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Introduction: The DOLAM trial revealed that switching from triple antiretroviral therapy (three-drug regimen; 3DR) 
to dolutegravir plus lamivudine (two-drug regimen; 2DR) was virologically non-inferior to continuing 3DR after 
48 weeks of follow-up. Weight increased with 2DR relative to 3DR but it did not impact on metabolic parameters. 

Methods: Multiomics plasma profile was performed to gain further insight into whether this therapy switch might 
affect specific biological pathways. DOLAM (EudraCT 201500027435) is a Phase 4, randomized, open-label, non- 
inferiority trial in which virologically suppressed persons with HIV treated with 3DR were assigned (1:1) to switch 
to 2DR or to continue 3DR for 48 weeks. Untargeted proteomics, metabolomics and lipidomics analyses were per-
formed at baseline and at 48 weeks. Univariate and multivariate analyses were performed to identify changes in 
key molecules between both therapy arms. 

Results: Switching from 3DR to 2DR showed a multiomic impact on circulating plasma concentration of 
N-acetylmuramoyl-L-alanine amidase (Q96PD5), insulin-like growth factor-binding protein 3 (A6XND0), alanine 
and triglyceride (TG) (48:0). Correlation analyses identified an association among the up-regulation of these four 
molecules in persons treated with 2DR. 

Conclusions: Untargeted multiomics profiling studies identified molecular changes potentially associated with 
inflammation immune pathways, and with lipid and glucose metabolism. Although these changes could be as-
sociated with potential metabolic or cardiovascular consequences, their clinical significance remains uncertain. 
Further work is needed to confirm these findings and to assess their long-term clinical consequences.
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Introduction
Antiretroviral drugs have improved over time, becoming more ef-
fective, simpler and better tolerated. However, for some patients 
current ART may still be challenging.1 Despite better tolerability, 

some patients may experience direct toxicities with contempor-
ary antiretrovirals. The risk for most potential toxicities is usually 
cumulative and may further depend on specific individual fac-
tors. Beyond direct short-term harm, antiretroviral toxicities 
may have a long-term impact on the development or progression 
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of comorbidities. Medications for comorbidities may further in-
crease the risk of significant interactions with some antiretrovir-
als. Switching antiretrovirals for reasons other than virological 
failure is a common and evolving strategy in clinical practice.2

The effects of switching to dolutegravir plus lamivudine 
(a two-drug regimen; 2DR) in adults suppressed on triple therapy 
have been assessed in several observational studies or single- 
arm trials and three large randomized clinical trials.3–9 The results 
of all these studies support that switching to 2DR in selected 
adults with HIV is virologically non-inferior and as safe as con-
tinuing triple ART (three-drug regimen; 3DR).

Whether switching from 3DR to 2DR might be associated with 
better long-term tolerability due to the reduction of antiretroviral 
drug burden has not been proven yet.10 Conversely, integrase in-
hibitors in general, including dolutegravir, have been associated 
with higher risk of weight gain, diabetes, hypertension and car-
diovascular disease, although the not entirely consistent data 
leave many unknowns.11

In the DOLAM (EudraCT 201500027435) study and SALSA 
(NCT00295620) study, switching to 2DR was associated with 
weight gain at 48 weeks compared with continuing 3DR but there 
were no differences in lipid parameters between arms.8 It was 
the discontinuation of tenofovir disoproxil fumarate that was as-
sociated with 48 week increases in total cholesterol and weight in 
persons switched to 2DR.8

Omics approaches have emerged as robust and powerful 
tools for a better understanding of immunometabolism in HIV 
pathogenesis. Proteomics-based approaches offer a high- 
throughput method not only to identify biomarkers for diagnostic 
antigens and therapeutic targets but also to investigate mechan-
isms of drug action in persons with HIV.12–14 Along with proteo-
mics, metabolomics and lipidomics technologies have yielded 
new insights into the key role of cellular metabolism in the activ-
ity of immune cells and the treatment-induced metabolic de-
rangements in the context of HIV infection.15–17

An untargeted multiomics plasma profile, including proteomics, 
metabolomics and lipidomics data, was pre-planned as a substudy 
of the DOLAM study to gain insight on whether some immunome-
tabolic pathways might be affected by this therapy switch. The un-
targeted approach was selected for a more comprehensive and 
systemic analysis of both unknown and known plasma compounds 
to discover new biomarkers to be selected for more accurate quan-
titation and annotation in future studies (targeted).

Methods
Study design
The DOLAM study is a Phase 4, multicentre, randomized, controlled with 
active treatment, open-label, parallel clinical trial. The study was done at 
six major HIV clinics in Catalonia (Spain). Institutional review boards from 
all participating centres and the Spanish Agency of Medicines and Medical 
Devices approved the study. Participants were randomly assigned to con-
tinue their current 3DR (control arm) or to switch to 2DR once daily 
(dual-therapy arm). Major results of the DOLAM study have already 
been published.8

Study participants and data collection
Consecutive asymptomatic adults (≥18 years old) with HIV on stable (de-
fined as at least the previous 12 months) 3DR including two NRTIs plus 

either a boosted PI, an NNRTI, or an integrase inhibitor with sustained viral 
suppression (defined by plasma HIV RNA < 50 copies/mL in two or more 
consecutive determinations during at least the 12 months before inclu-
sion; blips up to 200 copies/mL were admissible) were invited to partici-
pate. For women of childbearing age, a negative pregnancy test within 
10 days before randomization into the study was required. Exclusion 
criteria were: pregnancy, lactation or planned pregnancy during the 
study period; prior virological failure (defined as plasma HIV RNA ≥  
50 copies/mL in two consecutive tests or >500 copies/mL in one test) 
to regimens containing lamivudine, emtricitabine or integrase inhibitors; 
any mutation conferring resistance to lamivudine, emtricitabine or inte-
grase inhibitors; CD4 nadir <200 cells/µL; any disease or history of disease 
that might confound the results of the study or pose additional risk to par-
ticipant’s treatment; and chronic hepatitis B, defined by a positive hepa-
titis B surface antigen (HBsAg) result at screening. Written informed 
consent was obtained from all eligible participants before randomization.

Participants were visited at baseline and every 12 weeks until com-
pleting at least 48 weeks of follow-up. At baseline and at 48 weeks, 
10 mL EDTA blood samples were collected after at least 8 h of fasting 
and processed immediately; plasma samples were split into 1 mL ali-
quots and stored at −80°C for deferred multiomics studies.

Determination of the proteomic profile
Detailed information about protein extraction and identification can be 
found in the Supplementary Methods (available as Supplementary data
at JAC Online). MS analyses were performed on an LTQ-Orbitrap Velos 
Pro from Thermo Fisher by an enhanced FT-resolution MS spectrum 
(R = 30 000 FHMW) followed by a data-dependent FT-MS/MS acquisition 
(R = 15 000 FHMW, 40% NCE HCD) from the 10 most intense parent ions 
with a charge state rejection of one and dynamic exclusion of 0.5 min. 
Protein identification/quantification was performed on Proteome 
Discoverer software v.1.4.0.288 (Thermo Fisher Scientific, CA, USA) by 
Multidimensional Protein Identification Technology (MudPIT) combining 
the two raw data files obtained from each sample. For protein identifica-
tion, all MS and MS/MS spectra were analysed using the Mascot search en-
gine (v.2.5). The workflow was set up using two different Mascot nodes 
combining a Homo sapiens database (74 449 entries) and a contami-
nants database (247 entries), both searches assuming trypsin digestion. 
Two missed cleavages were allowed and an error of 0.02 Da for FT-MS/MS 
fragmentation mass and 10.0 ppm for an FT-MS parent ion mass were al-
lowed. TMT-10plex was set as quantification modification and oxidation 
of methionine and acetylation of N-termini were set as dynamic modifi-
cations, whereas carbamidomethylation of cysteine was set as static 
modification. The false discovery rate (FDR) and protein probabilities 
were calculated by Percolator. For protein quantification, the ratios be-
tween each TMT label against 126-TMT label were used and quantifica-
tion results were normalized based on the protein median. The results 
are a ratio of reporter ion abundance and are dimensionless.

Determination of the metabolomic profile (analytical 
method)
Detailed information about the analytical method for metabolomic iden-
tification can be found in the Supplementary Methods. Samples were 
analysed on a 7200 GC-qTOF from Agilent Technologies (Santa Clara, 
CA, USA). The chromatographic separation was based on the Fiehn 
method.18 Targeted compounds were identified using pure standards 
with a mass accuracy of 20 ppm and different internal standards were 
used to correct signal response. Chromatographic peaks were deconvo-
luted using Unknowns Analysis software (version B.09.00, from Agilent) 
based on the exact mass. Identification of compounds was tentatively 
made by comparing the mass spectra and retention time of all detected 
compounds with the Fiehn 2013 Mass Spectral RTL Library and the 
National Institute of Standards and Technology (NIST) library 11 (2014) 
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also using the Unknowns software. The identity of the main compounds 
was confirmed with commercial pure standards. After direct (with pure 
standards) or putative (with a library) identification of metabolites, these 
were semiquantified in terms of internal standard response ratio. For this 
relative quantification, the area of specific fragments for each metabolite 
was divided by the area of its specific internal standard to provide a reli-
able, accurate and reproducible relative concentration of metabolites.

Determination of the lipidomic profile (analytical 
method)
Lipid extraction procedure can be found in the Supplementary Methods. 
The identification of lipid species was performed using the Agilent 
MassHunter Profinder B.08 software. First, a feature extraction deconvo-
lution was made; accurate mass and tandem mass spectrum, when 
available, was then matched to Metlin-PCDL (2017) from Agilent contain-
ing more than 40 000 metabolites and lipids, allowing a mass error of 
20 ppm and a score higher than 80 for isotopic distribution. To ensure 
the tentative characterization, the chromatographic behaviour of pure 
standards for each family and corroboration with the Lipid Maps data-
base (www.lipidmaps.org) was used to ensure their putative identifica-
tion. Afterwards, matched entities were selected to perform a targeted 
MS/MS acquisition on the LC-QTOF-MS instrument to corroborate the 
identification. Lipid species were then semiquantified in terms of internal 
standard response ratio using one internal standard for each lipid family.

Statistical analysis
To further delineate semiquantitative differences between groups due to 
the switching effect, a ratio between data from samples at 48 weeks and 
data from baseline timepoints was performed in each participant before 
statistical analyses. Only those proteins, metabolites and lipids that were 
present in >60% of the samples in at least one of the experimental 
groups were considered. In addition, log2 transformations were applied 
to the data (proteomics, lipidomics and metabolomics) for variance sta-
bilization, data range compression and making the data more normally 
distributed. This transformation was performed by Mass Profiler 
Professional software v.15.1 from Agilent Technologies. Regression model 
such as partial least squares discriminant (PLSD) was performed from 
compounds in each comparison and random forest (RF) analyses were 
performed to determine those molecules with higher accuracy to differ-
entiate both groups. An unpaired t-test (Mann–Whitney U-test) was then 
performed between ratios (48 weeks/baseline) from experimental 
groups (control and case). In each comparison, its significant level 
(P value) was corrected for multiple testing using the FDR with the 
Benjamin–Hochberg procedure and a P value cut-off of <0.05 was ap-
plied. Associations between quantitative variables were evaluated using 
the Spearman correlation test and receiver operating characteristic 
(ROC) curves were employed to confirm the statistical relevance of mole-
cules in the switching from 3DR to 2DR. The protein network was con-
structed with the online String software (version 11.5).

Statistical analyses were performed using SPSS (version 21.0, SPSS 
Inc., Chicago, IL, USA), and graphical representations were generated 
with GraphPad Prism (version 5.0, GraphPad Inc., San Diego, CA, USA), 
MetaboAnalyst 5.0 software and Open Office software. The results were 
considered significant at P values < 0.05.

Ethics
Institutional review boards from all participating centres and the 
Spanish Agency of Medicines and Medical Devices granted ethical 
approval of the study. Written informed consent was obtained 
from all eligible participants before randomization.

Results
Patient characteristics
There were 198 (75%) out of 265 participants with valid samples 
for this substudy, 85 receiving 3DR and 113 receiving 2DR.8,9 Their 
baseline characteristics were like those of the main study. 
Participants were predominantly male (158; 84%) with a median 
(IQR) age of 45 (38–52) years. Roughly similar proportions were 
taking abacavir (35%), tenofovir disoproxil fumarate (37%) or te-
nofovir alafenamide (28%) before study entry (Table 1, Figure 1).

Switching from 3DR to 2DR is associated with the p53 
signalling pathway
A total of 136 proteins were identified in plasma samples 
(Table S1) and the ratio between data from samples at 48 weeks 
and data from basal timepoint was compared between 3DR and 
2DR groups. The PLSD regression model showed a group-average 
effect, although the two groups overlapped (Figure 2a). Case– 
control samples were then compared using a non-parametric 
test corrected by multiple test (FDR < 0.05), and 3 of 136 proteins 
were found to be statistically different between 3DR and 
2DR groups (Figure 2b). N-acetylmuramoyl-L-alanine amidase 
(Q96PD5) (P = 0.035), insulin-like growth factor-binding protein 
3 (IGFBP3) (A6XND0) (P = 0.043) and LPS-binding protein (LBP) 
(P18428) (P = 0.05) had elevated plasma concentrations in the 
2DR group compared with the 3DR group. Furthermore, Q96PD5 
and A6XND0 were consistent with those proteins that had 
the highest discriminatory power between groups (random 
forest analysis) (Figure 2c). Thus, by using a combination of uni-
variate and multivariate approaches, Q96PD5 and A6XND0, 
which showed a positive correlation (ρ 0.247, P < 0.001), were 

Table 1. Baseline demographic and clinical characteristics

Triple therapy 
(3DR)

Dolutegravir plus 
lamivudine (2DR)

Age, years 47 (39–51) 44 (37–53)
Sex at birth

Female 12 (14) 17 (16)
Male 72 (86) 86 (84)

BMI, kg/m2 24 (23–26) 25 (23–27)
Suspected route of HIV 

transmission
Male-to-male sex 62 (74) 71 (68)
Heterosexual sex 13 (15) 19 (18)
Injection drug 4 (5) 6 (6)
Other/unknown 3 (7) 7 (8)

CD4 and CD8 
measurements
CD4 cells/µL 746 (553–919) 698 (577–938)
CD4, % 35 (31–40) 36 (31–43)
CD8 cells/µL 795 (591–931) 731 (502–959)
CD8, % 36 (31–43) 35 (27–42)
CD4:CD8 ratio 0.88 (0.72–1.02) 0.92 (0.69–1.09)

Data are reported as n (%) or median (IQR).
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discovered as the main proteins significantly increased in therapy 
simplification. These proteins were subjected to an ROC curve ana-
lysis to confirm their statistical relevance in the switching from 3DR 
to 2DR (Figure 2d). Both Q96PD5 and A6XND0 yielded significant 
AUC values (0.616, P = 0.005 and 0.613, P = 0.04, respectively) 
and the combination of both proteins resulted in an AUC of 
0.624 (0.547–0.702, P = 0.003). Network mapping identified an in-
terconnecting cluster between LBP and A6XND0 (confidence score 
0.4) and STRING database analysis confirmed the interaction be-
tween switching from 3DR to 2DR and proteins associated with 
the p53 signalling pathway (FDR = 0.03, impact 0.05).

Switching from 3DR to 2DR is associated with increased 
alanine and TG 48:0
A total of 97 metabolites were identified in plasma samples 
(Table S2) and as previously performed with proteomics data, 
the ratio between metabolomics data from samples at 48 weeks 
and data from basal timepoint was compared between 3DR and 
2DR groups. PLSD analysis also showed a group-average effect in 
the relative concentration of metabolites (Figure 3a). The 
univariate non-parametric test corrected by multiple test identi-
fied five metabolites statistically different between 3DR and 2DR 
groups; relative to 3DR, two were significantly decreased 
(2-hydroxybutyric acid, P < 0.001; and benzoic acid, P = 0.03) and 
three were significantly increased (2-hydroxy isobutyric acid, P <  
0.001; nonanoic acid, P = 0.04; and alanine, P = 0.05) in 2DR. 
However, the multivariate analysis revealed alanine only as the 

main metabolite significantly increased by therapy simplification 
(Figure 3b and c). Of interest, circulating alanine levels positively 
correlated with A6XND0 levels (ρ = 0.141, P = 0.018).

Regarding lipidomics analysis, a total of 117 lipid species were 
identified in plasma samples and the regression model (PLSD) 
also showed a group-average effect in the relative concentration 
of lipid species (Figure 3a). However, the univariate analysis cor-
rected by multiple tests (FDR) only identified TG 48:0 as signifi-
cantly increased in the 2DR group compared with the 3DR 
group (P = 0.018) (Figure 3c). The first number indicates the acyl 
carbon atoms, and the second number indicates the number of 
unsaturations.

Thus, alanine and TG 48:0 were analysed in combination to 
evaluate their association in therapy simplification. Correlation 
analyses confirmed a positive association between circulating ala-
nine and TG 48:0 levels (ρ = 0.2134, P = 0.003) (Figure 3d) and the 
combination of both features were evaluated using the ROC curve, 
obtaining an AUC of 0.601 (95% CI 0.503–0.706) (Figure 3e).

No significant association was found between proteins and 
metabolites identified in the switching from 3DR to 2DR.

Discussion
Similar to other randomized clinical trials such as TANGO or 
SALSA, the DOLAM study showed that switching from 3DR to 
2DR in selected virologically suppressed adults with HIV is viro-
logically non-inferior and as safe as continuing 3DR.7,9

However, dolutegravir has been associated with weight increase 

Figure 1. Study design. The study cohort comprised 198 PLHIV on stable triple ART for more than 12 months and with nadir CD4 T cell count greater or 
equal to 200 cells/mm3. Participants were assigned to a treatment group using computer-generated randomization. 3TC, lamivudine; DTG, dolutegra-
vir; FTC, emtricitabine; INSTI, integrase strand transfer inhibitor; NRTI, nucleoside or nucleotide reverse transcriptase inhibitor; VCF, virological failure. 
This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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in both naive and treated persons with HIV and there are con-
cerns that it could also be associated with diabetes and cardio-
vascular disease.19,20 In the DOLAM study, persons living with 
HIV (PLHIV) assigned to 2DR significantly gained more weight 
and there were more overweight or obese persons at 48 weeks 
relative to those continuing 3DR, but we were unable to detect 
significant changes in body fat, lean mass or bone mineral dens-
ity (BMD) between arms.8 Taking advantage of omic approaches 
for a better understanding of cellular metabolism, we attempted 
to explore if there were any plasma molecular alterations af-
fected by the switch from 3DR to 2DR.

The combination of untargeted proteomics, metabolomics 
(polar compounds) and lipidomics evidenced that switching 

from 3DR to 2DR was related to a few circulating metabolomic 
perturbations. Specifically, the multiomic approach identified 
two proteins, one metabolite and one lipid differentially ex-
pressed in the 2DR group compared with 3DR. Correlation ana-
lyses identified an association among the up-regulation of 
these four molecules in the 2DR arm.

At 48 weeks of follow-up, participants receiving 2DR showed 
increased plasma concentration of Q96PD5 and A6XND0 com-
pared with 3DR. Q96PD5 is a protein encoded by the peptidogly-
can recognition protein 2 (PGLYRP2) gene, a gene from the 
peptidoglycan recognition proteins (PGLYRPs) family. PGLYRPs 
are proteins that are conserved from insects to mammals, acting 
in inflammation and immune responses independently of their 

Figure 2. Changes in plasma proteins when switching from 3DR to 2DR. (a) A PLSD regression model plot is shown based on relative protein levels. 
(b) Circulating levels of the three proteins with significant expression among groups by univariate analysis corrected by multiple tests (FDR) results 
for positive mode features (FDR ≤ 0.05). (c) RF analysis. The top 15 metabolites with the highest discriminatory power between both groups are listed. 
(d) ROC curve for proteins selected based on the combination of univariate and multivariate analyses. AUC for Q96PD5 was 0.616 (95% CI 0.538– 
0.694), AUC for A6XND0 was 0.613 (95% CI 0.534–0.693) and AUC for the combination of both proteins (Q96PD5+A6ZND0) was 0.624 (95% CI 
0.547–0.702). (e) STRING database analysis confirmed the interaction between switching from 3DR to 2DR and proteins associated with the p53 sig-
nalling pathway (FDR = 0.03, impact 0.05). This figure appears in colour in the online version of JAC and in black and white in the print version of JAC.
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bactericidal and enzymatic activities.21 Specifically, PGLYRP2 has 
shown both anti-inflammatory and pro-inflammatory properties, 
probably related to its link to the transcription factor family nu-
clear factor κB (NF-κB).22–25 NF-κB represents a family of indu-
cible transcription factors involved in the regulation of genes 
belonging to immune and inflammatory pathways (including cy-
tokines, chemokines and inflammasome) whose expression has 
been linked to the p53 signalling pathway.24,26 Our results sug-
gested a possible association between the differentially ex-
pressed proteins associated with therapy simplification and the 

p53 signalling pathway. Of interest, a recent study also showed 
a positive correlation between PGLYRP2 and ApoB/A1 in patients 
with systemic lupus erythematosus (SLE), which suggested a po-
tential role of PGLYRP2 in the dyslipidaemia and cardiovascular 
disease risks in SLE patients.27 In the present study, no associ-
ation was found between Q96PD5 and the lipid species differen-
tially identified among groups (TG 48:0), but Q96PD5 was shown 
to be significantly related to A6XND0, whose gene expression 
(IGFBP3) was previously related to lipid metabolism.28 In serum, 
IGFBP-3 is the most abundant protein of the IGFBP family that 

Figure 3. Changes in plasma metabolites and lipid species of switching from 3DR to 2DR. (a) A PLSD regression model plot is shown based on relative 
metabolite levels. (b) RF analysis. The top 15 metabolites with the highest discriminatory power between both groups are listed. (c) A PLSD regression 
model plot is shown based on relative lipid species levels. (d) Circulating differences between the significant metabolite and lipid species by univariate 
analysis corrected by multiple tests (FDR ≤ 0.05). (e) Correlation analysis between alanine (metabolite) and TG 48:0 (lipid species). The Spearman (ρ) 
correlation coefficient and P value are indicated inside the graphical representation. (f) ROC curve model for the combination of alanine and TG 48:0 to 
evaluate the feature of these molecules in the therapy simplification. This figure appears in colour in the online version of JAC and in black and white in 
the print version of JAC.
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functions in an IGF-dependent (delivery of IGF and activation of 
IGF downstream signalling) manner, as well as in an IGF- 
independent (interaction with proteins) manner.29 Although 
some studies unveiled its role in metabolic regulation, the exact 
role of IGFBP3 in glucose and lipid metabolism remains unclear, 
even in PLHIV.29,30 Some studies suggested that serum IGFBP3 
could be involved in HIV disease progression and related to insulin 
resistance, but on the other hand, 3 months of treatment with 
IGF-I/IGFBP-3 improved whole-body glucose, glucose tolerance 
and fasting TGs in men living with HIV with excess abdominal adi-
posity and insulin resistance.31–33 Based on our results, the role of 
an increase in plasma IGFBP3 concentration in the 2DR arm re-
mains uncertain as no significant metabolic alterations were clin-
ically observed between 3DR and 2DR groups at 48 weeks of 
therapy randomization.8 However, it is important to highlight 
that our results suggested a positive relationship between 
A6XND0 and plasma alanine levels, and between plasma alanine 
levels and TG (48:0). At the molecular level, participants in the 
2DR group showed increased plasma concentrations in both cir-
culating plasma alanine and TG (48:0) compared with the 3DR 
group. Increased circulating alanine concentrations could indi-
cate an alteration in the glucose-alanine cycle in which alanine 
can be synthesized from pyruvate deriving from skeletal muscle 
through the enzymatic reaction of ALT and then transported to 
the liver to be used for gluconeogenesis. High circulating alanine 
concentration has been related to the risk of incident type II 
diabetes while reduced rates of glucose-alanine cycling have 
been associated with the regulation of hepatic mitochondrial 
oxidation.34,35 Regarding the monoacid triglyceride TG (48:0), pre-
vious studies have considered the saturated TG (48:0) as a key lipid 
species in biomarker panels related to liver-fat content.36,37

This study had limitations. The multiomic analysis was per-
formed from baseline to 48 weeks after randomization, a period 
in which potential metabolic consequences of weight gain had 
not been apparent. Multiomics data integration can bring several 
problems and requires several attention to combine high- 
throughput data obtained from different molecular layers. To 
reduce the heterogeneity across the three different omics tech-
nologies applied and the difficulty of interpreting multilayered 
system models derived from the combination of omics data 
and non-omic data (clinical data), single analysis was preferred 
for the present work focused on the antiretroviral simplification. 
Performing a multiomic analysis after a longer follow-up would 
be of great interest. As a strength, this study provides novel 
and valuable information, as no multiomic analysis investigating 
changes after switching from 3DR to 2DR has been previously 
published to our knowledge.

Conclusions
In summary, 48 weeks of dolutegravir plus lamivudine (2DR) re-
presents a reduction in antiretroviral drug burden that is viro-
logically non-inferior, safe and without apparent clinical 
metabolic derangement compared with continuing triple ART 
(3DR). Switching from 3DR to 2DR, however, was related to 
some plasma metabolomics perturbations, in which four soluble 
compounds were involved. Plasma changes in Q96PD5, A6XND0, 
alanine and TG (48:0) might be associated with the activation of 
inflammation and immune pathways but also with an alteration 

in lipid and glucose metabolism. Although these changes could 
be associated with potential metabolic or cardiovascular conse-
quences, their clinical significance remains uncertain. Further 
work is needed to confirm these findings and to assess their long- 
term clinical consequences.
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