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Discovery of potent inhibitors of α-synuclein 
aggregation using structure-based  
iterative learning
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Machine learning methods hold the promise to reduce the costs and 
the failure rates of conventional drug discovery pipelines. This issue 
is especially pressing for neurodegenerative diseases, where the 
development of disease-modifying drugs has been particularly challenging. 
To address this problem, we describe here a machine learning approach to 
identify small molecule inhibitors of α-synuclein aggregation, a process 
implicated in Parkinson’s disease and other synucleinopathies. Because the 
proliferation of α-synuclein aggregates takes place through autocatalytic 
secondary nucleation, we aim to identify compounds that bind the 
catalytic sites on the surface of the aggregates. To achieve this goal, we use 
structure-based machine learning in an iterative manner to first identify 
and then progressively optimize secondary nucleation inhibitors. Our 
results demonstrate that this approach leads to the facile identification  
of compounds two orders of magnitude more potent than previously 
reported ones.

Parkinson’s disease (PD) is the most common neurodegenerative 
movement disorder, affecting 2–3% of the population over 65 years 
of age1–5. The aggregation of α-synuclein (αS) has been associated with 
the initial neurodegenerative processes underlying this disease, in 
which the pathological accumulation of misfolded proteins results 
in neuronal toxicity. Motor symptoms appear once this pathology 
affects the substantia nigra1,2,4,6. Since αS aggregates have been shown 
to exhibit various mechanisms of cellular toxicity7,8, major efforts are 
being invested into identifying compounds that can inhibit αS aggrega-
tion mechanisms9–12. This is a particularly pressing need given the lack of 
disease-modifying therapies currently available to patients with PD13–15. 

With the recent approval by the US Food and Drug Administration of 
the first two disease-modifying drugs for Alzheimer’s disease, aduca-
numab16 and lecanemab17, approaches based on blocking secondary 
nucleation appear to be promising18.

Computational methods could be expected to reduce the time and 
cost of traditional drug discovery pipelines19–21. In this area, machine 
learning is rapidly emerging as a powerful drug discovery strategy22. In 
this Article, to explore the potential of this strategy in drug discovery 
programs for PD and other synucleinopathies, we describe a machine 
learning approach to explore the chemical space to identify compounds 
that inhibit the aggregation of αS. Our starting point is an approach 
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Two million molecules with optimal central nervous system mul-
tiparameter optimization (CNS MPO)39 properties were previously 
docked using AutoDock Vina to target the selected binding pocket23 
(Supplementary Fig. 3). CNS MPO is an aggregated metric of molecular 
properties that predicts likelihood of a molecule passing the blood–
brain barrier. In that study, the binding site encompassing residues 
His50–Lys58 and Thr72–Val77 was selected due to its propensity to 
form a pocket according to the Fpocket software37 (Supplementary 
Fig. 3a), and its mid to low solubility according to CamSol40 (Supple-
mentary Fig. 3b). Additionally, His50 is predicted to be protonated 
below the pH value (5.8) at which αS secondary nucleation more  
readily occurs41, which may be important for initial interactions. To 
increase the confidence of the calculations, the top-scoring 100,000 
small molecules were selected and docked against the same αS binding 
site, using FRED36. The top-scoring, common 10,000 compounds in  
both docking protocols were selected and clustered using Tanimoto 
clustering42 with a similarity cutoff of 0.75, leading to a list of 79 centroids  
(representative molecules from each cluster). The Tanimoto similarity is 
a metric that compares Morgan fingerprint43 representations (radius 2,  
nbits 2,048) of two different molecules. A value of 1 for the Tanimoto 
similarity implies complete two-dimensional homology between two 
structures, while values closer to 0 imply little to no structural similar-
ity. Sixty-eight compounds were available of the 79 molecules identi-
fied in the in silico structure-based docking study. The first round of 
in vitro experiments was carried out with this set.

Subsequent experiments to test these predicted binders in aggre-
gation assays identified four active compounds23 labeled molecule 48, 
52, 68 and 69, referred to as the ‘docking set’, (Fig. 1a). We then began 
the process of lead generation and optimization. Here, using the Tani-
moto similarity metric between Morgan Fingerprint representations 
(radius 2, nbits 2,048) of the molecules, two similarity searches were 
then carried out on the ZINC15 database using these four structures 
as starting points (Fig. 1b). Different Tanimoto similarity thresholds 
were used to specify molecule subsets for testing. As such a similar-
ity value >0.5 was used for closely related analogs, >0.4 for loosely 
related analogs and >0.3 for the library to screen from (‘evaluation set’). 
While this use of a structurally related screening library constrains the 
model’s ability to generalize, the lack of diversity in terms of potent 
molecules in the training set also makes it unlikely for the model to 
perform well in chemical space divergent from this region. We are 
thus carrying out an exploitation strategy here. We remove the need 
for a curated screening library in a parallel work by utilizing generative 
modeling and reinforcement learning44, allowing for both exploitation 
and exploration strategies.

A selection of closely related molecules (Tanimoto similarity >0.5) 
to the parent compounds (referred to as the ‘close similarity docking 
set’, Fig. 1b and Supplementary Fig. 2b) was tested in the aggregation 
assay. The potent molecule selection was made according to a cutoff 
corresponding to a normalized half-time of the aggregation (t1/2) of two 
times that of the negative control. The percentage of molecules pass-
ing this threshold was defined as the optimization rate. This yielded 
five new potent molecules from 25 new molecules (Supplementary 
Fig. 2b), 1 derived from molecule 48, three from molecule 52 and one 
from molecule 69. This step was then followed by a larger selection 
of compounds with a looser cutoff of structural similarity (Tanimoto 
similarity >0.4) to the parent compounds (referred to as the ‘loose 
similarity docking set’, Fig. 1b). Although new potent molecules fea-
tured among this set, the optimization rate was low (4%), and both 
molecules 48 and 52, which had initially appeared the most promising 
of the parent structures, yielded poor results. From the 29 molecules 
related to molecule 48 in the loose similarity docking set, none were 
potent, while from the 24 molecules related to molecule 52, only 2 
were potent. The functional range of molecules 48 and 52 appeared 
narrowly limited around the chemical space of the parent structures. 
Molecule 69 yielded one potent molecule from 16 molecules. Overall, 

that combines docking simulations with in vitro screening, which was 
recently employed to identify a set of compounds that bind to the fibril 
structures of αS, and prevent the autocatalytic proliferation of αS fibrils 
as a result23. Here we used this initial set of compounds as input for a 
structure-based machine learning approach to identify chemical mat-
ter that is both efficacious and represents a substantial departure from 
the parent structures. This provided compounds that conventional 
similarity searches would have failed to efficiently identify.

This approach is based on the lessons learned using chemical kinet-
ics about the importance of secondary nucleation in αS aggregation24–26. 
Because of the autocatalytic nature of this process, structure-based 
methods could be expected to effectively target the catalytic sites on 
the surface of αS aggregates23. As we show here, the implementation 
of this idea within an iterative machine learning procedure leads to 
the identification and optimization of compounds with great potency.

Results
Components of the machine learning method
The machine learning approach used here consists of three main com-
ponents27: (1) the experimental data, which is a readout of the potency of 
the compounds in an aggregation assay, (2) the variational autoencoder 
required to represent the compounds as latent vectors, and (3) a model 
for training and prediction using these vectors and the assay readouts.

For component 1, we used a chemical kinetics assay9,28,29 that pro-
vided both the initial data for the model training and the data that 
were iteratively fed back into the model at each cycle of testing and 
prediction. This assay identifies the top compounds that inhibit the 
surface-catalyzed secondary nucleation step in the aggregation of 
αS. Secondary nucleation is enabled by adding a small amount of 
preformed fibrils to a monomeric mixture. Aggregation was tracked 
using the amyloid binding dye, thioflavin T (ThT).

For component 2, we used a junction tree variational autoen-
coder30, pretrained on a set of 250,000 molecules31 enabling accurate 
representation of a diverse population of molecular structures. Using 
this approach, SMILES strings were standardized using MolVS32 and 
converted into latent vector representations.

For component 3, we used a random forest regressor (RFR) with a 
Gaussian process regressor (GPR) fitted to the residuals33,34 of the RFR, 
with both regressors using the latent vectors as training features. The 
RFR provided the highest performance compared to other combina-
tions of multilayer perceptrons (MLPs), GPRs and linear regressors 
(LRs) in terms of R2 score, mean absolute error and root mean square 
error. Performance and parameters are shown in Supplementary Fig. 1 
and Supplementary Table 1, respectively. Combining the RFR and GPR 
provided only a marginal improvement in the metrics of the RFR alone, 
but crucially enabled leveraging of the associated uncertainty meas-
ure of the GPR when ranking molecules during acquirement prioriti-
zation27. Tuning the weighting applied to this uncertainty measure 
allowed a ranking based on both the predicted potency of the molecules 
and the uncertainty of that prediction. Component 3 was then trained 
on the 161 initial experimental data points (see below). The best mol-
ecules predicted by the model were then tested in the same assay and 
the results fed back into the model in an iterative fashion (~55–65 new 
molecules tested at each iteration). The molecules used at each stage 
of the project are illustrated in Supplementary Fig. 2, together with the 
structures of the most potent hits and leads at each stage. An overview 
of the pipeline is shown in Fig. 1.

Initial set of small molecules
The initial set of molecules was identified via docking simulations to αS 
fibrils (Supplementary Information), followed by similarity searches 
around molecules that performed well in the chemical kinetics assay 
to identify further candidates23. The docking screening was carried out 
using the consensus strong binders predicted by AutoDock Vina35 and 
Openeye’s FRED36–38 software.

http://www.nature.com/naturechemicalbiology
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the optimization rate from the loose similarity docking set was less 
than a quarter of that of the close similarity docking set and involved 
testing three times as many compounds.

These results suggested that it would be challenging to further 
explore the chemical space using conventional structure–activity 
relationship techniques without considerable attrition, since the 
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Fig. 1 | Illustration of the three stages of exploration of the chemical space 
described in this work. a, From 68 molecules predicted to have good binding 
via docking simulations, we initially identified 4 active molecules (the ‘docking 
set’) by experimental testing23. These four molecules increase the t1/2 of αS 
aggregation. b, We then performed a close Tanimoto similarity search around 
the four parent compounds in chemical space. We selected molecules with 
Tanimoto similarity cutoff >0.5 (the ‘close similarity docking set’) followed by a 
loose similarity search with Tanimoto similarity cutoff >0.4 (the ‘loose similarity 

docking set’). A machine learning method was then applied using the observed 
data to predict potent molecules from a compound library derived from the ZINC 
database with Tanimoto similarity >0.3 to the parent structures (the ‘evaluation 
set’). c, Successive iterations of prediction and experimental testing yielded 
higher optimization rates (defined as the percentage of molecules increasing the 
normalized half time of aggregation above 2), and molecules with higher potency 
on average than those identified in the previous similarity searches. Validation 
experiments were also carried out on the potent molecules identified.
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optimization rate worsened as the similarity constraint to the initial 
hits was loosened. To overcome this problem, the compounds resulting 
from these experiments were then used as input for a machine learning 
method for an iterative exploration of the chemical space (Fig. 1c). The 
similarity searches removed the most obvious targets of the machine 
learning approach, but also increased the size of the dataset avail-
able for training. The training set, however, remained small by typical 
machine learning standards, consisting of 161 molecules. Since training 
sets of this size are common in early-stage research, a further aim of this 
work was to demonstrate that machine learning can be used effectively 
even in such data-sparse scenarios.

Iterative application of the machine learning approach
One of the issues with applying machine learning to a data-sparse 
scenario is that predictions are likely to be overconfident. While this 
problem can be addressed to an extent by utilizing Gaussian processes, 
a complementary strategy is to restrict the search area to a region of 
chemical space that is more likely to yield successful results. To this end, 
a structural similarity search of the four hit molecules in the docking 
set was carried out on the ‘clean’ and ‘in stock’ subset of the ZINC15 
database, comprising ~6 million molecules. Any molecules showing a 
Tanimoto similarity value of >0.3 to any of the four structures of interest 
was included. This low threshold for Tanimoto similarity was intended 
to narrow the search space but without being overly restrictive of the 
available chemical landscape, yielding a dataset of ~9,000 compounds 
that composed the prospective ‘evaluation set’. The distribution of this 
evaluation set in terms of the predicting binding energies is shown in 
Supplementary Fig. 4a.

Different machine learning models were initially trialed against 
the docking scores calculated for the evaluation set as a test of the 
project feasibility, and these models were then tuned on the much 
smaller aggregation dataset. The best-performing setup, the RFR–GPR 
stacked model, was then trained on the whole aggregation dataset 
and used to predict the top set of molecules (see ‘Machine learning 
implementation’ section in Supplementary Information, and Sup-
plementary Figs. 1, 5 and 6). For this work, the t1/2 for the light seeding 
assay was used as the metric of potency to be used in machine learning 
because of its robustness. For comparison, the amplification rate is 
more susceptible to small fluctuations in the slope of the aggregation 
fluorescence trace23 (Supplementary Fig. 7). Molecules that achieved 
a t1/2 twofold greater than that of the negative control under standard 
assay conditions (Methods) were classed as potent45. The algorithm was 
run repeatedly from different random starting states and those mol-
ecules that appeared in the top 100 ranked molecules more than 50% 
of the time (64 molecules) were chosen for purchase (first iteration). 
In this first iteration, there was an inherent bias toward the structure 
of molecule 69 in the dataset given the relative population sizes (Sup-
plementary Fig. 2a), but with the caveat that many of these structures 
were only loosely related to the parent (Tanimoto similarity <0.4). Many 
of the potent molecules came from this group, suggesting chemical 
departures from the parent structure.

The dynamic range within the aggregation dataset in terms of 
potency was large, in that a majority of the molecules had no effect 
on aggregation, while initial docking hits exhibited relative t1/2 of up 
to four to five times that of the negative control (limited by the length 
of the experimental run) at 25 μM. Molecules then found via machine 
learning produced a relative t1/2 of ~4–5 at up to eightfold lower con-
centration (3.12 μM, 0.3:1 molecule:protein) than that carried out in 
the initial screening (25 μM, 2.5:1 molecule:protein). This compares 
favorably with previous molecular matter tested in a less aggressive 
seeded aggregation assay such as the flavone derivatives, apigenin, 
baicalein, scutellarein and morin, which achieved relative t1/2 of 1–2 
at a stoichiometry of 0.5:1 molecule:protein9. Anle-138b12 is another 
example of a well-characterized small molecule inhibitor, which was 
also taken into clinical trials, whose relative t1/2 is 1.22 (Fig. 2) at a ratio 

of 2.5:1 molecule:protein in the assay used in this work, which is lower 
than any of the molecules discovered using the strategy employed here.

After the first iteration, the compound data were pooled together 
to extend the training set and a further two iterations were carried out 
with the updated model, adding the resultant data to the training set at 
each iteration. This was followed by a fourth and final iteration trained 
on low dose (3.12 μM) data of all the previously obtained molecules. 
Example kinetic traces for a molecule from the fourth iteration are 
shown in Fig. 2a. The molecules are labeled according to iteration 
number and lead identifier within that iteration. For example I4.05 is 
the fifth potent lead (05) within iteration 4 (I4). The dose-dependent 
potency in the aggregation assay was investigated (Fig. 2a and Supple-
mentary Fig. 8) with all potent lead molecules exhibiting substoichio-
metric potency. For comparison, Anle-138b is also shown.

Figure 2b shows an approximate overall rate of aggregation at dif-
ferent concentrations of I4.05, Anle-138b and the parent molecule. This 
approximate rate was taken as 1/t1/2, and fitted to a Hill slope. A kinetic 
inhibitory constant (KIC50) was then derived. This is the concentration 
of molecule at which the t1/2 is increased by 50% with respect to the 
control, as defined previously45. The KIC50 values for the leads were in 
the range of 0.5–5 μM, which compare favorably with the parent of the 
lead molecules (molecule 69) and Anle-138b which have extrapolated 
KIC50 values of 18.2 μM and 36.4 μM, respectively. I4.05 had a KIC50 
value of 0.52 µM with 95% confidence limits of 0.45 µM and 0.59 µM.

The elongation rate was largely unaffected in the presence of 
molecules at any concentration (Fig. 2c). This was expected given 
the designed mechanism of action of the small molecules. It was also 
reassuring, since compounds that inhibit elongation may increase the 
population of oligomers45, which are considered the most damaging 
of the aggregate species in vivo7,8. Then, using the amplification and 
elongation rates derived from Fig. 2a,c, the oligomer population over 
time was calculated9 (Methods). These calculations are shown in Fig. 2d 
for I4.05 and Supplementary Fig. 8 for the rest of the leads. All potent 
leads demonstrated a dose-dependent delay and reduction of the oli-
gomer peak. Across all metrics, I4.05 performed better than Anle-138b 
and the parent molecule at substoichiometric ratios, as do all of the 
leads obtained in previous iterations (Supplementary Figs. 8 and 9).

The aggregation data from the first three iterations are also shown 
in Fig. 3a. Of the 64 molecules from iteration 1, 8 were potent, represent-
ing an optimization rate of 12.5%, the second iteration showed a further 
increase, with 11 potent molecules, representing a 17.2% optimization  
rate, and the third iteration, with 12 potent molecules, had an optimiza-
tion rate of 21.4%. These optimization rates represent an order of magni-
tude improvement over high-throughput screening hit rates (<1%)46 and, 
remarkably, an overall 40% improvement over the combined similarity 
search optimization rates, which removed the most likely lead candidates. 
The potency of the machine learning leads was also higher on average 
than those identified by the similarity searches (Supplementary Fig. 10a), 
without compromising the CNS-MPO scores (Supplementary Fig. 10b). 
The flow of molecules derived from each parent in terms of positives 
and negatives over the course of the project is illustrated in Fig. 3b. The 
accumulated training data from all stages of the project for all molecules 
in terms of half-time distribution is shown in Supplementary Fig. 4b,c.

Given that αS aggregation and toxicity has also been linked to 
membrane interactions7,47 a parallel investigation was carried out with 
a lipid-induced aggregation assay (Supplementary Fig. 11), which was 
used as a validation of the molecules rather than for machine learning 
optimization. The tested lead molecules also showed strong efficacy 
in this assay. A further test of these molecules in a spontaneous αS 
aggregation assay, without induction via pre-seeding or shaking, also 
exhibited strong potency48.

Analysis of the chemical space explored by machine learning
The chemical space explored by the machine learning approach was 
inspected via dimensionality reduction techniques, including principal 

http://www.nature.com/naturechemicalbiology


Nature Chemical Biology | Volume 20 | May 2024 | 634–645 638

Article https://doi.org/10.1038/s41589-024-01580-x

component analysis, t-distributed stochastic neighbor embedding49 and 
uniform manifold approximation and projection (UMAP)50 (Methods) to 
investigate how the model was prioritizing molecules (Supplementary 
Fig. 12). The relative positioning of the training points and the parents 
within the chemical space is shown in Supplementary Fig. 13a. The stacked 
RFR–GPR model assigned low uncertainty to areas of the chemical space 
proximal to the observed data, and the corresponding acquirement prior-
ity mirrored this when trained on the aggregation data (Supplementary 
Fig. 13b–d). Supplementary Fig. 13 also illustrates how the uncertainty 
weighting could be altered during the ranking, depending on how con-
servative a prediction was required. A drawback to a high uncertainty 
penalty was that the model remained in the chemical space it was confi-
dent in, while a lower uncertainty penalty ensured reasonable confidence 
of potent lead acquirement while still exploring the chemical space.

The changes in similarity of the potent leads to the parent struc-
tures are shown in Supplementary Fig. 14. The similarity of the mol-
ecules to their parent structure dropped for all structures at successive 
stages of the investigation, reaching its lowest point at the iterations of 
the machine learning approach. The more potent leads mostly retained 
the central ring and benzene substituent of molecule 69 albeit with the 
addition of polar groups to the benzene ring, but featured alterations to 
the rest of the scaffold. For example, from iteration 1, I1.01 replaced the  
fused ring substructure of molecule 69 with a single substituted 
benzene ring, while I1.02 replaced it with a substituted furan ring, 
and subsequent iterations saw more complexity introduced. These 

changes were reflected in the Tanimoto similarity values, which were 
at the lower end of what was permitted in the evaluation set, 0.3 being  
the cutoff. It was evident from this result that parts of the substruc-
ture were important to retain for potency, which the model did effec-
tively while also identifying alterations in the rest of the scaffold that 
enhanced the potency considerably beyond that of the parent.

The observation that component 3, the quantitative structure 
activity relationship (QSAR) model, converges on the structures from 
two areas of the UMAP space related to structure 69 was encouraging. 
It suggested the model was learning useful information and not select-
ing at random. While we have not tested a random set of molecules due 
to prohibitive resource cost, we do note that, if a random selection of 
molecules were taken from the accumulated training data from all 
stages of the project, its optimization rate (11%) would be lower than 
that of iterations 1, 2 and 3 on average. Though performance improves 
with additional data, the QSAR performance in terms of R2 remains 
modest (Supplementary Fig. 1), but this is in part due to sparsity of 
training data. We would anticipate improvement if this approach could 
be implemented at medium scale with correspondingly more complex 
QSAR models, and we have an indication of this from trials of the this 
model set up against the docking scores of the evaluation set, where 
performance in terms of R2 score is threefold higher for a slightly larger 
dataset (Supplementary Fig. 6).

Next, an investigation was carried out to identify what struc-
tural information the latent vectors were encoding. Variational 
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138b). a, Kinetic traces of a 10 µM solution of αS with 25 nM seeds at pH 4.8, 37 °C 
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(red circles). The 1% DMSO negative control is shown in purple. Molecule I4.05 
is shown as an example. The endpoints are normalized to the αS monomer 
concentration at the end of the experiment, which was detected via the Pierce 

BCA Protein Assay at t = 125 h. b, Approximate rate of reaction (taken as 1/t1/2, 
normalized between 0 and 100; central measure, mean) in the presence of three 
different molecules, Anle-138b (purple), parent structure 69 (lilac) and I4.05 
(blue). The KIC50 of I4.05 is indicated by the intersection of the fit (blue) and 
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conditions match a, n = 3 replicates; central measure, mean; error, s.d.) were also 
carried out to observe any effects on the elongation rate and enable oligomer 
flux calculations in combination with the secondary nucleation rate derived  
from a. d, Oligomer flux calculations for I4.05 versus the clinical trial molecule 
Anle-138b using the rates derived from both a and c.
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autoencoders are generally not built to ensure that their latent space 
dimensions are human interpretable, making this a challenge. The 
decoding of a variational autoencoder is also not deterministic, pre-
venting facile analysis of the feature space based on single perturbation 
approaches of the input features and observing changes to decoded 
structures. Instead, hierarchical clustering was carried out on the latent 
vectors, followed by SHAP51 (Shapley additive explanations) clustering 
for comparison (Supplementary Fig. 15). While the former differenti-
ated groups based on large changes in any dimension, clustering based 
on SHAP dimensions ensured that clusters were created only on the 
basis of features relevant to the prediction problem at hand. Latent 
space dimensions that have a large range of values had a large effect 
on the latent space clustering, regardless of whether these dimensions 
were important predictors of molecular potency. Using SHAP values, 
on the other hand, meant that latent space dimensions that had little 
effect on the model prediction were mapped to values close to zero, 
and therefore had a much smaller influence on the clustering. This 
resulted in clusters which were relevant to the prediction task. This 
strategy was suggested by the authors of SHAP and was recently used 
in the context of identifying subgroups of coronavirus disease 2019  
symptoms52.

Supplementary Fig. 15 shows two-dimensional UMAP representa-
tions of the tested molecules, with the latent vector clustering indi-
cated by color and the SHAP clustering indicated by shape. From the 
UMAP representation, we note that the SHAP clustering identified 
clusters more effectively than the hierarchical clustering. The SHAP 
values for each feature show the importance of that feature in the 
interpretation of potency, and this in turn could be used to identify 
which substructures within the molecules are relevant for potency 
by observing the structures that recurred in each cluster. For exam-
ple, Supplementary Fig. 15 shows the top dimensions of each SHAP 
cluster, revealing that dimension 24 at least partly encoded for the 
key substructure 3,5-pyrazolidinedione, which was present in every 
molecule in cluster α and a proportion of cluster β. This confirmed the 
hypothesis previously put forward30 that, in a junction tree variational 
autoencoder, the latent space encoding preserved the key features of 
each molecule. Molecules that were clustered together shared many 
molecular substructures in common.

Measurement of binding affinity
A series of validation experiments were carried out on the most potent 
leads from the machine learning iterations. We first tested the binding 
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to fibrils using surface plasmon resonance (SPR; Methods) under differ-
ent buffer conditions. The results for molecule I4.05 versus Anle-138b 
are shown in Fig. 4. The proposed mechanism of action is the binding 
of molecules to the fibrils thereby blocking nucleation sites for further 
aggregation. Support for this mechanism of action comes from the 
observations that the molecules function at substoichiometric ratios, 
discounting monomer interactions, and also show negligible effect on 
elongation. Covalent interactions can also be discounted, as no mass 
change is observed of the αS monomer by mass spectrometry. The large 
effect observed in an assay that isolates secondary nucleation as the 
dominant mechanism implies that the molecules are specifically affect-
ing this step, and the substoichiometry implies that the molecules must 

be interacting with the fibrils that are present in nanomolar monomer 
equivalents at the start of the aggregation.

Proof of binding and evidence for this potential mechanism are 
shown by SPR in Fig. 4. Figure 4a shows a schematic representation 
of molecule binding to the binding pocket targeted during the ini-
tial docking simulation. Figure 4b shows SPR response curves for a 
concentration range between 0.3 nM and 1.1 μM of I4.05 binding to 
immobilized αS fibrils, while Fig. 4c shows the same experiment utiliz-
ing Anle-138b from 1.1 μM to 5 μM. The binding was tested under the 
conditions of the αS secondary nucleation assay (pH 4.8), and also at  
pH 8, allowing direct comparison to the secondary nucleation condi-
tions of Aβ42, which were tested as a negative control in Fig. 4d. αS 
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fibrils generated by a seeded assay, with the corresponding molecular structure. 
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y-axes. The αS fibrils were immobilized at a concentration of 2,000 pg mm−2 on a 
CM5 Cytivia chip. The fits correspond to a 1:1 kinetic binding model, which yielded 
a KD of 68 nM (ka = 1.936 ± 0.007 × 105 M−1 s−1, kd = 1.315 ± 0.003 × 10−2 s−1) at pH 
4.8 and 13 nM at pH 8 (ka = 5.879 ± 0.024 × 105 M−1 s−1, kd = 0.781 ± 0.002 × 10−2 s−1). 

Error: standard error of the mean (s.e.m.). c, SPR response curves for different 
concentrations of Anle-138b. Raw data (points) for each molecule concentration 
are shown (n = 2 replicates). Accurate fits at pH 4.8 could not be obtained. 
At pH 8 a 1:1 kinetic binding model yielded an approximate KD of 8.1 μM 
(ka = 0.0359 ± 0.0005 × 105 M−1 s−1, kd = 2.90 ± 0.02 × 10−2 s−1). Error: s.e.m. d, Seeded 
kinetics (40 nM seed, n = 2 replicates; central measure, mean; error, standard 
deviation) and SPR response curves (n = 2 replicates) for 2 μM Aβ42 in the presence 
of 1% DMSO or different concentrations of I4.05. I4.05 is unable to effectively 
inhibit Aβ42 secondary nucleation or bind to Aβ42 fibrils. The Aβ42 fibrils were 
immobilized at a concentration of 2,000 pg mm−2 on a CM5 Cytivia chip.
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is highly charged at neutral pH and has an isoelectric point (pI) of 4.7 
(ref. 53). It therefore requires a pH in this region to render the protein 
uncharged in order to aggregate on an experimentally accessible time-
scale under quiescent conditions, whereas Aβ42 is highly aggregation 
prone and requires higher pH to prevent it aggregating too rapidly45. 
At both pH values, I4.05 exhibited binding to αS fibrils, with kinetic fits 
giving KD values of 68 nM at the lower pH and 13 nM at the higher pH. The 
data for Anle-138b showed no response for pH 4.8, and so no KD could be 
obtained, while at pH 8 an approximate KD of 8.1 µM was obtained. It was 
evident that the two orders of magnitude improvement in KIC50 of I4.05 
compared to Anle-138b was matched by a similar degree of improve-
ment in terms of binding efficacy. Figure 4d shows that I4.05 has no 
effect on the seeded aggregation of Aβ42, nor does it bind effectively 
to Aβ42 fibrils, which suggests that this molecule is not a promiscu-
ous aggregation inhibitor between different amyloidogenic proteins.

Inhibition of aggregation using brain-derived seeds
While this result was encouraging, with the recent determination of the 
pathological αS fibril structure54, it became clear that the recombinant 
in vitro fibril structure we had employed for computational and experi-
mental work was different to that found in the brains of patients with 
PD. To test whether these molecules might work against patient-derived 
fibrils, these molecules were tested in a real-time quaking-induced 
conversion (RT-QuIC) seed amplification assay (Fig. 5) that employs 
brain samples from patients suffering with dementia with Lewy bod-
ies (DLB). The dominant fibril structure identified in DLB was found to 
match the dominant structure observed in PD54.

The RT-QuIC assay was initially introduced as a diagnostic assay55,56, 
showing distinct aggregation curves in the presence of brain material 
derived from different pathologies57. In this case, we use it to test the 
ability for these molecules to slow the aggregation of αS induced by 
DLB brain material. As a negative control, samples from patients with 
a tauopathy (corticobasal degeneration, CBD) were also used, as these 
did not induce αS aggregation as no αS seeds were present (Fig. 5a,b). 
No aggregation was observed in the CBD samples over the timescale 
observed except for Anle-138b, which accelerated aggregation under 
this condition. This unusual behavior may be due to Anle-138b’s report-
edly low solubility12. The conditions are different to those initially 
screened, as this assay was carried out at pH 8 and utilized shaking to 
accelerate seeded aggregation. This is a more challenging paradigm 
for the molecules to function in as multiple aggregation processes 
occur in tandem41. In addition to secondary nucleation from the fibril 
surfaces, fragmentation of the fibrils induced via shaking results in 
more fibril ends for elongation, which in turn provides more fibril 
surface for secondary nucleation.

Despite these challenges, and the different fibril structure present, 
the lead molecules still function well in inhibiting aggregation, and 
still at substoichiometric ratios (Fig. 5c). There was a clear improve-
ment for the leads over Anle-138b, which again appeared to accelerate 
aggregation, and the parent molecule, although the ranking of the 
leads in terms of efficacy is altered compared to the screening assay. 
To understand these results we note that there is a similarity in the 
binding pockets in the structures 6CU7 (recombinant) and 8A9L (brain 
derived) (Supplementary Fig. 16). We currently do not know whether 
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condition. c, Kinetic traces of a 7 µM solution of αS in the presence of DLB seeds 
(n = 4 replicates; error, s.d.; all other conditions match b). The DLB samples were 1% 
DMSO (purple), 3.5 µM molecule (blue), 7 µM molecule (teal) and 25 µM molecule 
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this similarity is serendipitous, but binding pockets with similar fea-
tures can also be observed via cryogenice electron microscopy in the 
multiple system atrophy (MSA) type I and MSA type II fibril folds as well 
as the Lewy fold, with an unresolved species bound within the pocket54.

To account for differences in brain samples and also investigate 
potential efficacy against MSA-derived brain material, we tested a single 
concentration of the same selection of molecules against three neuro-
pathologically confirmed MSA brain samples (Supplementary Fig. 17a,c) 
and two further DLB brain samples (Supplementary Fig. 17a,d). As a fur-
ther negative control, a sample with no seed or brain material was tested, 
to determine the degree of spontaneous nucleation in the absence of an 
inducer (Supplementary Fig. 17b). Aggregation in this negative control 
was effectively inhibited by all the potent ML molecules, given that αS 
was likely to assume the 6CU7 polymorph in this condition, and not by 
Anle-138b, which accelerated aggregation. It should be noted that the 
CBD samples are the better negative control for RT-QuIC, as all brain 
samples contain tissue matrix components that may sequester αS 
and reduce its aggregation. The unseeded sample began aggregation 
at ~40–50 h, whereas CBD samples did not exhibit aggregation over a 
span of 80 h (Supplementary Fig. 17e). Fibrils present in DLB and MSA 
samples were able to counteract this effect. For the other DLB and MSA 
samples, broadly similar trends were observed to those shown in Fig. 5. 
The ML molecules did appear more efficacious against MSA samples 
(Supplementary Fig. 17c), perhaps because the MSA pocket more closely 
matches that of the targeted 6CU7 polymorph (four flanking lysines 
around a histidine residue) compared to the 8A9L polymorph found in 
PD and DLB (four flanking lysines around a tyrosine residue) as shown in 
Supplementary Fig. 16. The behavior of Anle-138b was variable as, where 
the ML-derived molecules inhibited aggregation to some extent across 
all examples, Anle-138b either had no effect (unseeded and MSA sam-
ples 1 and 2) or induced (CBD sample, MSA sample 3 and DLB sample 1)  
or mildly inhibited aggregation (DLB samples 2 and 3).

Oligomer quantification by microfluidic free-flow 
electrophoresis
Having observed that molecule I3.02 was the most broadly effective in 
the RT-QuIC assay, an investigation was carried out to directly measure 
the oligomeric species formed during the reaction. This was achieved 
using microfluidic free-flow electrophoresis (µFFE)58, a technique opti-
mized using similar conditions to that used in the RT-QuIC assay, albeit 
at higher αS concentration (100 µM). The results of this are shown in 
Fig. 6. Aggregation time courses were tracked using AlexaFluor 488 
labeled N122C αS rather than ThT. Figure 6 shows a schematic of the 
approach, where samples were extracted from an aggregation time 
course, centrifuged to remove insoluble aggregates, and finally sub-
mitted to µFFE. The degree of deflection and the photon count of each 
particle are proportional to the size and charge of the biomolecule. 
The former allows the separation of monomers from oligomers and 
the latter gives a measure of the number and size of the oligomers at a 
particular time point in the presence of different inhibitors. Oligomer 
electrophoretic mobility (μo) for an oligomer composed of nm monomer 
units is proportional to oligomer charge (qo) and inversely proportional 
to oligomer hydrodynamic radius (ro) and so can be described by58

μo ∝
qo
ro

∝ nm
v

ro
(1)

where v is a scaling exponent linking qo with nm. Approximating the 
oligomers as spherical species yields58

μo ∝
nm

v

rmnm
1
3

= nm
v∗

rm
(2)

where the oligomer electrophoretic mobility is defined only in terms 
of the monomer number (nm) and hydrodynamic radius (rm), and the 
scaling exponent v* = v − 1/3. Samples were extracted at the t1/2 of the 

negative control (1% dimethyl sulfoxide (DMSO)) and the results are 
shown in Fig. 6. Anle-138b dosing resulted in a smaller population of 
large aggregates, as may be expected from the slight acceleration in the 
aggregation observed in the fluorescence values, while I3.02 reduced 
both the size and the number of oligomers present in comparison to 
the DMSO control. The ranking of these inhibitors was further validated 
in a subsequent study of oligomer levels using solid state nanopores 
combined with DNA nanostructure tagging59. 

Discussion
The identification of inhibitors of αS aggregation based on chemical 
kinetics approaches has advanced to the point that specific steps in 
the aggregation process, including primary nucleation and secondary 
nucleation, can be targeted in a reproducible way9,28,29. The mechanism 
targeted in this work is the surface-catalyzed secondary nucleation step, 
which is responsible for the autocatalytic proliferation of αS fibrils. 
In a recent initial report, initial hit molecules identified via docking 
simulations were shown to bind competitively with αS monomers along 
specific sites on the surface of αS fibrils23,24,60. Specific rate measures 
and other aggregation metrics were derived from these experiments 
allowing quantitative and reliable comparisons between molecules 
in terms of structure–activity relationship and offering metrics to 
optimize structures of interest9,45. This has been augmented with tests 
against diseased brain material and detailed, experimental fibril bind-
ing and oligomer flux analyses.

The aim of this work was to develop a machine learning approach 
to drug discovery for protein aggregation diseases that could improve  
both the optimization rate of the in vitro assays employed and provide 
novel chemical matter more efficiently than conventional approaches. 
The optimization rate of the approach was an over 20-fold improve-
ment over typical high-throughput screening hit rates (~0–1%)61. These 
structures also represent discoveries that could not have been obtained 
by staying close in chemical space to the parent structure, as would 
have been dictated by similarity search approaches. There were ~4,000 
molecules in the evaluation set that had Tanimoto similarity values in 
the same range as these leads, and all of these would potentially have 
had to be screened to locate these molecules using similarity searches 
alone. This was demonstrated by the looser similarity search approach 
which exhibited a comparatively poor optimization rate (4%) despite 
more conservative structural alterations to the parent hits than were 
observed in the ML predicted molecules. The machine learning method 
was therefore able to supply a degree of novelty as well as an improved 
optimization rate.

A limitation of this approach is the requirement to select mol-
ecules from a pre-existing library. To resolve this limitation generative 
modelling combined with reinforcement learning has been applied in 
a parallel project to remove the need for a library to screen from44,62. 
A second limitation is the focus on one assay metric of interest as a 
learning parameter. Addressing this limitation will involve future work 
on multiparameter optimization, which is a challenging area in rapid 
development63–65,66. Another topic of great interest in drug discovery 
approaches based on machine learning besides potency prediction is 
the prediction of pharmacokinetics and toxicity67,68. It could be possible 
to achieve this multiparameter optimization utilizing multiple models 
in parallel and then employing a joint ranking metric, or architectures 
that screen for individual metrics in series. This has been previously 
demonstrated but primarily with chemical properties such as clogP and 
QED rather than experimental results63–65. The molecules in this work 
were derived from a set that passed CNS MPO criteria in the initial dock-
ing simulation, and so the CNS MPO metrics of the whole aggregation 
inhibitor set are relatively favorable with most hit molecules exceed-
ing the common cutoff value of 4 (ref. 39) (Supplementary Fig. 10b).

It would have been preferable to begin this approach using seeds 
derived from relevant pathological brain material, but this was not pos-
sible, as neither structures nor samples for these were available at the start 
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of this study. Nonetheless, we have demonstrated that these molecules 
still function against disease-relevant inducers, probably because of 
the degree of commonality between the binding sites of the fibril poly-
morphs. The complete loss of function against another aggregation prone 
protein, Aβ42, does however suggest specific functionality against αS.

Conclusions
The results that we have presented illustrate a drug discovery approach 
that involves an iterative structure-based machine learning strategy 
to generate potent protein aggregation inhibitors. The resulting mol-
ecules offer a large improvement in potency over the parent molecule 
and clinical trial molecules and represent a major structural departure 
from them. We anticipate that using machine learning approaches of 
the type described here could be of considerable benefit to research-
ers working in the field of protein misfolding diseases, and indeed 
early-stage drug discovery research in general.
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Methods
Compounds and chemicals
Compounds were purchased from MolPort or Mcule and prepared in 
DMSO to a stock of 5 mM. All chemicals used were purchased at the 
highest purity available.

Recombinant αS expression
Recombinant αS was purified on the basis of previously described 
methods25,41,69. The plasmid pT7-7 encoding human αS was trans-
formed into BL21 (DE3) competent cells. Following transformation, 
the competent cells were grown in 6L 2xYT medium in the presence 
of ampicillin (100 μg ml−1). Cells were induced with isopropyl β-d-
1-thiogalactopyranoside, grown overnight at 28 °C and then collected 
by centrifugation in a Beckman Avanti JXN-26 centrifuge with a JLA-
8.1000 rotor at 6,240 rcf (Beckman Coulter). The cell pellet was resus-
pended in 10 mM Tris, pH 8.0, 1 mM ethylenediaminetetraacetic acid 
(EDTA), 1 mM phenylmethylsulfonyl fluoride and lysed by sonication. 
The cell suspension was boiled for 20 min at 85 °C and centrifuged at 
39,000 rcf with a JA-25.5 rotor (Beckman Coulter). Streptomycin sulfate 
was added to the supernatant to a final concentration of 10 mg ml−1 
and the mixture was stirred for 15 min at 4 °C. After centrifugation at 
39,000 rcf, the supernatant was taken with an addition of 0.36 g ml−1 
ammonium sulfate. The solution was stirred for 30 min at 4 °C and cen-
trifuged again at 39,000 rcf. The pellet was resuspended in 25 mM Tris, 
pH 7.7, and the suspension was dialyzed overnight in the same buffer. 
Ion-exchange chromatography was then performed using a Q Sepha-
rose HP column of buffer A (25 mM Tris, pH 7.7) and buffer B (25 mM 
Tris, pH 7.7, 1.5 M NaCl). The fractions containing αS were loaded onto 
a HiLoad 26/600 Superdex 75 pg Size Exclusion Chromatography col-
umn, and the protein (~60 ml @ 200 µM) was eluted into the required 
buffer. The protein concentration was determined spectrophoto-
metrically using ε280 = 5,600 M−1 cm−1. The cysteine-containing variant 
(N122C) of αS was purified by the same protocol, with the addition of 
3 mM dithiothreitol to all buffers.

Labeling of αS
αS protein was fluorophore-labeled to enable visualization by fluo-
rescence microscopy. To remove dithiothreitol, cysteine variants of 
αS were buffer exchanged into phosphate-buffered saline (PBS) or 
sodium phosphate buffer by use of P10 desalting columns packed with 
Sephadex G25 matrix (GE Healthcare). The protein was then incubated 
with an excess of AlexaFluor 488 dye with maleimide moieties (Thermo 
Fisher Scientific) (overnight, 4 °C on a rolling system) at a molar ratio 
of 1:1.5 (protein to dye). The labeling mixture was loaded onto a Super-
dex 200 16/600 (GE Healthcare) and eluted in PBS buffer at 20 °C, to 
separate the labeled protein from free dye. The concentration of the 
labeled protein was estimated by the absorbance of the fluorophores, 
assuming a 1:1 labeling stoichiometry (AlexaFluor 488: 72,000 M−1 cm−1  
at 495 nm).

αS seed fibril preparation
αS fibril seeds were produced as described previously25,41. Samples 
of αS (700 µM) were incubated in 20 mM phosphate buffer (pH 6.5) 
for 72 h at 40 °C and stirred at 1,500 rpm with a Teflon bar on an RCT 
Basic Heat Plate (IKA). Fibrils were then diluted to 200 µM, aliquoted 
and flash frozen in liquid N2, and finally stored at −80 °C. For the use of 
kinetic experiments, the 200 µM fibril stock was thawed, and sonicated 
for 15 s using a tip sonicator (Bandelin, Sonopuls HD 2070), using 10% 
maximum power and a 50% cycle.

Measurement of αS aggregation kinetics
αS was injected into a Superdex 75 10/300 GL column (GE Healthcare) 
at a flow rate of 0.5 ml min−1 and eluted in 20 mM sodium phosphate 
buffer (pH 4.8) supplemented with 1 mM EDTA. The obtained monomer 
was diluted in buffer to a desired concentration and supplemented 

with 50 µM ThT and preformed αS fibril seeds. The molecules (or 
DMSO alone) were then added at the desired concentration to a final 
DMSO concentration of 1% (v/v). Samples were prepared in low-binding 
Eppendorf tubes, and then pipetted into a 96-well half-area, black/clear 
flat-bottom polystyrene non binding surface microplate (Corning 
3881), 150 µl per well. The assay was then initiated by placing the micro-
plate at 37 °C under quiescent conditions in a plate reader (FLUOstar 
Omega, BMG Labtech). The ThT fluorescence was measured through 
the bottom of the plate with a 440 nm excitation filter and a 480 nm 
emission filter. After centrifugation at 2,350 rcf to remove aggregates 
the monomer concentration was measured via the Pierce BCA Protein 
Assay Kit according to the manufacturer’s protocol.

For the lipid induced assay, small unilamellar vesicles containing 
1,2-dimyristoyl-sn-glycero-3-phospho-l-serine (Avanti Polar Lipids), 
were prepared from chloroform solutions of the lipids as described 
previously69. Briefly, the lipid mixture was evaporated under a stream 
of nitrogen gas and then dried thoroughly under vacuum to yield a thin 
lipid film. The dried thin film was re-hydrated by adding aqueous buffer 
(20 mM sodium phosphate, pH 6.5, and 1 mM EDTA) at a concentration 
of 1 mM and heating to 40 °C for 2 h while stirring at 1,500 rpm with a 
Teflon bar on an RCT Basic Heat Plate (IKA). Small unilamellar vesicles 
were obtained using several cycles of freeze–thawing followed by 
extrusion through membranes with 200 nm diameter pores (Avanti 
Polar Lipids). αS was prepared as above. Kinetic conditions were 20 µM 
αS, 100 µM 1,2-dimyristoyl-sn-glycero-3-phospho-l-serine, 50 µM ThT, 
30 °C; all other conditions remained the same as above.

Transmission electron microscopy (TEM) imaging of the fibrils 
produced at the end of the light seeded aggregation reaction (Sup-
plementary Fig. 18) was used to verify fibrils were produced

Determination of the αS elongation rate constant
In the presence of high concentrations of seeds (approximately micro-
molar), the aggregation of αS is dominated by the elongation of the 
added seeds25,41. Under these conditions where other microscopic  
processes are negligible, the aggregation kinetics for αS can be 
described by9,23,25

dM(t)
dt

|||t=0
= 2k+P (0)m(0)

where M(t) is the fibril mass concentration at time t, P(0) is the initial 
number of fibrils, m(0) is the initial monomer concentration, and k+ 
is the rate of fibril elongation. In this case, by fitting a line to the early 
time points of the aggregation reaction as observed by ThT kinetics, 
2k+P(0)m(0) can be calculated for αS in the absence and presence of 
the compounds. Subsequently, the elongation rate in the presence of 
compounds is expressed as a normalized reduction as compared to the 
elongation rate in the absence of compounds (1% DMSO).

Determination of the αS amplification rate constant
In the presence of low concentrations of seeds (approximately nanomo-
lar), the fibril mass fraction, M(t), over time was described using a 
generalized logistic function to the normalized aggregation data9,70

M(t)
mtot

= 1 − 1

[1 + a

c
eκt]

c

where mtot denotes the total concentration of αS monomers. The 
parameters a and c are defined as

a = λ2

2κ2

c =
√

2
n2(n2 + 1) .

http://www.nature.com/naturechemicalbiology


Nature Chemical Biology

Article https://doi.org/10.1038/s41589-024-01580-x

The parameters λ and κ  represent combinations for the effective 
rate constants for primary and secondary nucleation, respectively, and 
are defined as70

λ = √2k+knmnc
tot

and

κ = √2k+k2mn2+1
tot ,

where kn and k2 denote the rate constants for primary and secondary 
nucleation, respectively, and nc and n2 denote the reaction orders of 
primary and secondary nucleation, respectively. In this case, nc was 
fixed at 0.3 for the fitting of all data (corresponding to a reaction order 
of n2 = 4), and k2, the amplification rate, is expressed as a normalized 
reduction for αS in the presence of the compounds as compared to in 
its absence (1% DMSO).

Determination of the αS oligomer flux over time
The theoretical prediction of the reactive flux toward oligomers over 
time was calculated as9,70

ϕ (t) = 1
r+
⋅ [m(0)

m(t) ⋅
d2M

dt2
+ 1

m(0) (
m(0)
m(t) ⋅

dM(t)
dt )

2

]

where r+ = 2k+m(0) is the apparent elongation rate constant extracted 
as described earlier, and m(0) refers to the total concentration of 
monomers at the start of the reaction.

Recombinant Aβ42 expression
The recombinant Aβ42 peptide (MDAEFRHDSGY EVHHQKLVFF AED-
VGSNKGA IIGLMVGGVV IA), here called Aβ42, was expressed in the 
Escherichia coli BL21 Gold (DE3) strain (Stratagene) and purified as 
described previously. Briefly, the purification procedure involved 
sonication of E. coli cells, dissolution of inclusion bodies in 8 M urea, 
and ion exchange in batch mode on diethylaminoethyl cellulose resin 
followed by lyophylization. The lyophilized fractions were further 
purified using Superdex 75 HR 26/60 column (GE Healthcare) and elu-
ates were analyzed using sodium dodecyl sulfate polyacrylamide gel 
electrophoresis for the presence of the desired peptide product. The 
fractions containing the recombinant peptide were combined, frozen 
using liquid nitrogen, and lyophilized again.

Aβ42 aggregation kinetics and fibril preparation
Solutions of monomeric Aβ42 were prepared by dissolving the lyo-
philized Aβ42 peptide in 6 M guanidinium hydrocholoride (GuHCl). 
Monomeric forms were purified from potential oligomeric species 
and salt using a Superdex 75 10/300 GL column (GE Healthcare) at 
a flow rate of 0.5 ml min−1, and were eluted in 20 mM sodium phos-
phate buffer, pH 8 supplemented with 200 µM EDTA and 0.02% NaN3. 
The center of the peak was collected and the peptide concentration 
was determined from the absorbance of the integrated peak area 
using ε280 = 1,490 l mol−1 cm−1. The obtained monomer was diluted 
with buffer to the desired concentration and supplemented with 
20 μM ThT from a 2 mM stock. Each sample was then pipetted into 
multiple wells of a 96-well half-area, low-binding, clear-bottom and 
polyethylene glycol-coated plate (Corning 3881), 80 µl per well, 
in the absence and the presence of different molar-equivalents of 
small molecules (1% DMSO). Assays were initiated by placing the 
96-well plate at 37 °C under quiescent conditions in a plate reader 
(Fluostar Omega, Fluostar Optima or Fluostar Galaxy, BMGLabtech). 
The ThT fluorescence was measured through the bottom of the 
plate using a 440 nm excitation filter and a 480 nm emission filter. 
Fibrils were extracted directly from wells and used on the day for SPR  
experiments.

Machine learning
Junction tree neural network variational autoencoder. The auto
encoder30 was pretrained on a library of 250,000 compounds31, and 
was implemented using a pip installable version71 in addition to torch 
(1.10.0), RDKit (2020.09.1), MolVS (0.1.1) and scipy (1.5.2). Any mol-
ecules that contained substructures the autoencoder could not rep-
resent (that is, that fell outside the substructure vocabulary of the 
pretrained model) were excluded.

Prediction module. All coding was carried out in Python 3. Scikit-learn 
(0.24.1)72 implementations of the GPR, RFR, LR and MLP methods 
were tested in various combinations, and the results are shown in Sup-
plementary Information. For data handling, calculations and graph 
visualization the following software and packages were used: pandas 
(1.2.4)73, seaborn (0.11.1)74, matplotlib (3.3.4)75, numpy (1.20.1)76, scipy 
(1.6.2)77, fbpca (1.0), umap-learn (0.3.10)50, Multicore-TSNE (0.1)49 and 
GraphPad Prism (9.1.2). Cross validation and benchmarking were also 
carried out for each model using scikit-learn built in functions and is 
described in Results.

SHAP and latent space clustering. To compute the SHAP values, we 
used the SHAP python library51. The pretrained random-forest model 
was loaded, and a SHAP explainer object was created and provided with 
the latent representation for the top 100 highest predicted molecules. 
This allowed for the identification of dimensions important to the 
prediction of high potency molecules. The full testing set derived from 
the ZINC dataset was also used to differentiate between dimensions 
important to distinguish high-potency molecules from low-potency 
molecules versus dimensions important to distinguish high-potency 
molecules between themselves. This resulted in a global interpretation 
of the model, encompassing all data points passed to the explainer 
object. The resultant plots were generated using SHAP built-in plot 
functions. The sklearn library hierarchical clustering method was used 
to cluster latent vectors for comparison, with initial cluster number 
set to 7 (ref. 78).

SPR
All work was carried out using Biacore T200 at 25 °C. CM5 chips 
were activated by flowing 0.01 M N-hydroxysuccinimide, 0.4 M 
1-Ethyl-3-diaminopropyl carbodiimide at a flow rate of 10 µl min−1 for 
7 min over two lanes. Preformed αS or Aβ42 fibrils (derived from the 
endpoints of low seeded aggregation reactions) at a concentration of 
1 µM in sodium acetate (10 mM, pH 4.0) were injected onto a single lane 
in 60 s bursts at 5 µl min−1 until a response of 2,000 units was reached. 
Both lanes were then deactivated using a 7-min injection of ethan-
olamine (1 M, pH 8.5) at 10 µl min−1, and the reference lane signal was 
subtracted from the active lane. Different small molecule concentra-
tions were then flowed over both lanes in a pyramidal arrangement in 
duplicate with blank subtraction (association time 3 min, dissociation 
time 10 min). The running buffer was sodium phosphate (20 mM, 1 mM 
EDTA, variable pH) with 1% DMSO. Fitting was carried out on Biacore 
T200 Evaluation Software, version 3.2, using a 1:1 binding model with 
the refractive index set to a constant value of 0 response units.

Brain tissue samples and compliance with ethical standards
Deidentified post-mortem brain samples were obtained from sources 
indicated in Supplementary Table 2. As samples were obtained from 
deceased, deidentified, consenting individuals, no further ethical 
approval was required.

Preparation of human brain tissue homogenates
Deidentified post-mortem human brain specimens used in the RT-QuIC 
assay are referenced in Supplementary Table 2. These specimens were 
obtained from the NIH Brain & Tissue repository-California, Human 
Brain & Spinal Fluid Resource Centre, VA West Los Angeles Medical 
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Center, Los Angeles, California, which is supported in part by National 
Institutes of Health and the US Department of Veterans Affairs. Assay 
samples were prepared as 10% (wt/vol) brain homogenates in ice-cold 
PBS (pH 7.0) using 1 mm zirconia beads (BioSpec, cat no. 11079110z) in 
a Bead Mill 24 (Fisher Scientific). Subsequent dilutions of each brain 
homogenate (10−1 to 10−5) for testing in the RT-QuIC assay were prepared 
in 1× PBS (pH 7.0).

αSyn RT-QuIC protocol
RT-QuIC assay for DLB samples were performed using the recombi-
nant αSyn K23Q substrate purified using a two-step chromatography 
protocol described previously (PMID: 29422107). For testing MSA 
samples, wild-type αSyn recombinant substrate was purified using 
anion-exchange and size exclusion chromatography as described 
in PMID: 15939304 with minor modifications. The wild-type protein 
expressing pET21a-αS plasmid was a gift from Michael J Fox Founda-
tion MJFF (Addgene plasmid no. 51486; http://n2t.net/addgene:51486; 
RRID: Addgene_51486). RT-QuIC assay was performed using black, 
clear-bottom 96-well plates (Nalgene Nunc International) preloaded 
with six silica beads (1 mm diameter, OPS Diagnostics). Seeding was 
induced by addition of 2 μl of 10−4 (with respect to solid brain tissue) 
dilutions of DLB, MSA or CBD (control) brain homogenates in quadru-
plicate wells containing 98 μl of the reaction buffer (40 mM phosphate 
buffer; pH 8.0 and 170 mM NaCl) supplemented with 6 μM (0.1 mg ml−1) 
αSyn K23Q substrate (prefiltered through 100 kDa molecular weight 
cutoff filter, Pall Corporation, cat. no. OD100C34) and 10 μM ThT. After 
seeding, reaction plates were covered with a sealer film (Nalgene Nunc 
International) and incubated at 42 °C in a fluorescence plate reader 
(BMG FLUOstar Omega) with 1 min shake–rest cycles (400 rpm dou-
ble orbital) for 50–90 h as indicated in the figures. ThT fluorescence 
(λexcitation = 450 ± 10 nm and λemission = 480 ± 10 nm) was measured at 
45 min intervals).

µFFE
Microfluidic device fabrication. Devices were designed using Auto-
CAD (24.3) software (Autodesk) and photolithographic masks printed 
on acetate transparencies (Micro Lithography Services). Polydimethyl-
siloxane devices were produced on SU-8 molds fabricated via pho-
tolithographic processes as described elsewhere79,80 with ultraviolet 
exposure performed with custom-built light-emitting diode-based 
apparatus81. Following development of the molds, feature heights 
were verified by profilometer (Dektak, Bruker) and polydimethylsi-
loxane (Dow Corning, primer and base mixed in 1:10 ratio) applied 
and degased before baking at 65 °C for 1.5 h. Devices were cut from 
the molds and holes for tubing connection (0.75 mm) and electrode 
insertion (1.5 mm) were created with biopsy punches, the devices were 
cleaned by application of Scotch tape and sonication in isopropanol 
(5 min). After oven drying, devices were bonded to glass slides using 
an oxygen plasma. Before use, devices were rendered hydrophilic via 
prolonged exposure to oxygen plasma82.

μFFE device operation. Liquid-electrode microchip free-flow electro-
phoresis (μFFE) devices were used83. Briefly, fluids were introduced to 
the device by PTFE tubing, 0.012″ inner diameter × 0.030″ outer diam-
eter (Cole-Parmer) from glass syringes (Gas Tight, Hamilton) driven by 
syringe pumps (Cetoni neMESYS). μFFE experiments were conducted 
with auxiliary buffer, electrolyte, monomer reference and sample flow 
rates of 1,000, 200, 140 and 10 μl h−1, respectively, for 15× reduction in 
buffer salt concentration for samples in PBS buffer.

Potentials were applied by a programmable benchtop power 
supply (Elektro-Automatik EA-PS 9500-06) via bent syringe tips 
inserted into the electrolyte outlets. Experiments were performed on 
a custom-built single-molecule confocal fluorescence spectroscopy 
setup equipped with a 488 nm wavelength laser beam (Cobolt 06-MLD 
488 nm 200 mW diode laser, Cobolt). Photons were detected using a 

time-correlated single photon counting module (TimeHarp 260 PICO, 
PicoQuant) with a time resolution of 25 ps.

Aggregation kinetics and sample extraction. AlexaFluor 488-labeled 
αS (100 μM) was supplemented with seed (0.5 μM) under shaking 
(200 rpm) at 37 °C, PBS pH 7.4 and either 1% DMSO or 50 μM molecule 
in 1% DMSO. Samples were extracted at the t1/2 of the DMSO sample (9 h). 
Fibrils were removed by centrifugation (21,130 rcf, 10 min, 25 °C) and 
the supernatant was then subjected to μFFE. For AlexaFluor 488-labeled 
oligomeric mixtures, auxiliary buffer composed of 15× diluted PBS 
buffer, supplemented with 0.05% v/v Tween-20. Using a custom-written 
script, single-molecule events were recorded as discrete events using a 
Lee filter of 4 from the acquired photon stream as fluorescence bursts 
with 0.05 μs of the maximum inter-photon time and containing 30 
photons minimum. Using these parameters, the single-molecule bursts 
and their intensities were reported as a function of device position, 
which could be later converted to an apparent electrophoretic mobil-
ity. Oligomer bursts were distinctly characterized by a higher photon 
intensity detected per molecule and a higher electrophoretic mobility 
than monomeric protein.

Mass spectrometry
Ten micromolar of preformed αS was incubated with 25 µM of molecule 
in 20 mM sodium phosphate buffer (pH 4.8) supplemented with 1 mM 
EDTA overnight under quiescent conditions at room temperature. The 
supernatant was removed for analysis using a Waters Xevo G2-S QTOF 
spectrometer (Waters Corporation).

TEM
Ten micromolar αS samples were prepared and aggregated as described 
in the kinetic assay, without the addition of ThT. Samples were col-
lected from the microplate at the end of the reaction (150 h) into 
low-binding Eppendorf tubes. They were then prepared on 300-mesh 
copper grid containing a continuous carbon support film (EM Resolu-
tions) and stained with 2% uranyl acetate (wt/vol) for 40 s. The samples 
were imaged at 200 kV on a Thermo Scientific (FEI) Talos F200X G2 
S/TEM (Yusuf Hamied Department of Chemistry Electron Micros-
copy Facility). TEM images were acquired using a Ceta 16M CMOS  
camera.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available within the 
main text and its Supplementary Information. Additional datasets can 
be found on the GitHub repository at https://github.com/rohorne07/
Iterate.

Code availability
Full code can be found on the GitHub repository at https://github.com/
rohorne07/Iterate.
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