Table 3.
Comparison of evaluation effects of different evaluation models.
| Model | Index p OR(95%CI) | |||||
|---|---|---|---|---|---|---|
| Accuracy | Classification Error | Precision | Recall | F1_Score | Auc | |
| Random forest | 0.9344 | 0.0655 | 0.9040 | 0.8967 | 0.9003 | 0.9713 |
| Logistics regression | 0.9172 | 0.0827 | 0.8747 | 0.8747 | 0.8747 | 0.9478 |
| Navie Bayesian | 0.8234 | 0.1765 | 0.6690 | 0.9219 | 0.7753 | 0.9378 |
| GBDT | 0.9083 | 0.0916 | 0.8610 | 0.8617 | 0.8613 | 0.9520 |
| KNN | 0.9221 | 0.0778 | 0.8754 | 0.8912 | 0.8832 | 0.9579 |