaussian distribution, zero mean and a standard 

deviation scaled to provide SNR = 200 was added.

The full dataset was comprised of Nβ = 45 × 45 = 2025 logarithmically sampled τ1 and τ2 over 

the ranges of 15 ms to 4000 ms and 5 ms to 200 ms, respectively. All reconstructed spectra 

had N‾ x = 50 × 50 elements. We tested the above-mentioned optimization frameworks using 

the full dataset (100%), and three sparse subsamples of it: (1) 50% and (2) 25% of the 

data randomly sampled with replacement from the complete dataset, and (3) a hierarchical 

sampling, Nτ1 = 45 and Nτ2 = 45 in 1D and highly sparse encoding of 20 data points in the 

2D parameter space (total of N‾ x = 110, about 5.5% of the full dataset).
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For ℓ2 and ℓ1 regularizations, a TSVD procedure was carried out prior to the inversion,51 

and the regularization parameter was chosen according to the GCV method59 and an 

adjusted criterion,55 respectively. MC NNLS was performed with 1000 bootstrap samples 

each containing two-thirds61 of the dataset (eg, with the full dataset, 1350 datapoints) 

randomly sampled with replacement. With MADCO, the marginal distributions fT1 and fT2

were first obtained from 1D data, and then used as additional spectral constraints with an ℓ2

regularization inversion.54

Performance of the inversion strategies at different sampling sparsity was assessed by 

computing the Jensen difference (JD)80 between each estimated distribution and the ground 

truth. The reconstructed spectra under the different conditions are shown in Figure 6. 

With a full dataset (left column), the ℓ2 regularization inversion (Figure 6A) produced 

the most accurate spectrum. Despite a relatively high JD value, the ℓ1 regularization 

provided moderate accuracy in the locations of the estimated components, albeit very 

sparsely distributed, as expected (Figure 6B). The NNLS MC inversion with the full dataset 

(Figure 6C) resulted in a spectrum that exhibited similar characteristics to the one obtained 

using ℓ1 regularization, with the exception of spectral noise manifested at the low end 

of the reconstructed T1‐T2 distribution. The apparent high sensitivity of the MC NNLS 

to noise in the data, even when using the full dataset, can be explained by considering 

that repeated non-regularized estimations of different noisy datasets would all result in a 

similar manifestation in the spectral domain, in this case short-lived T1 and T2 components. 

Averaging the bootstrap spectra would not eliminate these noise components. Finally, 

MADCO with ℓ2 regularization optimization using the full dataset resulted in a relatively 

accurate distribution, yielding a slight increase in the JD compared with ℓ2 regularization 

only (Figure 6D).

With the exception of MADCO and the ℓ2 regularization with 50% data, all of the 

investigated inversion approaches displayed a considerable decline in the accuracy and 

robustness as the sparsity of the acquired data increased (Figure 6, columns left to right). 

With 5.5% of the data, the only distribution that preserved its accuracy and robustness is the 

one estimated using the MADCO framework. In fact, the subsampling of the data did little 

to affect the robustness and accuracy of the MADCO-derived spectra, with JD ranging from 

0.22 to 0.16 with a standard deviation of 0.02.

5 | NOVEL APPLICATIONS OF MULTIDIMENSIONAL CORRELATION MRI

First and foremost, one should ask “What are the benefits of integrating relaxation and 

diffusion acquisitions and their processing frameworks over existing approaches? What 

information, otherwise invisible to scalar MRI methods and 1D approaches, can only be 

gleaned using multidimensional MRI methods?” Below, we have included a few important 

examples that epitomize the value added by such an approach.

5.1 | Spinal cord

To date, two studies using different spectral inversion approaches have produced 

multidimensional correlation MRI data on ex vivo spinal cord. Spinal cord was chosen 
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because of its relative neuroanatomical simplicity compared with the brain, the known 

segregation of GM and WM regions and the presence of coherent axon fiber orientation, 

while possessing cells and cell types found in the central nervous system (CNS).

5.2 | Spatially regularized spectral reconstructions

The use of spatial regularization was extended from 1D inversion MRI applications14,76,77 

to 2D diffusion-relaxation by investigating D‐T2 correlations from three control and three 

injured ex vivo mouse spinal cords.78 The applied encoding scheme consisted of a total 

of 28 data points covering the ranges of 40 to 160 ms and 0 to 5000 s/mm2 for τ2 and b, 

respectively, with an in-plane resolution of 78 × 78 μm2 and slice thickness of 1 mm.

Spinal cord injury was caused by direct impact, which normally results in significantly 

reduced normal-appearing WM volume and decreased motor function compared with that 

of controls.81 Ranges of the diffusivity and T2 values of the spectral D‐T2 components were 

determined, followed by numerical integration that resulted in their respective SF images. 

Averaged spectra from the entire control and injured samples, their spectral regions of 

integration and the resulting SF images are shown in Figure 7 The control D‐T2 distribution 

contains two well separated spectral peaks, with a single T2 value and two distinct 

diffusivities, slow and fast (Components 1 and 2 in Figure 7). A third peak is also indicated 

(Component 3); however, it is not clear what makes this spectral region unique from either 

Component 1 or 2. The control SF images in the bottom panel of Figure 7 indicate that 

Components 1 and 3 correspond to WM and component 2 to GM. An additional D‐T2

component, with fast diffusivity and shorter T2, is evident in the injured samples (Component 

4). Integration over this component resulted in SF images with intensities mostly evident in 

the injured sample, indicating sensitivity and specificity to the spinal cord injury.

In this study, both normal WM and GM contained a single peak in D‐T2 space, 

contradicting findings in many previous studies that have reported both T2 and diffusivity 

to be multiexponential.11,12,15,22,43,70,82,83 The lack of spectral sensitivity in this study 

may be explained by the small range of diffusion and T2 encodings combined with 

an overall relatively small number of data points, and thus spectral resolution. An 

additional confound may have been the spatial averaging that was performed by applying 

spatial regularization, which may have smoothed over important spectral features. These 

results highlight the importance of using both the appropriate acquisition and analysis 

methodologies to adequately reconstruct the spectrum. Nevertheless, the joint distribution 

of D‐T2 was shown to be able to distinguish between normal and injured tissue on the 

basis of spectral signatures. Furthermore, the reproducibility and robustness of this approach 

was demonstrated by the consistency of the D‐T2 spectra across the control and injured 

specimens.

5.3 | Spectrally constrained approach

The first study that applied the MADCO framework was aimed at investigating the 

correlation between T1, T2 and D, and their spatial distribution in CNS tissue.15 Three 

encoding schemes were applied on a ferret spinal cord sample, D‐T1, D‐T2 and T1‐T2, with a 
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total of 88 data points covering the ranges of 20 to 3000 ms, 10.7 to 150 ms and 0 to 25068 

s/mm2 for τ1, τ2 and b, respectively, with an in-plane resolution of 100 × 100 μm2 and slice 

thickness of 2.5 mm.

Having estimated the multidimensional spectra in each spinal cord voxel, dimensionality 

reduction was performed by identifying T1‐T2‐D spectral peaks, integrating over them and 

obtaining their respective SFs. To make these steps possible, WM and GM ROIs were first 

selected, resulting in the spectra shown in the top panel of Figure 8. For convenience, 

the MR dimensions were partitioned into length ranges for T1 and T2 and mobility ranges 

for diffusion. In WM, four distinct T1‐T2‐D components were identified (labeled A, B, D 

and F in Figure 8): slow D, long T2; slow D, intermediate T2; intermediate D, long T1, 

and intermediate D, short T1. In GM, three distinct spectral components were identified: 

intermediate D, long T2; fast D, long T2, and fast D, short T2, labeled C, E and G, 

respectively. These WM and GM spectral components can be compared with previous 1D 

and 2D NMR studies on similar specimens; specific similarities include the presence of 

low and high water mobility,12,22,70 the partitioning into intracellular and extracellular water 

based on T2,43,83 and the existence of a myelin-associated MT component at short T1 14,84 

and short T2 9,85

It was also demonstrated that most of the spectral components are distinct and can still be 

identified once the GM and WM spectral MR data are averaged together (Figure 8, middle 

panel). Although such mixtures of “pure” WM and GM do not entirely mimic partial volume 

voxels found in the brain, they provide a reasonable approximation. Seven T1‐T2‐D spectral 

components could be identified in such a case, leading to rich intra-voxel information and 

a powerful demonstration of the potential and added value of multidimensional correlation 

MRI.

The SF images in the bottom panel of Figure 8 show the spatial arrangement of intensities 

of spectral components. These can largely be divided according to lower and higher 

water mobilities, and GM and WM specificity. Based upon previous 1D diffusion and T2

imaging,22,83 it was argued that the lower and higher water mobilities should be associated 

with intra- and extracellular water, respectively. It was proposed that the short T1-short T2

component, which is modulated by MT, was myelin associated. It was then shown that 

intracellular and myelin SF images correlated strongly with histopathological measurements 

of various immunohistochemical stains.

The richness of the intra-voxel multidimensional spectra and the information that it provides 

can only be gleaned using a higher-dimensional MR acquisition and processing framework. 

These works make a clear case for the benefits of using integrated relaxation and diffusion 

contrasts when investigating biological tissue properties.

5.4 | Placenta

Another excellent example of the use of multidimensional correlation MRI was provided by 

Slator et al, who investigated T2∗‐D spectra of in vivo human placenta86 using ZEBRA.65 

The motivation for this study was to combine the two most widely used MR contrasts for 
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characterizing the placenta, T2∗, which is related to oxygenation levels, and diffusion, which 

probes tissue membranes and cellularity. Images were acquired in vivo with 3 mm3 voxels, 

diffusion encoding in the range of 0 to 1600 s/mm2 in multiple directions with a total of 66 

b-vectors and five echo times in the range of 78 to 222 ms. This type of encoding typically 

requires 330 separate acquisitions, but only 66 are needed for the ZEBRA sequence with 

five gradient echoes, with each full scan taking approximately 8.5 min. Seventeen pregnant 

women, grouped by clinical status (healthy control, chronic hypertensive, pre-eclampsia and 

fetal growth restriction) were scanned using this approach.

A representative whole-organ T2∗‐D spectrum from a control subject is shown in the 

top panel of Figure 9. Three distinct ADC peaks with similar T2∗ values were observed 

consistently across almost all the control cases. These three diffusion components in the 

placenta are also consistent with findings from previous studies.87 The T2∗‐D components 

were identified solely on the basis of their diffusivity values—slow, intermediate and fast

—and are shown in Figure 9 as Peaks 1 through 3, respectively. As in previous studies, 

dimensionality reduction via numerical integration was performed, and SF images of the 

three spectral components were obtained and are also shown here. The slow diffusion 

component shown in these images is associated with areas within the placenta, while 

the intermediate and fast diffusivities are more prominent in the uterine wall. It was 

speculated, based on previous findings,87 that Peak 1 is stationary water within the tissue, 

Peak 3 originates from perfusing fetal blood and Peak 2 arises from water in the chorion 

transitioning between the maternal and fetal circulatory systems.

The bottom panel of Figure 9 shows representative ROI signal-averaged T2∗‐D spectra of 

control and abnormal participants. Two prominent trends can discriminate between the 

two groups: (1) a shift toward shorter T2∗ values that mirrors previously reported T2∗ in 

placentas with pre-eclampsia and intrauterine fetal growth restriction88,89 and (2) a shift 

toward slower diffusivities (with instances of the disappearance of either Peak 2 or 3), 

hypothesized to occur because of increased water hindrance due to inflammation. This 

T2∗‐D study concluded that the T2∗ value of the slowest diffusion component was the most 

predictive of complications found in pregnancy. Although this information could have been 

obtained by using a 1D diffusion-filtered T2∗ measurement, the study provided a proof of 

concept for the applicability of multidimensional correlation MRI in a clinical environment. 

Compared with the rich water-mobility spectrum, the poor T2∗ spectral resolution (ie the 

detection of a single component), may have been due to insufficient τ2 encoding, which 

entailed using only five echo times.

6 | OUTLOOK AND PERSPECTIVE

Dozens of multidimensional inversion NMR/MRI studies spanning more than 30 years have 

resulted in reliable, reproducible and unique micro-structural and chemical information, 

which is otherwise invisible using other methods. The multidimensional inversion 

frameworks reviewed here are phenomenological methods that make no or few explicit 

assumptions about tissue structure or composition. Through the use of innovative spectral 

reconstruction approaches, robust strategies and procedures have been developed to make 
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multidimensional correlation MR feasible for biological and clinical imaging applications 

for the first time.

Although no published papers to date have directly compared multidimensional correlation 

MRI with 1D scalar approaches , our work on the spinal cord conclusively showed that 

multiple microenvironments exist in the tissue.15 Moreover, some T1‐T2‐D components could 

not have been resolved by investigating separately the T1, T2 and D dimensions.

With this new imaging modality, enhanced spectral resolution can often compensate 

for sometimes limited MRI spatial resolution, still yielding unprecedented information 

about intra-voxel components, separated on the basis of their physical and chemical 

microenvironments. However, the exact nature and definition of these microenvironments 

is very important if one would like to provide biological interpretation. Specifically, 

the microenvironments that lead to distinct MR spectral components are not necessarily 

the classical, biological microenvironments one would refer to, such as intracellular and 

extracellular spaces. In other words, a more plausible interpretation of, eg, a low diffusivity 

component is low water mobility, which points to proximity to barriers or membranes, 

and not necessarily intracellular or extracellular water. This apparent discrepancy is not 

surprising and is not limited to multidimensional correlation MR but applies to all MR 

applications; the traditional biologically derived microenvironments (or compartments) do 

not align with the MR measurables because of the differences in length and temporal scales. 

Despite the caveat of the partial incompatibility of MR and biological microenvironments, 

being able to measure the former and infer the latter, as was shown by histological 

correlations15 and clinical diagnosis,86 is in essence the promise of multidimensional 

correlation MRI.
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FIGURE 1. 
First NMR application of a regularized inversion algorithm16 to estimate T1 and T2

distributions from in vivo legs of C3H mice in normal conditions and after injection of 

tumor cells (KHT). In all cases, multiple components were detected. The average values of 

both T1 and T2 increased with tumor size. The T1 peaks shift to the right as the tumor grows; 

the T2 peaks redistribute to the right. Adapted from the work of Kroeker and Henkelman17
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FIGURE 2. 
Two dimensional correlation NMR studies on non-biological samples. A, the T1‐T2

correlation spectrum for oolitic limestone. The solid thick red line is the theoretical behavior 

of the sum of the surface and bulk contributions to T1 and T2. Adapted from the work of 

Song et al.30 B, the D‐T2 correlation spectrum for Berea sandstone saturated with a mixture 

of water and oil. The contributions of the water and oil phases are clearly separated in 

the two dimensions. Adapted from the work of Hurlimann et al.31 C, D, comparison of 

T1‐T2 (C) and D‐T2 (D) distributions measured on heavy cream. The dashed lines in the 

T1‐T2 distribution functions indicate T1 = T2, whereas in the D‐T2 distribution functions they 

indicate the diffusion coefficient of water. Adapted from the work of Hürlimann et al32
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FIGURE 3. 
Two dimensional correlation studies on biological samples. A, the T1‐T2 correlation spectrum 

for trigeminal nerve data averaged from seven rats. The three components are clear and their 

relative fractions and mean T1 and T2 values are shown, along with the standard deviation 

of these measurements across the seven rats. Adapted from the work of Does and Gore.43 

B, the T1‐T2 correlation spectrum for trigeminal nerve data averaged from seven frogs. The 

three components deemed to be nerve water, representing 88% of the total signal, are shown 

in black; the remaining spurious components are shown in gray. Adapted from the work of 

Travis and Does.45 C, the T1‐T2 correlation spectrum for chromated rat WM. By washing 

the samples with chromium, a WM-specific enhancer, the long T1‐T2 component in the 

distribution was split into two. Adapted from the work of Dortch et al.44 D, the diffusion–

diffusion correlation spectrum averaged across the entire mouse brain. Correlations were 

measured between displacements along two arbitrary orthogonal directions. Adapted from 

the work of Zong et al47
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FIGURE 4. 
Experimental validation of the MADCO framework. ROIs drawn on DW-IR images of the 

MRI phantom resulted in two75 (top) and three54 (bottom) distinct D‐T1 peaks. The averaged 

data were then used to reconstruct the spectra by using full (conventional) and partial 

(MADCO) datasets. Note the higher accuracy of the MADCO-reconstructed three-peak 

spectrum, with only 4% of the data used, compared with results from the conventional 

approach. Adapted from the work of Benjamini and Basser54,75
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FIGURE 5. 
The ground truth multicomponent T1‐T2 probability distribution that is used to generate 

the simulated data matrix with added Gaussian distributed noise of zero mean to provide 

SNR = 200
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FIGURE 6. 
Application of several inversion strategies as a function of data acquisition sparsity. A, 

TSVD procedure followed by ℓ2 regularization. The regularization parameter was chosen 

according to the GCV method. B, TSVD procedure followed by ℓ1 regularization. The 

regularization parameter was chosen according to the GCV method, using an adjusted 

criterion.51 C, MC NNLS with 1000 bootstrap samples each containing two-thirds of the 

dataset, randomly sampled with replacement. D, MADCO reconstruction using the marginal 
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distributions fT1 and fT2, with ℓ2 regularization and GCV method. Different columns show 

different dataset subsamplings, 100%, 50%, 25% and 5.5% (left to right)
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FIGURE 7. 
Spatial maps of the D‐T2 SFs from the control and injured spinal cords. A, spatially averaged 

distributions with the spectral regions that are integrated to generate the spatial maps (red, 

comp. 1; blue, comp. 2; green, comp. 3; yellow, comp. 4). B, the spatial maps corresponding 

to the spectral regions. Adapted from the work of Kim et al.78 (comp. = component)
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FIGURE 8. 
D‐T1‐T2 spectral information from a spinal cord specimen, gathered by using MADCO. 

The top panel shows WM and GM unique spectral peaks (A-G). Additionally, a WM-GM 

mixture is shown, with well separated D‐T1‐T2 spectral components according to short, 

intermediate and long relaxation values and slow, intermediate and fast diffusivities. All 

the identified WM and GM peaks had a unique multispectral signature, thus allowing 

their unequivocal identification in the more challenging, and more realistic, case of mixed 

GM and WM. The bottom panel shows the spatial SF maps corresponding to the above 
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spectral regions, separated according to water mobility and tissue type specificity. (inter. = 

intermediate.) adapted from the work of Benjamini and Basser15
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FIGURE 9. 

T2
∗‐D spectra show anatomical specificity. Top panel: T2

∗‐D spectrum derived from spatially 

averaged signal from the entire placenta and uterine wall, with the three spectral regions that 

are integrated to generate the spatial SF maps below. Bottom panel: T2
∗‐D spectra derived 

from the spatially averaged signal of control and abnormal cases. Horizontal, dashed blue 

lines represent the approximate diffusivity of water in free media at 37°C. (GA, gestational 
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age; CH, chronic hypertensive; PE, pre-eclampsia; FGR, fetal growth restriction). Adapted 

from the work of Slator et al86
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