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Abstract 
Motivation: Patient stratification is crucial for the effective treatment or management of heterogeneous diseases, including cancers. Multiomic 
technologies facilitate molecular characterization of human diseases; however, the complexity of data warrants the need for the development 
of robust data integration tools for patient stratification using machine-learning approaches.
Results: iCluF iteratively integrates three types of multiomic data (mRNA, miRNA, and DNA methylation) using pairwise patient similarity matrices 
built from each omic data. The intermediate omic-specific neighborhood matrices implement iterative matrix fusion and message passing among 
the similarity matrices to derive a final integrated matrix representing all the omics profiles of a patient, which is used to further cluster patients 
into subtypes. iCluF outperforms other methods with significant differences in the survival profiles of 8581 patients belonging to 30 different can
cers in TCGA. iCluF also predicted the four intrinsic subtypes of Breast Invasive Carcinomas with adjusted rand index and Fowlkes–Mallows 
scores of 0.72 and 0.83, respectively. The Gini importance score showed that methylation features were the primary decisive players, followed by 
mRNA and miRNA to identify disease subtypes. iCluF can be applied to stratify patients with any disease containing multiomic datasets.
Availability and implementation: Source code and datasets are available at https://github.com/GudaLab/iCluF_core.

1 Introduction
The majority of human diseases exhibit different degrees of 
variability in their clinical phenotypes; therefore, they require 
different therapeutic strategies for different patient groups. 
Hence, patient stratification (also known as disease subtyp
ing) is an important step that helps dissect the heterogeneity 
of each subtype, and it helps develop effective treatment pro
tocols for each subtype. Many genetically driven diseases, 
such as cancer, arise from genomic alterations in different 
organs that lead to cellular behavioral changes. The cascade 
of molecular changes at the DNA, RNA, protein, and meta
bolic levels enables the distinction of different strata of 
patients. Advances in genomics technologies have resulted in 
a generation of various high-throughput genomics data, 
broadly dubbed as “multiomics data,” that concern many 
diseases. However, the extraction of meaningful information 
from these large datasets, and the establishment of its disease 
relevance, is very challenging and often limited by the paucity 
of effective data integration and interpretation tools. For in
stance, precise medicine-based cancer treatments primarily 
rely on the distinctive molecular characterization of a patient, 
or a cohort of patients, through disease subtyping. In the case 
of non-small cell lung carcinoma (NSCLC), �30%–40% of 
patients show a recurrence of tumors after curative resection 
(Uramoto and Tanaka 2014), suggesting that these patients 

essentially share some common molecular events, and thus, 
they need to be classified differently to develop customized 
treatments. Here, the unmet challenge is to accurately iden
tify disease subtypes that have different molecular and clini
cal features. For most heterogeneous diseases, patient 
stratification using molecular subtype prediction models has 
caught the attention of researchers. As each omic datatype 
represents a different modality of gene regulation, better pre
diction accuracy can be achieved by integrating multiomic 
datasets derived from the same patient. This goal can be ac
complished with the development of integrative machine- 
learning (ML) methods for disease subtyping.

Previous attempts to solve these issues include the applica
tion of ML and data integration approaches, which used mul
tiomics data (such as genomic, transcriptomic, and 
proteomics) for subtype identification. In recent years, 
the rapid growth of omics technologies has led to the 
development of several multiomic data resources, such as 
TCGA (www.genome.gov), ICGC (www.dcc.icgc.org), and 
Genotype-Tissue Expression (gtexportal.org/home/) when 
characterizing human cancers. The omics cohorts of large 
numbers of patients have improved our understanding of the 
molecular basis of cancer diagnosis, prognosis, and subtyping 
(Gao and Church 2005, Mo et al. 2013, Menyh�art and 
Gy}orffy 2021, He et al. 2023, Li et al. 2023). However, the 

Received: October 11, 2023; Revised: December 10, 2023; Editorial Decision: January 8, 2024; Accepted: January 26, 2024 
# The Author(s) 2024. Published by Oxford University Press.   
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. 

Bioinformatics Advances, 2024, 00, vbae015 
https://doi.org/10.1093/bioadv/vbae015 
Advance Access Publication Date: 30 January 2024 
Original Article 

https://orcid.org/0000-0002-5393-9316
https://github.com/GudaLab/iCluF_core
http://www.genome.gov
http://www.dcc.icgc.org


dissemination of large omic datasets also imposed challenges 
for data integration across different omic modalities. In this 
context, previous ML methods that mainly focused on the 
use of single omic data (mainly gene expression) for cluster
ing include neural networks (Herrero et al. 2001, Luo et al. 
2004), hierarchical clustering (Makretsov et al. 2004, Lin 
et al. 2015), consensus clustering (Wilkerson and Hayes 
2010), and other combined approaches (Daxin et al. 2004, 
McLachlan et al. 2002). Later, several methods were devel
oped which focused on the integration of multiomic datasets, 
along with integrative clustering approaches. These methods 
are believed to capture disease subtypes more holistically by 
considering biological phenomena at various levels. For ex
ample, intNFM (Chalise and Fridley 2017) uses multiomic 
datasets and identifies clusters based on non-negative matrix 
factorization. Similarly, LRAcluster (Wu et al. 2015) converts 
a high-dimensional multiomics feature matrix into a low- 
dimensional matrix using a low-rank approximation ap
proach, followed by the identification of clusters via 
K-means. These methods assume that biological events at 
each omic level are linearly associated.

Other methods, such as iClusterPlus (Mo et al. 2013), MDI 
(Kirk et al. 2012), and iCluster (Shen et al. 2009) utilized statis
tical models for integrating multiomic datasets when identify
ing cancer subtypes. In the same vein, more approaches, such 
as CIMLR (Ramazzotti et al. 2018), similarity network fusion 
(SNF) (Wang et al. 2014), NEMO (Speicher and Pfeifer 2015), 
PINS (Nguyen et al. 2017), and PINSPlus (Nguyen et al. 2019) 
have been developed. Such approaches focused on separately 
constructing a patient–patient similarity matrix from single 
omic datasets, followed by integration, to identify the final clus
ters. CIMLR incorporates multiple Gaussian kernels to gener
ate a patient–patient similarity matrix, followed by 
dimensionality reduction and cluster identification. These 
methods are susceptible to noise due to the application of 
Gaussian methods for calculating similarities between patients. 
Subtype-GAN (Yang et al. 2021) is a deep-learning method 
that uses the Gaussian Mixture model and consensus clustering 
to identify cancer subtypes. Deep-learning approaches generally 
need larger sample sizes, which is not the case for the majority 
of disease datasets. NEMO has developed a strategy for utiliz
ing partial datasets for disease subtype identification; however, 
it does not handle noise in the data. PINSPlus, by using a 
Gaussian approach, overcame the limitation of handling noise 
before identifying disease subtypes. Similarly, SCFA (Tran et al. 
2020) focuses on removing data noise during multiomic inte
gration to identify cancer subtypes and risk scores. Limitations 
of these approaches include their sensitivity to noise in the 
data. Vahabi et al. comprehensively discussed the usability and 
limitations of the existing methods (Vahabi and Michailidis 
2022). Other previous reviews have also provided insights into 
the working methodologies of existing methods, their limita
tions, and future perspectives of method development in the 
multiomics era when subtyping human diseases, including can
cer (Das et al. 2020, Eicher et al. 2020, Zhang et al. 2022). 
Overall, the current methods suffer from various limitations, 
such as susceptibility to noise and a lack of sensitivity, among 
others, which we have attempted to address here.

In this study, we developed a novel method, Iterative 
Cluster Fusion (iCluF), which identifies disease subtypes us
ing multi-level omics information obtained from the same pa
tient. Our approach systematically creates patient–patient 
similarity measures at each omic level, and it creates 

neighborhood matrices by passing information between dif
ferent omic levels, iteratively. The approach uniquely cap
tures, correlates, and shares information between multiomic 
datasets to derive final clusters using the holistic molecular 
profile. Although we used cancer patient data to develop and 
test iCluF in this study, this generic method can be applied to 
stratify patients associated with any disease, provided the 
availability of multiomics datasets exists.

2 Methods
2.1 Benchmark dataset and feature selection
We used Level 3 curated miRNA, mRNA, methylation, and 
survival data of 30 cancer types, which are available on the 
TCGA website. For each cancer type, we included patients 
with data comprising all three omic levels, their vital status, 
and survival information. Adopting the strategy in Hoadley 
et al. (2018) and Yang et al. (2021), we selected 383 
miRNAs, 3217 mRNAs, and 3139 methylation features. 
Simultaneously, each omic dataset was filtered by removing 
features with zero or missing values in more than 20% of the 
samples. The detailed processing steps of individual data 
types are provided in the Supplementary Material. The final 
data include 30 cancer types with different numbers of sam
ples and features (provided in Supplementary Table S1).

2.2 iCluF: data integration and clustering
iCluF focuses on the integration of multiomics data and the 
identification of clusters without using any prior knowledge, 
such as known associations or labels. This methodology is di
vided into three phases: (i) calculation of the patient–patient 
similarity matrix for each omic profile; (ii) calculation of 
neighborhood profile similarities for each omic profile, pass
ing information between each omic matrix, and updating 
original similarity matrices iteratively; and (iii) integration of 
updated similarity matrices and derivation of final clusters. In 
Phase 3, all updated similarity matrices are averaged to gener
ate a final similarity matrix, which is further used to produce 
the final clusters, as schematically illustrated in Fig. 1. The 
detailed steps of the working pipeline are described below:

Phase 1: For each omics data type, we defined the data ma
trix Mo

n;f , where n is the total number of patients, f is the total 
number of features, and o 2 fmiRNA, mRNA, methylation 
data typesg in this study. In matrix Mo , in each row, po

i repre
sents the feature profile of patient i in omic type o. In cases of 
more than three omic datasets, the extended matrices can be de
fined accordingly. We used Euclidean distance to measure the 
profile similarity Ao

ij between patients i and j, as defined below: 

Ao
ij ¼ e� a po

i � po
jj jj jð Þ

2
: (1) 

The formulation of (1) is similar to the Gaussian 
Interaction Profile kernel, which has been widely used in pre
vious studies that focused on similarity-based scoring config
urations (Lan et al. 2017, Jiang et al. 2019, Nguyen et al. 
2021, Shakyawar et al. 2022). In this study, it measures the 
similarity between two patients using the Euclidean distance 
between them. The hyperparameter, a, in (1) regularizes the 
bandwidth of the kernel and thus, regulates the decay of the 
similarity scores curve indicating patients with higher distan
ces between them are less similar than the ones that are 
closer. The value for the hyperparameter a is set empirically. 
We computed the similarity scores with varying a values in 
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the range of 1.5–7.5, on a set of Euclidean distances between 
two patients (Supplementary Fig. S1). Based on the observa
tion that the scores were more differentiated for lower values 
of a, we used a ¼ 1:5 to perform further experiments with 
the current cancer datasets.

Phase 2: During the second phase, we calculated the neigh
borhood profile similarity, �Ao

ij, between patients i and j. For 
each omic type, we calculated �Ao

ij for each pair of patients, 
resulting in an omic-specific neighborhood profile matrix, 
which incorporates information from the original patient–pa
tient similarity matrix and K-means clusters, which were pro
duced using Ao

ij. The neighborhood similarities intermediately 
improve patient(s) classification by incorporating cluster 
properties, such as inter-cluster distances and the distance of 
patient(s) from the centroid of any neighboring cluster. �Ao

ij 
can be defined as follows: 

�Ao
ij ¼

2� ½Ao
ij�

2

D ci; cjð Þ lþ 1
n

Pn
q¼1 Dist vi;qð Þ þ

1
m

Pm
q¼1 Dist vj;qð Þ

n o :

(2) 

Regarding, patient i 2 cluster ci, and patient j 2 cluster cj, 
the clusters were derived using spectral clustering at given K 
(number of clusters).

vi and vj are centroids of clusters ci and cj, respectively.
m and n are the total number of patients in clusters ci and 

cj, respectively.
Dist vi;qð Þ is the distance between patient q (in cluster ci) 

from centroid vi. Similarly, the Dist vj;qð Þ is defined for pa
tient q with respect to cluster cj.

l is a parameter that was introduced to avoid singularity in 
(2). Theoretically, there is a possibility that all the neighbor
ing points may coincide on their corresponding centroids (i.e. 
Dist vi;qð Þ ¼ Dist vj;qð Þ ¼ 0), if relatively higher number of 
iterations are chosen. The positive value of l in the denomi
nator of (2) avoids any such singularity in computation of 
�Ao

ij. Therefore, we empirically set l ¼ 1 for all the experi
ments performed in the study.

Using the Euclidean distance between the centroids, vi and 
vj, of clusters ci and cj, respectively, the inter-cluster separa
tion measure D ci; cjð Þ is defined below: 

D ci; cjð Þ ¼ e
b vi � vjj jj jð Þ

2

gci ;cjþ1
:

(3) 

The parameter b in (3), regulates exponential raise of 
inter-cluster separation measure D ci; cjð Þ, which further helps 
in converging neighborhood profile similarity matrices �Ao

ij, 
and subsequently derives more compact and homogenous 
clusters, as depicted in (2). Based on our experiments, we rec
ommend lower range of b values (0.1–1), which can better 
control exponential increment in the calculation of D ci; cjð Þ.

gci ;cj
works as a normalizing factor to reduce scaling bias 

for the inter-cluster distance, as described in Wang et al. 
(2014), and is calculated as follows: 

gci;cj
¼

1
n

Pn
q¼1 Dist vi;qð Þ þ

1
m

Pm
q¼1 Dist vj;qð Þ þ vi � vjj jj j

3
:

Phase 3: During Phase 3, we updated the omic-specific sim
ilarity matrices, Ao , over multiple iterations (Fig. 1). 

Figure 1. Schematic illustration of iCluF workflow for calculating pairwise similarity matrices (Phase I), deriving neighborhood matrices and message 
passing across data types iteratively (Phase II), and integrating updated similarity matrices to identify final clusters (Phase III).
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Following the strategy in Wang et al. (2014), Ao at the 
nth iteration can be defined as follows: 

Ao1
n ¼

�Ao1
n� 1 � Ao2

n� 1 �
�Ao1

n� 1

� �T
þ �Ao1

n� 1 � Ao3
n� 1

� �Ao1
n� 1

� �T (4) 

where �Ao1
n� 1

� �T is the transpose of �Ao1
n� 1.

Similarly, Ao2
n and Ao3

n , for omic data types o2 and 
o3; respectively, were calculated. In this case, we denoted the 
mRNA, miRNA, and methylation data using notations o1, 
o2, and o3, respectively. Based on our experiments on conver
gence, measured through gradual increase in Silhouette scores 
of the iCluF-predicted clusters using 10 randomly chosen 
cancer types with wide range of sample sizes (Supplementary 
Fig. S2), we observed that the number of iterations around 
seven has provided more observable and homogeneous clus
ters. An average of the three matrices Ao1

n , Ao2
n , and, Ao3

n 
was calculated to generate integrated matrix Aintegrated

n , as de
fined below. We finally adopted K-means to derive the fi
nal clusters. 

Aintegrated
n ¼

Ao1
n þ Ao2

n þ Ao3
n

3
(5) 

.

2.3 Evaluation metrics for clustering assessment
We used multiple metrics to evaluate the model’s prediction 
performance and compare it with previous approaches. We 
calculated the Silhouette score of the predicted clusters to as
sess the homogeneity of the subtypes. Additionally, we used 
the adjusted rand index (ARI) and Fowlkes–Mallows (FM) 
score to assess the performance of each model to predict the 
BRCA subtypes. Furthermore, we compared iCluF with some 
recent methods and the most used methods, such as SNF, 
iClusterPlus, PINSPlus, and K-means, as these also work for 
multiomics integration when predicting subtypes with signifi
cant survival differences. We identified the clusters using each 
of these methods and their default parameters (K¼2, 3, 4, 
and 5), and we performed Cox regression to assess survival 
differences between the resulting subtypes. The P-values from 
the log-rank test were compared across 30 cancer types. We 
also measured and compared each method’s runtime for pre
dicting the ACC subtypes at K¼ 2, 3, 4, and 5 to understand 
the computational complexity and implementation require
ments. All the programs were run on a server with 8 GPUs 
and a combined 512 GB of RAM.

2.4 Evaluation of model performance using 
different combinations of omic data types
iCluF was implemented on multi-level omics information to 
understand patients’ level correlation and identify clusters 
with different molecular and clinical features. To evaluate 
model’s performance on different combinations of omic 
types, we prepared the following subsets of BRCA data with 
849 samples.

Subset 1—omic data type: miRNA and methylation
Subset 2—omic data type: miRNA and mRNA
Subset 3—omic data type: mRNA and methylation.
We ran iCluF to identify clusters (at K¼5) using all the 

above data subsets, individually. Next, we computed the sig
nificance of survival differences of the predicted clusters in 

each case and compared the P-value. We also compared 
iCluF’s performance with the other methods when the above 
data subsets are used as input. For this, we measured and 
compared the significance of survival difference of the clus
ters predicted by other methods including SNF, iClusterPlus, 
PINSPlus, and K-means.

2.5 Features importance analysis and assessment
We adopted the Gini importance (GI) scoring scheme from 
the state-of-the-art method Random Forest (RF) (Nembrini 
et al. 2018) to assess the contributions of different omic data 
types when predicting iCluF subtypes across all cancers. In 
this case, we included iCluF-predicted subtypes at a K (¼3). 
For each omic data type, the feature matrices with expression 
values and iCluF-predicted subtypes were used as an input 
for the RF model, which outputs the importance score of 
each feature in each omic dataset. We selected the top 25% 
of features in each omic type and we added the sum of their 
importance scores, followed by the min./max. normalization, 
to perform inter-omic comparisons of contributions from 
each omic type.

3 Results and discussion
3.1 Testing the performance of iCluF using datasets 
from 30 cancer types
We used multiomics datasets from 30 different cancers 
obtained from TCGA to develop and test iCluF because mul
tiomics datasets obtained from the same patient are readily 
available at TCGA, and it demonstrates the robustness of 
iCluF against a large number of disease datasets. The cancer 
types used, and the number of samples and omic features 
used in each cancer type, are shown in Supplementary Table 
S1. We used the miRNA, mRNA, and methylation features 
of each cancer type to generate similarity matrices and derive 
integrated clusters using iCluF. For each cancer type, we iden
tified clusters using iCluF and four other comparable meth
ods (SNF, iClusterPlus, PINSPlus, and K-means) at K¼2, 3, 
4, and 5. A comparison was made based on how many cancer 
types (out of 30) have their clusters (subtypes) predicted with 
significant survival differences in each K-means group across 
the five methods. This metric has been used previously to 
evaluate similar method (Speicher and Pfeifer 2015). As de
scribed in the methods section, the P-value from the Cox log- 
rank test shows the significance of the differences between 
the survival profiles of the predicted clusters. Our results 
showed that iCluF outperformed other methods at K¼2, 
K¼ 3, and K¼4. The predicting clusters showed significant 
differences between survival rates in the 17, 14, and 9 cancer 
types, respectively (Fig. 2A). However, at K¼ 5, iClusterPlus 
performed better than all other methods by identifying signif
icant clusters in nine cancer datasets, whereas iCluF per
formed moderately well (in six cancers) in this scenario.

The superior performance of iCluF for all but the K¼5 
cluster is attributable to the following novel aspects of our 
approach: (i) feature selection strategy and (ii) iterative mes
sage passing and integration of similarity matrices. By com
parison, other methods use either concatenation-based, 
generalized linear model-based, or network fusion-based inte
gration strategies. In particular, the SNF method that is most 
similar to our approach uses very strict edge weight criteria 
for refining similarity networks, which may lose important 
node (i.e. patients) connections in the patient–patient 
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similarity network. iCluF overcame this limitation by not los
ing any connections while iterating and integrating similarity 
matrices during the intermediate steps (Phase II). The passage 
of information across different omics-derived similarity ma
trices is the most crucial step in the integration process, con
tributing to the clustering performance of iCluF. The patient– 
patient similarity matrices are generated using each omic data 
type individually. In multiple iterations, the similarity score 
between two patients either decreases or increases when in
formation is passed across different omic-based similarity 
matrices (Phase II). This simulation technically provides a 
strong basis for downstream clustering process, which further 
reflects the impact of most relevant omic features. Moreover, 
other methods also suffer from a lack of effective feature se
lection criteria prior to cluster identification, leading to the 
possible inclusion of noise in the pairwise similarity calcula
tion process. From the literature-based discussions, feature 
selection helps reduce the dimensionality of matrices by 
retaining only data points that are relevant to the predictions; 
however, in many cases, this strategy prior to cluster identifi
cation is also interpreted as one of the major limitations, as it 
might unintentionally exclude important data points (Li et al. 
2018, Pudjihartono et al. 2022, Shakyawar et al. 2022). In 
this study, we used stringent criteria for feature selection, 
which retain only the features that are most relevant in pan- 
cancer, as discussed in other studies (Hoadley et al. 2018, 
Yang et al. 2021). Therefore, our feature selection strategy is 
also important in calculating patient–patient similarity matri
ces using individual omic datasets (Phase I), which further 
reflects their impression in the integration process (Phase II).

Furthermore, we observed that iCluF was the only predic
tor of clusters with significant survival differences in certain 
cancer types, which shows the robustness of the method. For 
example, in six cancer types (HNSC, LUAD, LUSC, COAD, 
PAAD, and UCS), iCluF was the only method that identified 
two clusters (K¼2) with significant survival differences. 
Similarly, at K¼3, only iCluF-predicted significant clusters 
in UCEC, STAD, SARC, ESCA, PAAD, and UCS datasets 
(Supplementary Table S2). LUCS, KIRP, UVM, and ACC 
were the cancer types for which subtypes were predicted us
ing only iCluF at K¼4. In the same way, at K¼5, though it 
underperformed compared with iClusterPlus, iCluF uniquely 
identified cancer types (BLCA, STAD, LUSC, and PCPG) 
with significant survival differences. Counting all Ks, across 
an average of five cancer datasets, only iCluF was able to pre
dict the clusters with significant differences (P-value <.05) in 
their survival profiles; this is higher than other methods con
sidered in this study (Supplementary Table S2). Interestingly, 
out of all the methods, only iCluF and K-means identified 
five clusters with significant survival differences, with P-val
ues of .006 and .02, respectively, in the BRCA dataset. 
Supplementary Figure S3B shows that Kaplan–Meier survival 
plot of the iCluF-predicted five BRCA subtypes.

Additionally, our analyses of algorithm running times 
showed that the average runtime of iCluF (over K¼2, 3, 4, 
and 5 on ACC dataset) is 2.5 min, which is almost equiva
lent to that of K-means, and slightly higher than SNF 
(Fig. 2B). We omitted PINSPlus in this comparison as no 
subtype predictions were made for ACC at K¼ 2, 4, and 5. 
The running time of iCluF is much lower than that of 
iClusterPlus, showing the favorable computational complex
ity of the method, especially when multi-level data are inte
grated iteratively.

3.2 Comparison of iCluF and K-means clustering 
using survival analysis
As the log-rank test provides a single P-value for the com
bined survival differences between the clusters, we were inter
ested to test the significance of the survival differences 
between different combinations of clusters within the five- 
clusters predicted with K¼ 5 using BRCA data. iCluF and 
K-means are the only methods that predicted significant sur
vival differences with K¼5, so we ran this experiment to 
compare these two methods. We generated Kaplan–Meier 
estimates for all possible combinations of the two, three, and 
four cluster groups (within the five clusters of iCluF or K- 
means at K¼5), resulting in 10, 10, and 5 estimates, respec
tively (Supplementary Table S3). In all the cluster groups, 
iCluF outperformed K-means by showing significant survival 
differences between more cluster groups that were generated 
in random combinations (Supplementary Fig. S4). Kaplan– 
Meier survival plots of top three performing clusters in each 
category (two clusters, three clusters, and four clusters) are 
shown in Fig. 3. This demonstrates the robustness of the 
iCluF methodology as it discriminates between the clusters; 
this occurs because the algorithm uniquely captures informa
tion from each omic modality, and it fuses them iteratively. 
As hypothesized, our mechanism can utilize multi-level omic 
information more holistically than K-means, which mainly 
relies upon a concatenation-based integration strategy.

Figure 2. (A) Comparison of various methods for predicting cancer 
subtypes with significant survival differences. (B) Comparison of running 
times of different methods for predicting ACC subtypes. The running 
time of different methods was averaged over K¼ 2, 3, 4, and 5, for 
predicting ACC subtypes. PINSPlus is not included in this comparison as 
it does not predict any subtypes at K¼ 4 and 5.
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3.3 Predictions of BRCA’s intrinsic and receptor- 
based subtypes
We further analyzed and compared predicted subtypes 
against the intrinsic subtypes of BRCA because among all of 
the cancer datasets, BRCA has the most well-characterized 
clinical subtypes, as follows: Luminal A, Luminal B, human 
epidermal growth factor receptor 2 (HER2)-enriched, Basal, 
and Normal. The proper classification of patients with BRCA 
into these subtypes are crucial for developing effective and 
more personalized treatment strategies. Therefore, we com
pared five iCluF-predicted clusters (at K¼5) against the clini
cal subtypes of BRCA using the ARI and FM score (Table 1). 
In this scenario, we achieved an ARI of 0.71 and a FM score 
of 0.81, which showed a good concordance between iCluF- 
predicted and clinical subtypes. The calculated Silhouette 
score, in this case, was 0.89, which reflects a fairly good com
pactness and homogeneity of the predicted clusters 
(Supplementary Fig. S5A). The predicted clusters also showed 
significant differences between their survival profiles, as dem
onstrated by the Kaplan–Meier survival plot of five iCluF- 
predicted BRCA subtypes (Supplementary Fig. S3B). 
Regarding BRCA, normal subtypes generally show 

similarities with the normal breast epithelium. This may be 
because of the low amount of tumor cells collected in the bi
opsy. Therefore, these subtypes are clearly not classified as 
distinctive and independent tumor types (Larsen et al. 2013). 
This might be the reason why several computational studies 
primarily emphasized predicting only four BRCA subtypes 
(Basal, HER2, Luminal A, and Luminal B) instead of five 
(Jaber et al. 2020, Phan et al. 2021, Zhang et al. 2023). We 
also ran iCluF with K¼4 after removing the normal subtype 

Figure 3. Kaplan–Meier survival plots of randomly chosen combinations of (A) two, (B) three, and (C) four clusters predicted by iCluF using the BRCA 
dataset with 849 samples including 139 Basal, 52 HER2-enriched, 463 Luminal A, 160 Luminal B, and 35 Normal subtypes.

Table 1. Performance measurements of iCluF for predicting BRCA’s 
subtypes using different evaluation scores.a

Dataset iCluF predictions

K ARI FM score Silhouette score

Dataset 1 5 0.71 0.81 0.89
Dataset 2 4 0.72 0.83 0.86

a Dataset 1 includes Basal (139 samples), HER2-enriched (52 samples), 
Luminal A (463 samples), Luminal B (160 samples), and Normal (35 
samples); Dataset 2 is a subset of Dataset 1 without normal samples. K, 
number of clusters; ARI, adjusted rand index; FM, Fowlkes–Mallows.
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from training, and we only predicted four clinical subtypes. 
In this scenario, iCluF performed slightly better, achieving 
ARI and FMI scores of 0.72, and 0.83, respectively (Table 1). 
The good homogeneity of the clusters, in this case, is shown 
with the calculated Silhouette score of 0.86 (Table 1 and 
Supplementary Fig. S5B). These analyses are further indica
tive of iCluF’s powerful integration strategy for merging 
BRCA’s multiomic datasets and predicting subtypes at differ
ent Ks.

We also compared iCluF’s performance when different 
combinations of omic data types from BRCA data were used 
to train the model, as described in the methodology. We 
recorded highest significance (P-value¼.006) in the survival 
difference among the predicted clusters when all three omic 
data types (i.e. miRNA, mRNA, and methylation) 
(Supplementary Fig. S3B) are used, as compared to when 
Subset 1 (miRNA and methylation), Subset 2 (miRNA and 
mRNA), and Subset 3 (mRNA and methylation) are used as 
input with calculated P-values as .13, .23, and .92, respec
tively (Supplementary Fig. S3A). The survival difference of all 
five predicted clusters in case of Subsets 1, 2, and 3 is shown 
in Kaplan–Meier plots in Supplementary Fig. S3C–E, respec
tively. In neither case, we observed clusters with significant 
difference in their survival profile except when combination 
of all three omic data types were used, showing the impor
tance of incorporating multi-level omic information for clus
tering patients. Further, we compared iCluF’s performance 
with methods SNF, iClusterPlus, and K-means, to predict 
clusters with survival differences when Subsets 1, 2, and 3 
were used in training (Supplementary Fig. S6). Results 
showed that iCluF was the best predictor even though insig
nificant (P-value¼.13), when Subset 1 was used, while 
K-means scored lowest in this case. With Subset 2, SNF and 
K-means performed almost equally but better than iCluF and 
iClusterPlus. Only K-means were able to identify significant 
clusters with P-value¼.03 and .02 on data subset 2 (miRNA 
and mRNA) and complete dataset (miRNA, mRNA, and 
methylation), respectively. Among all comparisons, it can be 
clearly seen that iCluF achieved the highest significance 
(P-value¼.006) when all three omic data types (miRNA, 
mRNA, and methylation) were used as input features to 
the model.

Traditionally, BRCA subtypes were defined based on the 
expression status of the estrogen receptors, progesterone 
receptors, and HER2. With current cancer therapies, discor
dance between receptor-based subtypes and PAM50 gene 
panel-based subtypes has been recorded in around 20%– 
50% of patients (Paquet and Hallett 2015, Kim et al. 2019, 
Dix-Peek et al. 2023), which could result in the wrong ad
ministration of treatment for BRCA patients. Therefore, it is 
extremely important to perform BRCA-correct classification 
that satisfies both subtyping strategies. We tested iCluF to 

predict the receptor-based characterization of all intrinsic 
subtypes of BRCA, separately. We divided the patients into 
each intrinsic subtype (gene panel-based) by considering re
ceptor status, and we created positive/negative instances for 
each subtype (further descriptions concerning the classifica
tion and final counts for each instance are provided in 
Supplementary Table S4). iCluF achieved ARI and FM scores 
of 0.78 and 0.89, respectively, which was the best-case sce
nario for predicting positive/negative instances of HER2 sub
types (Table 2). For Basal, Luminal A, and Luminal B, we 
achieved ARI scores of 0.68, 0.72, and 0.75, respectively. All 
of the predicted clusters demonstrated good homogeneity, as 
shown by the Silhouette score (Table 2), further indicating 
iCluF’s capability to perform binary classifications, as shown 
in Fig. 2A. We believe that this level of in-depth characteriza
tion, concerning the heterogeneity between different sub
types, may provide additional support for the stratification of 
BRCA patients in clinical settings.

3.4 Contributions of different omic features for 
predicting cancer subtypes
Feature importance estimation is essential for understanding 
the contribution proportion of each data type for the model’s 
predictions. In the present context, our objective included the 
relative assessment of the contributions of miRNA, mRNA, 
and methyl features when predicting iCluF subtypes in differ
ent cancers. As described in the methods section, GI scoring 
schemes estimate the importance of variables (i.e. features, as 
in our study) when maintaining the homogeneity of the nodes 
in trees (of RF). Our calculated GI distributions of omic fea
tures (calculated from iCluF predictions at K¼ 3) showed 
that miRNAs, with an average score of 0.23 were the least 
contributing features across all cancer types except SARC, 
where miRNA and mRNA features contributed almost 
equally for predicting the subtypes (Fig. 4). In BRCA, 
miRNA, mRNA, and methylation features achieved GI scores 
as 0.26, 0.32, and 0.42, respectively, showing their respective 
decisive roles in identifying subtypes. Across all cancer types, 
the highest GI scores of miRNA, mRNA, and methylation 
features were 0.28 (in SARC), 0.41 (in UCS), and 0.50 (in 
CESC), respectively (Fig. 4). The mRNA and methylation fea
tures achieved an average GI score of 0.34 and 0.43, respec
tively, showing comparatively higher contributions when 
predicting subtypes in most of the cancer types. Only for 
UCS, MESO, TGCT, and KIRC did mRNAs score higher or 
almost equally to the methylation features; conversely, in 
other cancer types, the methylation dataset dominated the 
cluster predictions (Fig. 4).

Furthermore, we assessed similarities between cancer types 
based on commonly identified top contributing features 
(miRNA, mRNA, and methylation) in each cancer. The result 
showed higher similarities (but not more than 50%) between 

Table 2. Evaluation of iCluF’s predictions using intrinsic and receptor-based subtypes.

BRCA subtypes (samples) Positive/negative instances iCluF predictions

ARIa FMa score Silhouette score

Basal (139) 103/36 0.68 0.88 0.93
Luminal A (463) 349/114 0.72 0.90 0.96
Luminal B (160) 126/34 0.75 0.92 0.94
Her2 (52) 27/25 0.78 0.89 0.95

a ARI, adjusted rand index; FM, Fowlkes–Mallows.
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cancer types when methylation features were compared to 
mRNA features (Supplementary Fig. S7). Fewer similarities 
based upon miRNA features were observed between different 
cancer types, which is likely due to the low number of fea
tures. We observed that the cancer types BRCA, LUAD, 
HNSC, CESC, and STAD show comparatively higher similar
ities between each other in the context of methylation fea
tures. Similarly, LUSC, KIRC, and PAAD showed similar 
ranges of similarity scores. When the top mRNA features 
were compared, cancer types, such as COAD, STAD, ESCA, 
and READ showed high discordance in terms of their similar
ities at the gene level (Supplementary Fig. S7). Similarly, 
KIRO, DLBC, and THYM are highly dissimilar in terms of 
their mRNA profiles. These comparative analyses are helpful 
to understand the commonalities and differences between 
various cancer types at different omic levels.

Though iCluF can identify cancer subtypes with distinct 
clinical features, the method uses geometric distance norms 
when calculating patient–patient similarity; this means that it 
might not be able to handle data noise for this operation. The 
prior selection of the number of subtypes to run iCluF is also 
a limitation, as compared with other non-parametric meth
ods. Similarly, the use of K-means may ignore dimensional 
differences between multiple omic datasets.

4 Conclusions
The identification of cancer subtypes and their molecular 
characterization is essential for developing more personalized 
treatment strategies. Our method, iCluF, implements an itera
tive integration strategy for extracting and combining com
monalities across multiomic datasets to derive clusters with 
distinct molecular features. We tested our method on 
TCGA’s 30 cancer datasets to predict subtypes that differ in 
terms of their survival profiles. Our methodology is easy to 
implement for other diseases with multi-cohort patient infor
mation because our integration strategy is more robust in 
terms of capturing variability with regard to similarities when 
multi-level information is involved. In this study, only three 
omic data types were used for model prediction, but users 
can seamlessly include more omic data types. This approach 

also captures and integrates hidden biological information in 
the data by including the correlations between the omic data
types via message passing while building the neighborhood 
matrices; this may help improve the accuracy of subtype pre
dictions. Furthermore, our feature importance analysis 
helped us understand the relative decisive roles of different 
omic modalities for predicting cancer subtypes.
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