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Key Points

• Neutrophil-specific
integrin α9 deficiency
results in a significant
reduction in poststroke
DVT severity.

• Macitentan is a potent
inhibitor of integrin α9/
VCAM-1 interactions
that reduces DVT
severity.
Venous thromboembolic events are significant contributors to morbidity and mortality in

patients with stroke. Neutrophils are among the first cells in the blood to respond to stroke

and are known to promote deep vein thrombosis (DVT). Integrin α9 is a transmembrane

glycoprotein highly expressed on neutrophils and stabilizes neutrophil adhesion to

activated endothelium via vascular cell adhesion molecule 1 (VCAM-1). Nevertheless, the

causative role of neutrophil integrin α9 in poststroke DVT remains unknown. Here, we

found higher neutrophil integrin α9 and plasma VCAM-1 levels in humans and mice with

stroke. Using mice with embolic stroke, we observed enhanced DVT severity in a novel

model of poststroke DVT. Neutrophil-specific integrin α9–deficient mice (α9fl/flMrp8Cre+/−)

exhibited a significant reduction in poststroke DVT severity along with decreased

neutrophils and citrullinated histone H3 in thrombi. Unbiased transcriptomics indicated

that α9/VCAM-1 interactions induced pathways related to neutrophil inflammation,

exocytosis, NF-κB signaling, and chemotaxis. Mechanistic studies revealed that integrin

α9/VCAM-1 interactions mediate neutrophil adhesion at the venous shear rate, promote

neutrophil hyperactivation, increase phosphorylation of extracellular signal-regulated

kinase, and induce endothelial cell apoptosis. Using pharmacogenomic profiling, virtual

screening, and in vitro assays, we identified macitentan as a potent inhibitor of integrin

α9/VCAM-1 interactions and neutrophil adhesion to activated endothelial cells. Macitentan

reduced DVT severity in control mice with and without stroke, but not in α9fl/flMrp8Cre+/−

mice, suggesting that macitentan improves DVT outcomes by inhibiting neutrophil integrin

α9. Collectively, we uncovered a previously unrecognized and critical pathway involving

the α9/VCAM-1 axis in neutrophil hyperactivation and DVT.
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Introduction

Patients with stroke are at a significant risk of developing life-
threatening venous thromboembolic events (VTEs), including
deep vein thrombosis (DVT).1-4 Poststroke VTE complications
result in worse clinical outcome and are associated with increased
rates of in-hospital death and disability, with higher prevalence of
in-hospital complications.5 Although pharmacological prophylaxis
with anticoagulants and antiplatelet agents can reduce the rates of
poststroke VTE, it is associated with a risk of hemorrhagic events
including major intracranial bleeding, which may outweigh its
benefits.6,7 Given the significant deleterious effects of VTE in
patients with stroke, it is imperative to identify novel pathways that
can be targeted to reduce poststroke VTE.

Neutrophils are among the first cells in the blood to respond to
stroke. In recent years, compelling evidence has emerged impli-
cating neutrophils in the initiation and pathogenesis of DVT.8-26 At
the venous shear rate, neutrophils promote thrombus growth
through several mechanisms such as the release of neutrophil
extracellular traps (NETs),8,10-13,15,19 secretion of inflammatory
mediators,9,10,16 and promotion of endothelial cell activation.27,28

Integrin activation is an essential step for both neutrophil adhe-
sion to activated endothelium and venous thrombus propagation.
However, the therapeutic targeting of neutrophil adhesion mole-
cules is associated with neutropenia and an increased rate of
infection.29-31 Several adhesion molecules, such as β2 integrins
(CD11/CD18), PSGL-1 (CD162), and L-selectin (CD62L), are
expressed on all leukocytes; hence, their inhibition may affect
innate immunity. In contrast, integrin α9 is highly expressed on
neutrophils and expressed at low levels on monocytes, whereas its
expression was not detected on lymphocytes and platelets.32-34

Integrin α9 is upregulated upon neutrophil activation and trans-
migration and is known to stabilize neutrophil adhesion to activated
endothelium in synergy with β2 integrin.33,35-37 Integrin α9 binds to
multiple ligands, including vascular cell adhesion molecule 1
(VCAM-1),35,38 and extracellular matrix proteins including tenascin
C, osteopontin, thrombospondin-1, and fibronectin-extra
domain A.33,39,40 VCAM-1 canonically participates in the adhe-
sion and transmigration of neutrophils to the activated endothelium
and has been suggested as a biomarker for several cardiovascular
disorders.41 Importantly, increased plasma VCAM-1 level was
independently associated with VTEs.42

We recently demonstrated that neutrophil integrin α9 promotes
arterial thrombosis and exacerbates acute ischemic stroke out-
comes.32,34,43 However, the role of neutrophil integrin α9 in the
pathogenesis of venous thrombosis remains unclear. Considering the
relevance of integrin α9 in neutrophil migration,44-46 NETosis,32,34,47

and thromboinflammation,34,43,47 we evaluated the effects of
genetic deletion or pharmacological inhibition of integrin α9 on DVT
severity using mice with and without stroke. We used neutrophil-
specific integrin α9–deficient mice (α9fl/flMrp8Cre+/−), unbiased
RNA sequencing (RNA-seq), pharmacogenomic profiling, and virtual
screening in combination with in vitro and in vivo experiments to
identify pharmacological inhibitors of integrin α9/VCAM-1 interactions.

Methods

Additional methods are available in supplemental Materials.
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Mice

Neutrophil-specific integrin α9–deficient mice (α9fl/flMrp8Cre+/−)
and littermate controls (α9fl/flMrp8Cre−/−) on a pure C57BL/6J
(wild type [WT]) background are described previously.34

IVC stenosis model for DVT and poststroke DVT

The mouse inferior vena cava (IVC) stenosis model of DVT was
performed, as previously reported.48-51 Only male mice were used
for this model, because ligation in female mice may result in necrosis
of the reproductive organs.50,52 Briefly, a midline laparotomy was
made, and IVC side branches were ligated. For stenosis, a space
holder (30 gauge) was positioned on the outside of the exposed
IVC, and a permanent narrowing ligature was placed below the left
renal vein. Next, the needle was removed to restrict blood flow to
80% to 90%. To evaluate poststroke DVT, we used an embolic
stroke model as we previously reported.43,53 One hour after stroke,
DVT was induced by IVC stenosis, and thrombosis was evaluated
after 48 hours, as previously reported.48 Only mice that exhibited
thrombosis were included to quantify the thrombus weight.

Collection of deidentified stroke and control human neutrophils
was approved by the Louisiana State University Health Shreveport
institutional review board (protocol number: 0002176) and
obtained after informed consent. All animal procedures were
approved by the institutional animal care and use committee of
Louisiana State University Health Sciences Center-Shreveport (P-
22-023).

Results

Human and mice with stroke exhibit increased

neutrophil integrin α9 levels and higher plasma

VCAM-1

Although previous studies have reported increased integrin α9
levels in activated human neutrophils,37,45 changes in neutrophil
integrin α9 levels in patients with stroke have not yet been reported.
Here, we determined neutrophils integrin α9 levels from patients
with stroke. The baseline demographic data are provided in
supplemental Figure 1. Enzyme-linked immunosorbent assay
revealed an approximately threefold increase in integrin α9 levels in
neutrophils from patients with stroke compared with controls
(Figure 1A). Because VCAM-1 is a ligand of integrin α935,38 and
increased plasma VCAM-1 is associated with VTE,42 we next
determined plasma VCAM-1 and observed a significant increase in
patients with stroke compared with controls (Figure 1B). We have
recently reported that stroke induction with a filament model
resulted in higher neutrophil integrin α9 levels.34,43 To evaluate the
neutrophil integrin α9 levels in the absence of sudden reperfusion,
we used an embolic stroke model (Figure 1C), in which a single
embolus (~10 mm) was introduced at the origin of the middle
cerebral artery, which closely mimics human thromboembolic
stroke.54 Consistent with our previous reports34,43 and human data
(Figure 1A), here we observed a significant increase in neutrophil
integrin α9 protein (Figure 1D) and messenger RNA expression
(Figure 1E), along with increased plasma VCAM-1, plasminogen
activator inhibitor-1, and thrombin–antithrombin complex levels
(Figure 1F; supplemental Figure 2), in mice with embolic stroke
compared with mice with sham surgery. Moreover, stroke also
increased vein wall gene expression of Vcam1 (approximately
NEUTROPHIL INTEGRIN α9 PROMOTES POSTSTROKE DVT 2105
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Figure 1. Stroke leads to increased neutrophil integrin α9, higher plasma VCAM-1 levels, and increased DVT severity. (A) Neutrophil integrin α9 and (B) plasma

VCAM-1 levels from patients with stroke and healthy controls. (C) Schematic of experimental design. (D) Representative image of flow-cytometric analysis of integrin α9 for each

group (left) and quantification of α9 expression in peripheral neutrophils after stroke or sham surgery in mice (right). (E) Expression of α9 relative to Actb in peripheral

neutrophils after stroke or sham surgery. (F) Plasma VCAM-1 levels from mice with stroke and mice with sham surgery. (G) Schematic of experimental design for stroke-DVT

studies. (H) Representative IVC thrombus harvested 48 hours after stenosis from each group (left) and thrombus weight (mg; right). Only mice that exhibited thrombosis were

included to quantify the thrombus weight. Each dot represents a single mouse. (I) Thrombosis incidence. (J) Expression of α9 relative to Actb in peripheral neutrophils after

DVT and stroke-DVT. Data are mean ± standard error of the mean (SEM) and analyzed using the Mann-Whitney test (A-B,D-F); Fisher exact test (I); and Kruskal-Wallis test

followed by the corrected method of Benjamini and Yekutieli (J); n = 8 (A-B); n = 6 (D-F); n = 20 (H-I); and n = 4-6 (J). hr, hour; mRNA, messenger RNA.
ninefold) and Selp (~1.2-fold), whereas the expression of Icam1
and Sele did not significantly change compared with controls
(supplemental Figure 2).

Increased DVT severity after IVC stenosis in mice with

stroke

We and others have reported that patients with stroke exhibit a
significantly increased risk of VTE.1-3 To establish a mouse model of
poststroke DVT, we subjected C57BL/6J (WT) mice to embolic
stroke surgery or sham surgery. DVT was induced by IVC stenosis at
1 hour after stoke in both the groups, and thrombosis was evaluated
after 48 hours (Figure 1G). We found that mice with stroke exhibited
significantly increased DVT severity (increased thrombus weight and
thrombosis incidence) compared with mice with sham surgery
(Figure 1H-I). Consistently, integrin α9 expression was significantly
increased in mice with stroke-DVT (Figure 1J).

Neutrophil integrin α9 promotes poststroke DVT

severity

To evaluate the effect of neutrophil integrin α9 on DVT outcomes,
we used neutrophil–specific α9−/− mice (α9fl/fl Mrp8Cre+/−) and
2106 PANDEY et al
littermate controls (α9fl/fl Mrp8Cre−/−; will be referred as α9fl/fl

throughout the manuscript). We confirmed the presence of the
Mrp8Cre gene using genomic polymerase chain reaction and the
deficiency of neutrophil integrin α9 using western blotting
(supplemental Figure 3A-C). Neutrophil counts and tail bleeding
times were similar between the groups (supplemental Figure 3D-E).

We evaluated DVT outcomes in the absence and presence of stroke
using neutrophil–specific α9−/− and α9fl/fl mice (Figure 2A). First, in
mice without stroke, we observed a significant IVC thrombus weight
compared with that of α9fl/fl mice (Figure 2B), whereas thrombosis
incidence was comparable between the groups (Figure 2C). Next,
α9fl/fl Mrp8Cre+/− and α9fl/fl mice were subjected to embolic stroke,
and DVT outcomes were analyzed 48 hours after IVC stenosis
(Figure 2A). Importantly, α9fl/flMrp8Cre+/− mice with stroke exhibited
significantly reduced DVT severity (lower thrombus weight and
thrombosis incidence) compared with α9fl/fl mice with stroke
(Figure 2B). Next, we evaluated neutrophil and monocyte infiltration
in the IVC thrombi using immunofluorescence and observed that
neutrophil–specific α9−/− mice exhibited reduced neutrophil content
(Figure 2D) and decreased citrullinated histone H3 expression, a
marker of NETs (Figure 2E), along with reduced monocytes and
14 MAY 2024 • VOLUME 8, NUMBER 9
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Figure 2. Neutrophil integrin α9 promotes poststroke DVT severity. (A) Schematic of experimental design. (B) Representative IVC thrombus harvested 48 hours after

stenosis from each group (left) and thrombus weight (mg; right). Only mice that exhibited thrombosis were included to quantify the thrombus weight. Each dot represents a single

mouse. (C) Thrombosis incidence. (D) Representative cross-sectional immunofluorescence image (left) of the isolated IVC thrombus (48 hours after stenosis) from each group for

Ly6G (neutrophils, green) and DAPI (4′ ,6-diamidino-2-phenylindole; blue); magnification, 20×; scale bar, 50 μm; and quantification (right). (E) Representative cross-sectional

immunofluorescence image (left) of the isolated IVC thrombus (48 hours after stenosis) from each group for the antihistone H3 (citrulline R2 + R8 + R17) (NETs, red) and DAPI

(blue); magnification, 20×; scale bar, 50 μm; and quantification (right). Data are mean ± SEM and analyzed by repeated measures analysis of variance (ANOVA) followed by the

corrected method of Benjamini and Yekutieli (B,D-E); and Fisher exact test (C); n = 20 (B-C); and n = 6-7 (D-E). Cit H3, citrullinated histone H3; DAPI, 4’,6-diamidino-2-

phenylindole.
decreased terminal deoxynucleotidyl transferase biotin-dUTP nick
end labeling-positive cells (supplemental Figure 4A-B; stroke-DVT
group) in IVC thrombi. Collectively, these data suggest that integ-
rin α9 promotes DVT severity by increasing neutrophil and monocyte
influx after IVC stenosis. We have previously reported that neutrophil
integrin α9 mediates platelet aggregation.32 Here, we evaluated
platelet-neutrophil aggregates after stroke-DVT surgery. As shown in
supplemental Figure 5, platelet-neutrophil aggregates (%) were
comparable in α9fl/fl and α9fl/flMrp8Cre+/− mice, thus ruling out the
possibility that neutrophil α9 deficiency could affect platelet-
neutrophil aggregates. Next, to evaluate whether neutrophil integ-
rin α9 also mediated DVT severity after complete ligation of IVC, we
performed a stasis model using α9fl/fl and α9fl/flMrp8Cre+/− mice. As
shown in supplemental Figure 6, thrombus weight and thrombosis
incidence were comparable between the groups, suggesting
neutrophil integrin α9 deficiency does not affect DVT severity in the
IVC stasis model.
14 MAY 2024 • VOLUME 8, NUMBER 9
To rule out the possibility of nonspecific effects of Mrp-Cre
recombinase expression on DVT outcomes, we subjected the
α9fl/fl and α9+/+Mrp8Cre+/− mice to IVC stenosis. IVC thrombus
weight was comparable between α9fl/fl and α9+/+Mrp8Cre+/− mice
(supplemental Figure 7), suggesting minimal off-target effects of
Mrp8-Cre recombinase.

Unbiased transcriptomic revealed integrin α9/VCAM-

1 interactions promote gene expressions related to

neutrophil inflammation, exocytosis, NF-κB
signaling, and chemotaxis

Integrin α9 is known to mediate adhesion and migration via VCAM-
1.33 To evaluate the changes in the neutrophil transcriptional
response after integrin α9/VCAM-1 interactions, we performed
unbiased RNA-seq of (1) WT neutrophils (unstimulated and stim-
ulated with VCAM-1 and tumor necrosis factor-α [TNF-α]); and (2)
NEUTROPHIL INTEGRIN α9 PROMOTES POSTSTROKE DVT 2107



stimulated neutrophils from α9fl/fl and α9fl/flMrp8Cre+/− mice
(Figure 3A). To mimic in vivo conditions, we used VCAM-1 and
TNF-α to stimulate neutrophils that induced robust neutrophil
hyperactivation (supplemental Figure 8).

Quantitative measurement of total neutrophil messenger RNA
expression at 6 hours after stimulation showed distinct transcrip-
tional profiles elicited between stimulated and unstimulated WT
neutrophils (Figure 3B), as well as between stimulated neutrophils
of α9fl/fl and α9fl/flMrp8Cre+/− mice (Figure 3C). Statistical analysis
of differential gene expression (adjusted P < .01) revealed 171
genes that were upregulated, whereas the expression of 122
genes were downregulated in stimulated WT neutrophils
compared with unstimulated WT neutrophils, for a total of 293
differentially expressed genes (Figure 3D). In the case of stimulated
neutrophils from α9fl/flMrp8Cre+/− mice, we found 23 genes were
upregulated, and 180 were downregulated compared with stimu-
lated neutrophils from α9fl/fl mice (Figure 3E). Hierarchical clus-
tering of gene expression revealed gene clusters that were
significantly changed in both groups (supplemental Figure 9A-B).
The top 20 significantly altered genes are shown in supplemental
Figure 10. All shared differentially expressed genes and their
fold-changes in both groups are shown in Figure 3F and
supplemental Table 1. Genes found to be increased in stimulated
WT neutrophils were associated with inflammation, exocytosis, NF-
κB signaling, and chemotaxis (Figure 3G), several of which were
significantly downregulated in stimulated neutrophils isolated from
α9fl/flMrp8Cre+/− mice (Figure 3H).

In the case of stimulated WT neutrophils, gene ontology (GO)
enrichment revealed that highly upregulated genes corresponded
to biological processes involved in exocytosis, I-κB kinase/NF-κB
signaling, inflammatory response, leukocyte activation, interleukin-1
production, neutrophil chemotaxis, and response to cytokine
(Figure 3I). Importantly, GO enrichment of stimulated neutrophils
from α9fl/flMrp8Cre+/− mice revealed that highly downregulated
genes corresponded to biological processes involved in the
cytokine-mediated signaling pathway, granulocyte chemotaxis,
regulation of extracellular signal-regulated kinase 1 (ERK1) and
ERK2 cascade, regulation of MAPK cascade, inflammatory
response, and secretion by cells (Figure 3J). The top 10 signifi-
cantly upregulated pathways in stimulated WT neutrophils and the
top 10 significantly downregulated pathways in stimulated neu-
trophils from α9fl/flMrp8Cre+/− mice are shown in supplemental
Figure 11A-B. The adjusted P values of the relevant GO path-
ways of stimulated WT neutrophils and stimulated neutrophils from
α9fl/flMrp8Cre+/− mice are shown in supplemental Figure 12A-B.

Integrin α9/VCAM-1 interactions promote neutrophil

hyperactivation, mediate neutrophil adhesion, induce

endothelial cell apoptosis, and enhance DVT severity

Because our transcriptomics data suggested that integrin α9/
VCAM-1 interactions promote neutrophil hyperactivation, we next
evaluated the effect of integrin α9 and VCAM-1 interactions on the
release of neutrophil elastase and myeloperoxidase (MPO)
(Figure 4A). First, using WT neutrophils, we found that neutrophils
incubated with VCAM-1 and TNF-α (stimulated) exhibited signifi-
cantly increased secretion of elastase and MPO compared with
unstimulated WT neutrophils (Figure 4B-C). To evaluate the effect
of neutrophil integrin α9 deficiency, we stimulated neutrophils
2108 PANDEY et al
isolated from α9fl/fl and α9fl/flMrp8Cre+/− mice and found that α9−/−

neutrophils exhibited significantly reduced release of elastase and
MPO compared with controls (Figure 4B-C). Because integrin α9
engagement is reported to activate the ERK pathway,34,55,56 we
next evaluated ERK phosphorylation using western blotting and
observed that stimulated neutrophils from α9fl/flMrp8Cre+/− mice
exhibited reduced ERK phosphorylation compared with those from
α9fl/fl mice (supplemental Figure 13A). To evaluate the role of ERK
pathway in α9/VCAM-1–mediated neutrophil activation, we pre-
treated neutrophils with U0160 (10 μm, an inhibitor of the ERK
pathway). Consistent with our previous study,34 we observed that
U0160 inhibited elastase release from stimulated control neutro-
phils but not from stimulated neutrophils of α9fl/flMrp8Cre+/− mice
(supplemental Figure 13B).

Neutrophils adhesion to the activated endothelium is an essential
step for venous thrombus propagation.8-16 Integrin α9/VCAM-1
interactions are known to mediate cell adhesion.33 To evaluate the
effect of integrin α9 deficiency on neutrophil adhesion to VCAM-1
at the venous shear rate, we perfused isolated neutrophils (using
the ibidi flow system; Figure 4D) from α9fl/fl and α9fl/flMrp8Cre+/−

mice and observed that neutrophil integrin α9 deficiency resulted in
significantly reduced adhesion to VCAM-1 at the venous shear rate
(Figure 4E).

Apoptosis of vascular endothelial cells is a key event in DVT initiation,
and neutrophils and NETs are known to promote endothelial cell
apoptosis.57,58 To evaluate the effects of integrin α9 deficiency
on neutrophil-mediated endothelial cell apoptosis, we added the
cell supernatants of stimulated neutrophils from α9fl/fl and
α9fl/flMrp8Cre+/− mice to mouse venous endothelial cells and evalu-
ated apoptosis. We observed that the supernatants from stimulated
α9−/− neutrophils exhibited significantly reduced endothelial cell
apoptosis (Figure 4F), along with reduced expression of key apoptotic
and inflammatory genes (Casp3 and Nlrp3) (supplemental Figure 14).

Next, to evaluate the in vivo role of integrin α9/VCAM-1 signaling,
we treated WT mice and α9fl/flMrp8Cre+/− mice with anti–VCAM-1
antibody and evaluated DVT outcomes. As shown in supplemental
Figure 15, anti–VCAM-1 antibody treatment significantly reduced
thrombus weight and thrombosis incidence in WT mice but not in
α9fl/flMrp8Cre+/− mice, suggesting the in vivo functional role of α9/
VCAM-1 axis in the pathogenesis of DVT.

Pharmacogenomic profiling and virtual screening

revealed macitentan as a potent inhibitor of the

integrin α9/VCAM-1 interactions

To identify potential pharmacological agents that can produce
similar gene signatures, first we used the Library of Integrated
Network-based Cellular Signatures (LINCS).59 The log2(fold-
change) (logFC) and P value for top L1000 genes were extrac-
ted from differentially expressed gene analysis of stimulated neu-
trophils of α9fl/fl and α9fl/flMrp8Cre+/− mice and submitted as an
input to inquire a list of the chemical perturbagens altering the gene
expression from integrative library of integrated network-based
cellular signatures (iLINCS) portal. The top 10 concordant pertur-
bagens with concordance scores >0.321 are shown in Figure 5A.

To identify small molecules that can effectively and safely inhibit
integrin α9/VCAM-1 interactions, we used a database of the US
Food and Drug Administration–approved small molecules and
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Figure 3. Integrin α9 and VCAM-1 interactions promote gene expressions related to neutrophil inflammation, exocytosis, NF-κB signaling, and chemotaxis.

(A) Schematic of experimental design. (B) Principal component analysis was performed based on RNA-seq of stimulated and unstimulated WT neutrophils and (C) stimulated

neutrophils from littermate controls and neutrophil–specific integrin α9−/− mice. (D) Volcano plots of differentially expressed genes (DEGs) based on RNA-seq analysis of

stimulated and unstimulated WT neutrophils and (E) stimulated neutrophils from littermate controls and neutrophil–specific integrin α9−/− mice. (F) Log fold-change of all the

shared DEGs from stimulated and unstimulated WT neutrophils and stimulated neutrophils from littermate controls and neutrophil–specific integrin α9−/− mice. (G) Log
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(E) Representative images of the neutrophil adhesion to the VCAM-1 coated slides at venous shear rate (left); magnification, 20×; scale bar, 50 μm; and qualification (right).

(F) Representative cross-sectional immunofluorescence image of terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling-positive mouse endothelial cells incubated with

cell supernatant of stimulated neutrophils from α9fl/fl and α9fl/flMrp8Cre+/− mice (left); and quantification (right); magnification, 10×; scale bar, 100 μm. Data are mean ± SEM and

analyzed by repeated measures ANOVA followed by the corrected method of Benjamini and Yekutieli (B-C) or the Mann-Whitney test (E-F); n = 5 (B-C); n = 5 (E); and n = 5 (F).
performed computational modeling, docking, and virtual screening.
The α9β1 crystal structure is unavailable, therefore we used
homology modeling to build an atomistic model. Figure 5B shows
the template (green, α4 subunit) and target (cyan, α9 subunit)
models, and Figure 5C shows the predicted α9β1 structure with an
inhibitor. Based on the docking score (free energy of binding, dG)
and number of interactions, we selected the top 19 compounds
and performed a cell-free assay to analyze the percentage inhibi-
tion of integrin α9 binding to VCAM-1 (Figure 5D; supplemental
Figure 16). Based on these results and our iLINCS portal data
(Figure 5A), we selected macitentan for further studies. Macitentan
is an endothelin receptor antagonist and approved by the US Food
and Drug Administration for the management of pulmonary arterial
hypertension.60 Figure 5E shows the chemical structure of maci-
tentan, and Figure 5F shows the docked pose of macitentan with
integrin α9β1. Next, we evaluated whether macitentan could also
Figure 3 (continued) fold-change of selected genes from DEGs of stimulated and unstim

neutrophils from littermate controls and neutrophil–specific integrin α9−/− mice. (I) GSEA w

(J) stimulated neutrophils from littermate controls and neutrophil–specific integrin α9−/− m

exact test followed by Benjamini-Hochberg multiple testing adjustment; n = 5 (B,D,G,I); a

2110 PANDEY et al
bind to α4β1. As shown in supplemental figure 17, the binding
energy of macitentan to α4β1 is very low (–6.922 kcal/mol), sug-
gesting a loose binding. The binding energy of macitentan to α9β1
was –11.397 kcal/mol (Figure 5D), which means that macitentan is
highly selective to α9 compared with α4. We then tested the ability
of macitentan to inhibit neutrophil adhesion to VCAM-1. We
observed that macitentan dose-dependently reduced neutrophil
adhesion to VCAM-1, with an IC50 value of 12.3 nM (Figure 5G).
Next, we determined the ability of macitentan to inhibit neutrophil
adhesion to activated endothelium at the venous shear rate. We
observed that macitentan significantly inhibited mouse and human
neutrophil adhesion to activated endothelium at the venous shear
rate (Figure 5H; supplemental Figure 18). Collectively, these data
suggest that macitentan is a potent inhibitor of integrin α9 and
VCAM-1 interactions and significantly inhibits neutrophil adhesion
to VCAM-1 as well as to activated endothelial cells.
ulated WT neutrophils. (H) Log fold-change of selected genes from DEGs of

as performed based on RNA-seq of stimulated and unstimulated WT neutrophils and

ice. The significance of the enriched pathways was determined by right-tailed Fisher

nd n = 4-5 (C,E,F,H,J). GSEA, gene set enrichment analysis.
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Macitentan pretreatment reduces DVT severity in

mice via neutrophil integrin α9
Having observed significantly reduced neutrophil adhesion, we next
evaluated the in vivo efficacy of macitentan in reducing DVT
severity in the absence and presence of stroke. The approved dose
of macitentan for humans is 10 mg; converting it to the mouse
equivalent dose resulted in a dose of ~2 mg/kg.61 Accordingly, we
treated WT mice with macitentan at a dose of 2 and 5 mg/kg or an
equivalent volume of vehicle for 5 days. We found that macitentan
at the dose of 2 mg/kg did not reduce DVT severity (supplemental
Figure 19), whereas the 5 mg/kg dose of macitentan significantly
reduced thrombus weight (Figure 6A-C). Importantly, mice treated
with macitentan (5 mg/kg) also exhibited significantly reduced DVT
severity in the presence of stroke (Figure 6D-E), which was
concomitant with a significant reduction in plasma elastase and
MPO (supplemental Figure 20), as well as neutrophil and citrulli-
nated histone H3 content in the IVC thrombus (Figure 6D-E). To
evaluate the effect of macitentan on coagulations parameters,
blood counts, and gene expression of endothelial adhesion mole-
cules, we collected plasma samples and harvested IVC samples 6
hours after DVT in WT mice treated with macitentan or vehicle.
Circulating neutrophils, monocytes, and platelets, plasma VCAM-1,
fibrinogen, thrombin-antithrombin complex, and plasminogen acti-
vator inhibitor-1, and IVC gene expression of Icam1, Selp, and Sele
were comparable between the groups (supplemental Figure 21).

To determine whether the positive effects of macitentan on DVT
outcomes are mediated via neutrophil integrin α9, first we evalu-
ated neutrophil adhesion to the activated endothelial cells at the
venous shear rate. We treated isolated neutrophils of controls and
neutrophil–specific α9−/− mice with either macitentan or vehicle.
Macitentan significantly reduced adhesion of control neutrophils
but did not change α9−/− neutrophil adhesion (supplemental
Figure 22). Next, we treated neutrophil–specific α9−/− mice and
littermate controls with macitentan or vehicle for 5 days and per-
formed DVT surgeries (Figure 7A). We found that macitentan
treatment significantly reduced the DVT severity in littermate con-
trol mice but not in neutrophil–specific α9−/− mice (Figure 7B-D).
Comparable neutrophil adhesion and DVT outcomes in the
macitentan-treated neutrophil–specific α9−/− mice and vehicle-
treated neutrophil–specific α9−/− mice suggested that maci-
tentan most likely reduces DVT severity by inhibiting neutrophil
integrin α9. However, the possibility that macitentan can reduce
DVT severity via other mechanisms cannot be completely ruled out.

Discussion

Over the last decade, several studies have implicated neutrophils
and their integrins in the initiation and development of DVT.8-26

Despite the known association of neutrophil hyperactivation in
stroke as well as in DVT, the contribution of neutrophil integrin α9
Figure 5. Pharmacogenomic profiling and virtual screening revealed macitentan

concordant perturbagens with concordance scores >0.321 are shown using iLINCS portal

α9−/− mice. (B) The template (green, α4 subunit) and target (cyan, α9 subunit) models. (C) Th

energy and percentage inhibition of integrin α9 to VCAM-1. (E) Chemical structure of macite

neutrophil adhesion to VCAM-1 in presence of different concentration of macitentan (left); mag

of the mouse neutrophil adhesion to the activated mouse venous endothelial cells coated sl

(right). Data are mean ± SEM and analyzed by 1-way ANOVA followed by Sidak multiple co

2112 PANDEY et al
to the pathogenesis of DVT remains unknown. Previous studies by
us and others have shown a key role of integrin α9 in the modu-
lation of arterial thrombosis,32 stroke,34,43 rheumatoid arthritis,62,63

cancer,64-66 and vascular remodeling.67,68 Here, using genetic and
pharmacological approaches in combination with transcriptomics,
pharmacogenomic profiling, and virtual screening, we uncovered a
previously unknown pathway involving integrin α9 and VCAM-1 in
promoting DVT. We found that integrin α9-VCAM1 interactions are
critical for neutrophil hyperactivation, and pharmacological inhibi-
tion of these interactions significantly reduced DVT severity.

In the context of DVT, the role of neutrophil-endothelium interactions
has been well characterized, and these interactions are critical for the
development of venous thrombi.10,12,14,16 Endothelial VCAM-1 is
known to mediate leukocyte adhesion.41,42 The binding of neutrophil
integrin α9 to VCAM-1 activates NF-κB and is important for
enhancing neutrophil survival in inflammatory microenvironments.35 In
human neutrophils, integrin α9 promotes the activation of the PI3K
and MAPK-ERK signaling pathways and NF-κB nuclear translocation,
which results in the spontaneous delay of cell apoptosis.56 In agree-
ment with these reports, our current data suggest that integrin α9 and
VCAM-1 interactions promote the activation of ERK pathways, facili-
tate neutrophil adhesion at the venous shear rate, and mediate the
release of neutrophil elastase and MPO. Neutrophil-mediated endo-
thelial cell injury plays an important role in several inflammatory con-
ditions such as vasculitis and atherosclerosis.57,58 Activated
neutrophils release free radicals, proteases such as elastase and
MPO, and cytokines that cause endothelial damage.28 Interestingly,
thrombosis can be provoked by endothelial cell apoptosis,27 and
endothelial activation is a critical step in the pathogenesis of venous
thrombosis.69,70 Here, we observed that cell supernatants from acti-
vated neutrophils of α9−/− exhibited significantly reduced venous
endothelial cell apoptosis, along with reduced expression of key
apoptotic and inflammatory genes, suggesting that neutrophil integrin
α9 may support venous thrombus formation by promoting endothelial
cell apoptosis. Collectively, our data clearly support the mechanistic
role of the integrin α9/VCAM-1 axis in the regulation of neutrophil
recruitment and hyperactivation during venous thrombosis.

The conventional belief that neutrophils are short-lived effector
cells with limited plasticity has recently been challenged by the
extreme diversity of neutrophils in vivo, which reflects the rates of
cell mobilization, differentiation, and exposure to environmental
signals.71 Single-cell RNA-seq of mouse IVC revealed neutrophils
as one of the predominant cell types within the vessel wall after IVC
ligation, and significantly upregulated genes related to inflammatory
processes, oxidative stress, and cell death were observed in neu-
trophils.72 In line with these observations, VCAM-1 exposure to
α9−/−-deficient neutrophil resulted in significantly reduced expres-
sion of genes associated with neutrophil inflammation. Based on
these and published findings, we propose a mechanistic role for
the integrin α9/VCAM-1 axis in the pathogenesis of DVT.
as a potent inhibitor of the integrin α9/VCAM-1 interaction. (A) The top 10

based on RNA-seq of neutrophils of littermate controls and neutrophil–specific integrin

e predicted α9β1 structure with an inhibitor. (D) List of top-19 compounds with binding

ntan. (F) Docked pose of macitentan with integrin α9β1. (G) Representative images of

nification, 10×; scale bar, 100 μm; and quantification (right). (H) Representative images

ides at venous shear rate (left); magnification, 20×; scale bar, 50 μm; and qualification

mparisons test (G) or Mann-Whitney test (H); n = 6 (G); and n = 5 (H).
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Figure 6. Macitentan pretreatment reduces poststroke DVT severity. (A) Schematic of experimental design. (B) Representative IVC thrombus harvested 48 hours after

stenosis from each group (left); and thrombus weight (mg; right). Only mice that exhibited thrombosis were included to quantify the thrombus weight. Each dot represents a single

mouse. (C) Thrombosis incidence. (D) Representative cross-sectional immunofluorescence image (left) of the isolated IVC IVC thrombus (48 hours after stenosis) from

each group for Ly6G (neutrophils, green) and DAPI (blue). magnification, 20×; scale bar, 50 μm; and quantification (right). (E) Representative cross-sectional immunofluorescence

image (left) of the isolated IVC thrombus (48 hours after stenosis) from each group for the antihistone H3 (citrulline R2 + R8 + R17) (NETs, red) and DAPI (blue); magnification,
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(B,D,E) or Fisher exact test (C); n = 20 (B-C); and n = 5-6 (D-E). DAPI, 4’,6-diamidino-2-phenylindole.
Our proof-of-concept preclinical studies showed that neutrophil
integrin α9–deficient mice exhibited reduced DVT severity, suggesting
that integrin α9 may be therapeutically targeted to reduce VTE.
However, new drug development is a daunting task that can take
several years, cost billions of dollars, and have high failure rates.
Conversely, drug repurposing is an attractive strategy for identifying
new indications for approved agents. In recent years, large-scale drug-
perturbation experiments have enabled pharmacogenomic-based
screening of approved agents.59,73,74 Based on the pharmacoge-
nomic profiling, in silico, and in vitro findings, we found that macitentan
is a potent inhibitor of the integrin α9/VCAM-1 interaction. Consistent
with the reported anti-inflammatory effects of macitentan,75,76 we
found that macitentan inhibited neutrophil adhesion to the activated
endothelium at the venous shear rate and reduced DVT severity.
Several studies have shown that the pharmacological inhibition of
integrin α9 using an anti-integrin α9 antibody improves stroke
outcomes,34,43 reduces the severity of rheumatoid arthritis,62,63

inhibits arterial thrombosis,32 and regulates injury-induced neo-
intimal hyperplasia.67 However, we believe that targeting integrin
α9 with a small-molecule inhibitor, macitentan, provides addi-
tional advantages over antibody-based approaches, such as
14 MAY 2024 • VOLUME 8, NUMBER 9
already established safety profile, oral administration, economic
affordability, and low chances of immunogenicity. The results of a
previously published systematic review and meta-analysis show
that despite a beneficial effect on angiographic vasospasm,
endothelin receptor antagonists do not affect functional outcome
after subarachnoid hemorrhage and do not affect the incidence
of vasospasm-related cerebral infarction, any new cerebral
infarction, or case fatality.77 In a rat model of middle cerebral
artery occlusion, pretreatment with endothelin receptor antago-
nist had no effect on regional cerebral blood flow and subse-
quent hemispheric volume of ischemic damage.78 These reports
suggest that the possibility of adverse stroke outcomes after
macitentan treatment are minimal.

Despite its strengths, our study has limitations. For example, neu-
trophils represent the majority of white blood cells in human blood
but are less common in mouse blood.79 Moreover, several cyto-
kines and chemokines are differentially expressed in mice and
human neutrophils,80,81 suggesting that these findings should be
confirmed in future clinical trials. Another limitation is that we only
used healthy mice and evaluated DVT severity by thrombus weight
NEUTROPHIL INTEGRIN α9 PROMOTES POSTSTROKE DVT 2113
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by repeated measures ANOVA followed by the corrected

method of Benjamini and Yekutieli (C) or Fisher exact test

(D); n = 20 (C-D).
and thrombosis incidence. Future studies should evaluate the
effects of neutrophil-specific integrin α9 deficiency on DVT out-
comes in older mice82,83 and with functionally relevant outcomes
such as IVC patency and embolism. In conclusion, our study
unequivocally supports the mechanistic role of neutrophil integrin
α9 in modulating DVT severity via its interactions with VCAM-1.
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