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Manufacturing chimeric antigen receptor (CAR) T cell thera-
pies is complex, with limited understanding of how medium
composition impacts T cell phenotypes. CRISPR-Cas9 ribonu-
cleoproteins can precisely insert a CAR sequence while disrupt-
ing the endogenous T cell receptor alpha constant (TRAC) gene
resulting inTRAC-CART cells with an enriched stem cell mem-
ory T cell population, a process that could be further optimized
through modifications to the medium composition. In this
study we generated anti-GD2 TRAC-CAR T cells using "meta-
bolic priming" (MP), where the cells were activated in glucose/
glutamine-low medium and then expanded in glucose/gluta-
mine-high medium. T cell products were evaluated using spec-
tral flow cytometry, metabolic assays, cytokine production,
cytotoxicity assays in vitro, and potency against human GD2+
xenograft neuroblastoma models in vivo. Compared with stan-
dard TRAC-CAR T cells, MP TRAC-CAR T cells showed less
glycolysis, higher CCR7/CD62L expression, more bound
NAD(P)H activity, and reduced IFN-g, IL-2, IP-10, IL-1b,
IL-17, and TGF-b production at the end of manufacturing
ex vivo, with increased central memory CAR T cells and better
persistence observed in vivo. MP with medium during CAR
T cell biomanufacturing can minimize glycolysis and enrich
memory phenotypes ex vivo, which could lead to better re-
sponses against solid tumors in vivo.

INTRODUCTION
Chimeric antigen receptor (CAR) T cells have emerged as an exciting
alternative to traditional cancer treatments for hematologic malig-
nancies with six FDA-approved therapies for multiple myeloma,
non-Hodgkin B cell lymphomas, and B cell acute lymphoblastic leu-
kemia available to date.1 In contrast, CAR T therapies for solid tumors
have had limited clinical responses due to a lack of persistence, limited
homing to the tumor, and exhausted T cell phenotypes.2,3 Clinically,
neuroblastoma initially demonstrated the potential efficacy of CAR
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T cells in treating solid tumors. However, a subsequent analysis re-
vealed a modest 15% response rate with durable responses only
achieved in patients whose GD2 CAR T cells persisted longer than
6 weeks after infusion and formed central memory T cells.4,5 Recently,
promising results for advanced neuroblastoma with a third-genera-
tion anti-GD2 CAR T cell were reported, with a 63% partial or com-
plete response rate; however, event-free survival remained low at
26%.6 The critical quality attributes that contribute to CAR T cell
persistence and central memory formation in solid tumors remain
largely unknown.

Manufacturing CAR T cells to reach therapeutic cell quantities
(�0.1–10 billions cells per patient) involves inducing cell prolifera-
tion ex vivo through activation with crosslinked antibodies for CD3
and CD28, and cytokine-enriched medium.7–9 Ex vivo culture of
CAR T cells has been previously shown to accelerate differentia-
tion.10–12 Limiting differentiation of these cells into terminal effector
or exhausted phenotypes pre-infusion is a goal for the field, since
increased stem cell memory fractions in the pre-infusion product
have correlated with better cytotoxicity post-infusion, transition
to a central memory state, and better persistence in vivo.13–20

Enhanced stem cell or central memory phenotypes in CAR T prod-
ucts could be achieved by manipulating media, cytokines, or T cell
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metabolism during manufacturing. Tailored media and IL-7/IL-
15-based expansion have been found to preserve a stem cell memory
profile.21 Metabolic interventions that maintain oxidative phosphor-
ylation (OXPHOS) and suppress glycolysis through metabolic
engineering,22–24 small-molecule inhibitors, or glucose/glutamine
deprivation25–29 have been shown to enhance the cell persistence, po-
tency, and memory formation of CAR T products. These strategies
have yet to be explored with CAR T cell products that have been
genome-edited using electroporation (EP) in a virus-free manner.

T cells have classically been transduced with g-retroviral or lentiviral
vectors yielding stable but uncontrolled genomic integration of the
CAR transgene with a constitutively active promoter,30,31 which has
been implicated in excessive T cell differentiation.32 CRISPR-Cas9
is an alternative approach that makes a double-stranded DNA
(dsDNA) break at a precise genomic locus where the DNA repair
pathways can stably integrate the desired CAR transgene.33–35 This
genome editing strategy has been used to insert a CAR transgene up-
stream of the endogenous T cell receptor alpha constant (TRAC) gene
using homology-directed repair (HDR).36–38 For current TRAC inte-
gration strategies, the CAR T cell products lack an intact T cell recep-
tor (TCR) because of the precise genetic knockout of the TCR a chain.
Relative to conventional viral CAR T products, these TRAC-CAR
products have more controlled transgene copy numbers in the
genome (1 or 2) with CAR transcription driven by the TRAC pro-
moter, limited off-target effects, and higher fractions of stem cell
memory phenotypes.39–41 A benchtop-scale CAR T cell process for
inserting an anti-GD2 construct into the TRAC locus using EP of
CRISPR-Cas9 ribonucleoproteins (RNPs) with PCR-based donor
templates showed promising results in a GD2+ human neuroblastoma
xenograft model.41 Many studies have optimized culture conditions
for CAR T cells manufactured using viral vectors,17,21,25 but it is un-
known whether these culture changes will affect TRAC-CAR T cells
generated by EP in a similar manner.

In this study, we evaluated various culture conditions to develop a
flexible process using GMP-compatible reagents for producing
TRAC-CAR T cells at scales suitable for clinical use. We focused on
metabolic priming (MP), where T cells are activated in TexMACS
medium and then switched post-EP to Immunocult XF. TexMACS
medium is associated with attenuated cellular activation, possibly
due to its lower glucose/glutamine content relative to Immunocult
XF.17,42 The result is that MP TRAC-CAR T cells are less reliant on
glycolysis, exhibit more stem cell memory phenotypes, and consume
less glucose than their non-primed counterparts. Furthermore, these
MP TRAC-CAR T cells can adopt a central memory phenotype
following exposure to solid tumors in neuroblastoma xenograft
models. This biomanufacturing approach thus holds promise for
generating cells with enhanced potency and longevity in vivo.

RESULTS
TRAC-CAR T cell manufacturing at scale

CAR T cells ideally should proliferate ex vivo to achieve clinically
relevant yields, while maintaining a naive, stem cell memory/cen-
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tral memory state to achieve persistence in vivo.10,14,43 We first
explored whether a dsDNA Nanoplasmid template could provide
a facile method to scale-up production of the donor template for
HDR to generate TRAC-CAR T cells (Figure 1A). Nanoplasmid
vectors have a small backbone (429 bp) and no antibiotic selection
genes. They also contain a specialized bacterial R6K replication
origin in place of the traditional pUC origin, making the Nanoplas-
mid vectors replication-incompatible outside of a set of engineered
strains. Minimal-backbone Nanoplasmid transposon vectors and
Nanoplasmid HDR donor template vectors for CRISPR/Cas9
mediated gene editing demonstrated superior cell viability and
gene integration frequencies during non-viral CAR-T cell
manufacturing over traditional pUC plasmids and linearized tem-
plates (Clinical Trial NCT03288493).55,64–66 We electroporated this
template along with a CRISPR-Cas9 RNP specific for the TRAC lo-
cus and cultured the cells for 7 days. Robust gene editing at clinical
or benchtop scale was observed by flow cytometry, as greater than
90% of T cells lacked expression of the endogenous TCR given the
CRISPR-mediated knockout of the TRAC gene (Figure 1B) when
compared with untransfected T cells (clinical: 98.2% [0.7] or
benchtop: 90.7% [1.0] versus untransfected: 8.6% [5.1],
p < 0.001, respectively). TRAC-CAR T cells were produced equally
well at both scales with over 17% CAR positivity using the Lonza
or Xenon EP systems (clinical: 17.1% [0.4] or benchtop: 22.2% [7]
versus untransfected: 0.02% [0.01], p = 0.024 and p = 0.049,
respectively) (Figure 1C).

MP to enrich for stem cell memory

Generally, CAR T cell production uses a singular medium source
and cytokine cocktail throughout manufacturing to expand T cells
into clinically relevant numbers ex vivo. Activation and expansion
of TRAC-CAR T cells has previously been performed using Immu-
nocult XF medium supplemented with IL-2,41 generating stem cell
memory T cells with high expression of CD45RA, CD62L, and
CCR7 and CAR knockin rates between 15% and 34%.13,44 We
sought to optimize culture conditions that could further increase
the proportion of stem cell memory TRAC-CAR T cells by
manufacturing cells in two media conditions (Figure 2A) using re-
agents produced via good manufacturing practice (GMP) at a clin-
ically relevant scale: (1) standard Immunocult XF Medium17 with
IL-2 for 10 days (Control cells) or (2) a transient MP phase, where
cells were activated in TexMACS with IL-7/IL-1521,45 before EP and
then expanded in Immunocult XF with IL-7/IL-15 for 7 days post-
EP (MP cells).

Memory T cells primarily use OXPHOS and fatty acid oxidation
for long-term survival, whereas effector T cells rely on glycolysis
for rapid proliferation and immediate immune response.22–24 In
cell cultures, a lower glucose consumption and lactate secretion
may indicate a higher proportion of stem cell memory cells (Fig-
ure 2B).22–24 We measured the lactate and glucose concentrations
of MP and Control TRAC-CAR T cells immediately after activation
on day 3 and on day 10 of manufacturing to assess their stem cell
memory properties. Post-activation MP TRAC-CAR T cells
4



A

B C

Figure 1. Manufacturing TRAC-CAR T cells at clinically relevant scales

(A) Schematic of non-viral CRISPR-Cas9 knockin strategy with a Nanoplasmid HDR template encoding the CAR. The CAR-containing Nanoplasmid template encodes for an

anti-GD2 CAR under the control of the endogenous TRAC promoter. The CAR-containing Nanoplasmid template has an SSPI restriction site for linearization. (B) Repre-

sentative flow cytometry plots of the relative GD2-CAR versus TCR expression of TRAC-CAR T cells electroporated with SSPI-linearized nanoplasmid on the ThermoFisher

Xenon (clinical scale) or Lonza 4D Nucleofector (benchtop scale) system and untransfected T cells (donor A shown). (C) Bar graphs comparing GD2 knockin rates and TCR�

percentages of TRAC-CAR T cells electroporated on the clinical or benchtop systems and untransfected T cells. Two donors, NClinical = NBenchtop = NUntransfected = 2. SA,

splice acceptor; 2A, cleavage peptide; LHA, left homology arm; RHA, right homology arm; Poly-A, rabbit b-globin polyA terminator; CAR, chimeric antigen receptor; TRAC,

T cell receptor alpha constant gene; RNP, ribonucleoprotein; PAM, protospacer adjacent motif; TCR, T cell receptor; RFU, relative fluorescence units. Error bars represent

mean and standard deviation. Statistical significance was determined with a one-way ANOVA using Dunnett’s T3 test for multiple comparisons (C); *p < 0.05, ***p < 0.001.
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produced less lactate (MP: 4.2 mM [2.2] versus Control: 9.2 mM
[0.3], p = 0.002) and consumed less glucose (MP: 3.6 mM [2.4]
versus Control: 13.2 mM [0.5], p < 0.001) despite equal fold expan-
sion during activation (MP: 1.1 [0.3] versus Control: 1.2 [0.02])
(Figure S1). During expansion MP TRAC-CAR T cells had pro-
duced 1.8-fold less lactate per glucose molecule (MP: 0.7 [0.1]
versus Control: 1.3 [0.1], p < 0.001), 3.4-fold less overall lactate
(MP: 3.9 mM [0.4] versus Control: 13.2 mM [0.6], p < 0.001),
and consumed 1.9-fold less glucose (MP: 5.6 mM [0.2] versus Con-
trol: 10.6 mM [0.7], p < 0.001) than Control TRAC-CAR T cells
during expansion in G-Rex6M plates despite having similar yields
of cells by day 10 (MP: 8.7 [1.6] versus Control: 10 [2.7]) (Fig-
ure 2C), indicating that MP does not affect cell yield in this
process.

We also demonstrated the importance of transitioning from
TexMACs to Immunocult XF with IL-7/IL-15 versus continued cul-
ture in TexMACs as the former had the least lactate production
and glucose consumption among TRAC-CAR T cells manufactured
with MP, TexMACs only, or Immunocult XF only supplemented
Molec
with IL-7/IL-15 or IL-2 (Figure S2). MP TRAC-CAR T cells also
expanded 1.8 times more than those grown in TexMACs only
(Figure S3).

To specifically analyze the phenotypes of the CAR-positive cells in
the cell product on day 10, we stained for surface markers of
T cell differentiation and memory phenotypes using a spectral
flow cytometry panel and analyzed live CAR+/TCR� cells (Fig-
ure S4). We classified T cell phenotypes by classic definitions:
TSCM (stem cell memory), TCM (central memory), TEM (effector
memory), and TEFF (effector). A stem cell memory state is often
defined by the expression of surface markers such as CD45RA,
CD62L, and CCR713,46 an oxidative versus a glycolytic metabolism,
commonly seen in activated effector T cells,18,47 and lower glucose
consumption29,48,49 (Figure 2B). We defined TSCM TRAC-CAR
T cells as CCR7+/CD62L+, which indicates increased capacity for
lymphoid homing.50,51 TRAC-CAR T cells grown in Immunocult
XF are often CD45RA/CD45RO double-positive, likely reflecting a
transitional state that cannot be assigned to canonical memory sub-
sets.39,41 This transitional phenotype is present in both MP and
ular Therapy: Methods & Clinical Development Vol. 32 June 2024 3
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Figure 2. MP TRAC-CAR T cells produce stem cell

memory phenotypes

(A) Manufacturing timeline for TRAC-CAR T cells: MP

TRAC-CAR T cells were cultured in TexMACS medium

for 3 days during activation and then Immunocult XF

medium supplemented with IL-7/IL-15 for 7 days during

expansion. Control TRAC-CAR T cells were cultured in

only Immunocult XF medium supplemented with IL-2

during activation and expansion. (B) Schematic of the

definition of CAR T cell phenotypes: TSCM (stem

cell memory), TCM (central memory), TEM (effector

memory), TEFF (effector) as defined by their inherent

properties. (C) Bar graphs of the lactate production,

glucose consumption, lactate production over glucose

consumption, and live T cell fold-change of MP or

Control TRAC-CAR T cells during expansion in G-Rex6M

plates. Two donors, (lactate/glucose) NMP = NControl = 6;

(proliferation) NMP = NControl = 2. (D) Representative

contour plots of CD62L/CCR7 co-expression for CAR+/

TCR� MP and Control TRAC-CAR T cells for the same

conditions. CD62L/CCR7 double-positive cells represent

a stem cell memory population (TScm) (donor F shown).

(E) Bar graph depicting the CD62L/CCR7 double-positive

population in CAR+ T cells for all conditions. Four

donors, NMP = 4, NControl = 3. Error bars represent mean

and standard deviation. Statistical significance was

determined with a paired t test (C), and Welch’s t test (E);

*p < 0.05, ****p < 0.0001.
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Control TRAC-CAR T cells (Figure S5). We found that MP TRAC-
CAR T cells produced 2.3-fold more CD62L+/CCR7+ CAR+ T cells
than Control TRAC-CAR T cells (MP: 46.9% [12.3] versus Control:
23.9% [7.0], p = 0.028) (Figures 2D and 2E). We also observed no
significant impacts of priming on CD8 or CD4 expression (Fig-
ure S5). TRAC-CAR T cells cultured in TexMACs and MP
TRAC-CAR T cells had similar CD62L/CCR7 expression that did
not appear impacted by cytokines (Figure S2).

Priming lowers glycolysis and effector phenotypes

To further characterize metabolism, we harvested cells on day 10
of manufacturing for use in a Seahorse assay to analyze oxygen
consumption and extracellular acidification rates and for mitochon-
drial staining byflow cytometry.MPTRAC-CARTcells had lower rates
of ECAR (extracellular acidification) and OCR (oxygen consumption)
than Control TRAC-CAR T cells, indicating lower rates of both glycol-
ysis and overall oxygen consumption (Figure 3A). Lower basal respira-
tion (MP: 32 pmol/min [14] versus Control: 180 pmol/min [99],
p < 0.001),maximal respiration (MP: 72 pmol/min [39] versusControl:
298 pmol/min [63], p < 0.001), spare respiratory capacity (MP: 40
pmol/min [27] versusControl: 117 pmol/min [56], p < 0.001), andbasal
OCR/ECAR (MP: 0.88 [0.21] versus Control: 1.37 [0.53], p = 0.0033)
were seen in MP compared with Control TRAC-CAR T cells (Fig-
ure 3B). In addition,MPTRAC-CART cells had 6% higher normalized
mitochondrial mass (MP: 2.3 [0.4] versus Control: 2.2 [0.4], p < 0.001,
4 Molecular Therapy: Methods & Clinical Development Vol. 32 June 202
d = 0.33) and 11% higher membrane potential (MP: 1.9 [0.2] versus
Control: 1.7 [0.3], p < 0.001, d = 0.64) than Control TRAC-CAR
T cells, further supporting an oxidative phenotype (Figure 3C). A
27% reduction in granularity (MP: 246 [76] versus Control: 336 [98],
p < 0.001, d = 1.02) and 14% lower cell size (MP: 310 [52] versus Con-
trol: 360 [78], p < 0.001, d = 0.74) indicates thatMP TRAC-CAR T cells
may be in a less cytotoxic state52 after manufacturing than Control
TRAC-CAR T cells (Figure 3C).

To resolve metabolism at single-cell resolution and assess heteroge-
neity, we also performed fluorescence lifetime imaging62,63 of
TRAC-CAR T cells after manufacturing. We specifically measured
autofluorescence lifetimes of NAD(P)H and FAD and report the
NAD(P)H mean fluorescence lifetime (NAD(P)H tm) and free
NAD(P)H fraction (NAD(P)H a1) of CAR+ TRAC-CAR T cells,
which reflect NAD(P)H binding activity. MP TRAC-CAR T cells
had higher NAD(P)H tm (MP: 1,000 ps [93] versus Control:
942 ps [110], p = 0.003) and lower NAD(P)H a1 (MP: 72% [4]
versus Control: 75% [4], p < 0.001) than Control-TRAC-CAR
T cells indicating a higher proportion of bound NAD(P)H (Fig-
ure 3D) in MP TRAC-CAR T cells. These label-free, single-cell an-
alyses confirm the presence of more primed cells with increased
NAD(P)H binding activity within the MP TRAC-CAR T cell prod-
ucts and are consistent with lifetime imaging of similar TRAC-CAR
products.42
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Figure 3. MP TRAC-CAR T cells are less glycolytic

and have increased mitochondrial mass

(A) ECAR and OCR for MP and Control TRAC-CAR T cells

measured over time by Seahorse (oligomycin [2.5 mM],

FCCP [1 mM], rotenone/antimycin A [0.5 mM]). (B) Basal/

maximum respiration rates, spare respiratory capacity, and

basal OCR/ECAR for MP and Control TRAC-CAR T cells

measured by Seahorse. Two donors, NMP = 21, NControl =

6. (C) Dot plots for normalized mitochondrial mass

(MitoTracker Green intensity divided by FSC-A),

normalized mitochondrial membrane potential (TMRE dye

intensity divided by FSC-A), cell size (FSC-A), and

granularity (SSC-A) for CAR+ MP and Control TRAC-CAR

T cells. Two donors, NMP = 4264, NControl = 2439. (D)

Images and bar graphs of NAD(P)H mean lifetime (NAD(P)

H tm) and free NAD(P)H fraction (NAD(P)H a1) of CAR
+

MP and Control TRAC-CAR T cells as measured by

fluorescence lifetime imaging. Two donors, NMP = 84,

NControl = 37. OCR, oxygen consumption rate;

ECAR, extracellular acidification rate; SSC-A, side

scatter area; FSC-A, forward scatter area; TMRE,

tetramethylrhodamine ethyl ester perchlorate. Error bars

represent mean and standard deviation. Statistical

significance was determined with unpaired t tests;

**p < 0.01, ***p < 0.001, ****p < 0.0001.
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High potency of MP TRAC-CAR T cell products

To assess the potency of the MP TRAC-CAR T cells, we measured
cytotoxicity and cytokine production after co-culture with the GD2+

neuroblastoma cell line, CHLA20. These target cells were seeded at
various effector:target (E:T) ratios into 24- or 96-well plates and grown
for 24 h, after which TRAC-CAR T cell products were added. The su-
pernatant was taken at 24 h, and the co-culture was imaged continu-
ously for 48 h on the IncuCyte platform (Figure 4A). MP and Control
TRAC-CAR T cells achieved similar extents of cytotoxicity for 5:1 and
2.5:1 E:T ratios (Figure 4B). After 24 h of co-culture, MP TRAC-CAR
T cells lysed fewer cancer cells thanControlTRAC-CART cells at 2.5:1
(MP: �26% [38.1] versus �70.2% [12.1], p = 0.041) and 1:1 (MP:
86.5% [38.8] versus Control: �2.5% [29.3], p = 0.011) ratios (Fig-
ure 4C), but had similar levels of cytotoxicity at the 5:1 ratio. In terms
Molecular Therapy: Metho
of cytokine production, soluble IFN-g (MP: 3,151
pg/mL [4,119] versus Control: 38,453 pg/mL
[16,037], p = 0.0045), IL-2 (MP: 88 pg/mL [121]
versus Control: 496 pg/mL [229], p = 0.0195),
IP-10 (MP: 254 pg/mL [257] versus Control:
17,853 pg/mL [8,494], p = 0.004), IL-1b
(MP: 185 pg/mL [358] versus Control:
16,882 pg/mL [14,578], p = 0.0372), IL-17 (MP:
81 pg/mL [93] versus Control: 664 pg/mL [460],
p = 0.0323), and TGF-b (MP: 6.4 pg/mL [13.7]
versus Control: 51.9 pg/mL [32.2], p = 0.0338)
levels produced by MP TRAC-CAR T cells
in the media were significantly lower than
Control TRAC-CAR T cells while all other
measured cytokines had no differences (Fig-
ures 4D–4F). Compared with Control TRAC-
CAR T cells, MP TRAC-CAR T cells have comparable but
slower cytotoxic activity with overall lower cytokine production
immediately following antigen stimulation in vitro.These characteris-
tics have been observed in less differentiated cells, notably TSCM

cells.13,49

To assess the impact of these quality attributes on potency in vivo,
TRAC-CAR T cells of both groups were infused into a xenograft
NSG mouse model of neuroblastoma. There was similar tumor
regression across the two groups (Figure S6), indicating compara-
ble in vivo potency of cells from both culture conditions. Despite
lower levels of initial cytotoxicity and cytokine release in vitro,
MP TRAC-CAR T cells demonstrate high potency against solid tu-
mors in vivo. Because they were less active in culture, it was
ds & Clinical Development Vol. 32 June 2024 5
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Figure 4. MP TRAC-CAR T cells have reduced cytokine production but are equipotent in vitro against GD2+ neuroblastoma cells

(A) GD2+ neuroblastoma CHLA-20 cells were plated in 24- or 96-well plates 24 h before TRAC-CAR T cell addition. The supernatant was analyzed for cytokine secretion after

24 h, and potency was measured continuously for up to 48 h. (B) Percentage change in GFP fluorescence from GD2+ CHLA-20 GFP+ neuroblastoma cells versus time in

cancer/MP or Control TRAC-CAR T cell co-cultures for E:T ratios of 5:1, 2.5:1, or 1:1. (C) The percentage change in GFP signal at 24 h versus E:T ratio is shown for MP or

Control TRAC-CAR T cells. Co-culture supernatant was analyzed using the LegendPlex Human Essential Immune Response (BioLegend) assay. (D) Pleiotropic, (E) Pro-

inflammatory and (F) Anti-inflammatory secreted cytokine concentrations normalized to live T cell count after co-culture depicted on histograms on log scale (pg/mL per 1e–6

T cells). GFP, green fluorescent protein. Two donors, NMP = 6, NControl = 6. Error bars represent mean and standard deviation. Statistical significance was determined with

paired t tests; *p < 0.05, **p < 0.01.
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unclear if these attributes would make them less prone to exhaus-
tion and exhibit better persistence and central memory formation
in vivo.

Enhanced central memory and persistence in vivo

To assess memory phenotypes and persistence of MP TRAC-CAR
T cells in vivo, we injected T cell products into a xenograft NSG
mouse model for neuroblastoma (Figure 5A). Groups included
MP TRAC-CAR or Control TRAC-CAR cells and No CAR Control
cells, which are TRAC-T cells expressing an mCherry reporter gene
instead of CAR and cultured in the standard Control conditions.
On day 19 post-injection, we isolated splenocytes, and stained
samples for spectral flow cytometry analysis of memory, activa-
tion, and exhaustion markers (Figure S7). We found significantly
higher amounts of human CD5/CD45+ (MP: 2,025 cells [3,433],
Control: 244 cells [487], No CAR Ctrl: 2,055 [2,841], p [MP versus
Control] = 0.0423) amounts of lymphocytes in spleens from
mice injected with MP TRAC-CAR T cells than Control TRAC-
CAR T cells (Figure 5B), indicating improved T cell persistence
in vivo for MP products. Among transgene+/TCR� cells we found
no significant differences in CD8 or CD4 expression with nearly
6 Molecular Therapy: Methods & Clinical Development Vol. 32 June 202
90% of cells being cytotoxic T lymphocytes across conditions
(Figure S8).

We assessed splenic lymphocytes according to T cell differentiation
and exhaustion using six markers: CD45RA, CD45RO, CD62L,
CCR7, LAG3, and TIGIT. MP or Control TRAC-CAR T cells sepa-
rated from each other in a reduced two-dimensional Uniform
Manifold Approximation and Projection (UMAP) space (Fig-
ure 5C) while No CAR Control cells spanned the entire space.
The vertical UMAP2 axis separated lymphocytes by differentiation
status, with central memory (TCM) (CD45RO+/CD45RA�) and
effector (TEFF) (CD45RA+/CD45RO�) T cells on opposing ends
of the axis (Figures 5C and 5D). This differentiation in vivo is ex-
pected, as TSCM will differentiate after antigen exposure.53,54 TCM

cells showed equal CD62L, less LAG3 and CCR7 but more
TIGIT expression than TEFF (Figure S9). Higher percentages of
TCM were found in the spleens of mice treated with MP TRAC-
CAR T cells than with Control TRAC-CAR T cells (MP: 28%
[16], Control: 5% [4], No CAR Ctrl: 18% [21], p [MP versus Con-
trol] = 0.0025) (Figures 5D and 5E), indicating improved central
memory MP TRAC-CAR T cell persistence in vivo. In contrast,
4
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Figure 5. MP TRAC-CAR T cells display a central memory phenotype and better persistence in vivo after treatment of GD2+ neuroblastoma

(A) NSG mice were injected with CHLA-20 cells 1 week before TRAC-CAR T injection, upon which mice were treated with 3 million CAR+ cells by tail vein injection. IVIS

imaging was performed every 3–4 days with IL-2 supplementation via the tail vein. Mouse spleens were isolated on day 19 post-injection and stained to immunophenotype

human T lymphocyte via flow cytometry. (B) Bar graphs depicting the number of CD5/CD45+ events from isolated mouse spleens (left) and CAR+ or mCherry+/TCR�

lymphocytes within that population for mice treated with MP TRAC-CAR T, Control TRAC-CAR T, or No CAR Control (mCherry) cells (right) on log scale. Two donors, NMP =

26, NControl = 24, NNoCARCtrl = 8. (C) Marker expression UMAPs of MP, Control TRAC-CAR T cells, or No CAR Control T cells. These maps were generated using flow

cytometry to track CD45RA, CD45RO, CD62L, CCR7, LAG3, and TIGIT levels. Dot plots separate cells by condition, CD4/CD8 levels, memory or effector status (CD45RA�/
CD45RO+ [central memory (Tcm)], CD45RA

+/CD45RO� (effector (Teff)], or CD45RA
+/CD45RO+ [transitional T cells]), CD45RO, CD45RA, or LAG3 levels. (D) Representative

contour plots of the levels of CD45RA versus CD45RO separate MP TRAC-CAR T (donor E), Control TRAC-CAR T (donor F), and No CAR Control cells (donor E) by central

memory or effector status. (E) Bar graphs show the relative expression of cell populations for mice with greater than 20 transgene+/TCR� events in the spleen: Tcm or Teff. Two

donors, NMP = 10, NControl = 6, NNoCARCtrl = 6. Error bars represent mean and standard deviation. Statistical significance was determined with Brown-Forsythe and Welch

ANOVA tests using Dunnett’s T3 test for multiple comparisons; *p < 0.05, **p < 0.01, ****p < 0.0001.
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there were more TEFF cells in spleens from mice treated with Con-
trol TRAC-CAR T cells (MP: 35% [18], Control: 83% [7], No CAR
Ctrl: 54% [23], p [MP versus Control] < 0.001) (Figures 5D
and 5E).

We also serially stimulated MP or Control TRAC-CAR T cells with
CHLA-20 cells for 20 days to measure in vitro differentiation in
response to chronic antigen stimulation. Spectral flow cytometry
analysis revealed that MP TRAC-CAR T cells had increased persis-
tence of naive TSCM (MP: 52% [18], Control: 35% [14], p = 0.006)
and “transitional” (MP: 75% [6], Control: 63% [12], p = 0.045) pop-
ulations relative to Control TRAC-CAR T cells. Both groups also
separated in a reduced two-dimensional t-SNE space with naive
T cells clustering closer to MP TRAC-CAR T cells (Figure S10). Over-
all, these data indicate that MP TRAC-CAR T cells show better persis-
tence in vivo and in vitro, with enrichment of TCM cells noted in the
spleen.
Molec
DISCUSSION
We improved upon the manufacturing process of an anti-GD2 TRAC-
CART cell41 by adapting it for higher scales and enriching for desirable
stem cell/central memory and metabolic phenotypes. Via priming
T cells in medium with lower concentration of glucose, glutamine,
and potentially other key nutrients, we subsequently reprogrammed
T cell metabolism pre- and post-EP during ex vivo expansion. Our pro-
cess used GMP-compatible reagents and can accommodate the EP of
100 million T cells in a “single-shot” cartridge and up to 25 billion cells
in a “multi-shot” cartridge.55 We used CRISPR-Cas9 to insert a 3–4 kb
transgene at the TRAC locus via HDR, a process that is more scalable
than PCR-generated HDR templates due to the facile Nanoplasmid
vector amplification within recombinant bacteria.56,57 Priming
T cells with TexMACS supplemented with IL-7/IL-15 pre-EP to briefly
slow glycolysis and proliferation followed by expansion in Immunocult
XF with IL-7/IL-15 post-EP produced a final MP TRAC-CAR T prod-
uct enriched for stem cell memory T cells with a unique metabolic
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profile that showed comparable potency with TRAC-CAR T cells
generated under a single media source, but better persistence and
higher enrichment of central memory T cells in vivo, an ongoing
goal of the field of CAR T cell therapy for solid tumors.

Compared with Control cells, MP TRAC-CAR T cells had higher
populations of CD62L+/CCR7+ cells, lower lactate production,
glucose consumption, and ECAR post-manufacturing, making
them distinctly more TSCM like13,22,49 (Figures 2C, 2F, and 3A). These
cells also had lower lactate production per mole of glucose consumed
indicating a shift away from glycolysis (Figure 2C). In addition, MP
TRAC-CAR T cells had higher mitochondrial membrane potential
and mass when normalized to cell size (Figure 3B), which is often
seen in memory cells as they switch to OXPHOS and fatty acid oxida-
tion metabolism.47 Surprisingly, these cells also had lower rates of ox-
ygen consumption and a lower OCR/ECAR (Figure 3A): this finding
is consistent with another study on the effects of intermittent fasting
in vivo in murine bone-marrow T cells where similarly low ECAR and
OCR were observed along with reduced mTOR activity.58,59 The
reduced OCR and ECAR in MP TRAC-CAR T cells could be due to
reduced mTOR signaling, considering that mTOR is upregulated in
effector T cells,60 and MP TRAC-CAR T cells were less cytotoxic
than Control TRAC-CAR T cells in vitro (Figure 4), but further
studies of the role of mTOR within MP TRAC-CAR T cells are
needed.

The lower OCR, ECAR, and glucose consumption in MP TRAC-
CAR T cells may have also reduced granzyme production, media-
tors of cytotoxic activity, especially given the lower granularity
(side scatter by flow cytometry) in MP TRAC-CAR T cells. How-
ever, this reduced granularity ex vivo is overcome in vivo as both
culture conditions produced TRAC-CAR T cells that can success-
fully suppress tumor growth in a xenograft mouse model (Figure S6).
An advantage of MP TRAC-CAR T cells was the generation of more
central memory cells compared with Control TRAC-CAR T cells
in vivo (Figure 5), with better persistence in the periphery (spleen).
These cells also maintained a more naive phenotype in in vitro serial
stimulation assays, indicating delayed differentiation in MP TRAC-
CAR T cells when chronically activated (Figure S10). Given this
known limitation for retrovirally transduced anti-GD2 CAR
T cells generated with standard biomanufacturing techniques to
treat neuroblastoma,5 clinical trials with virus-free TRAC-CAR
T cells with an MP biomanufacturing process will be needed to
determine if enhanced persistence and central memory can be
achieved in patients.

OurMP process demonstrates howmodulating medium composition
and cytokines of TRAC-CAR T cells pre- and post-EP influences CAR
T cell phenotype, metabolism, and persistence post-infusion. While
our study used TRAC-CAR T cells, there were no significant differ-
ences in CD62L/CCR7 expression based on CAR or TCR expression
in our product. In addition, primary T cells undergoing MP have
similar drops in lactate production and glucose consumption
compared with control cells (Figure S11), suggesting the benefits of
8 Molecular Therapy: Methods & Clinical Development Vol. 32 June 202
metabolic are not dependent on CAR or TCR expression and may
extend to other modalities. While many studies have tuned culture
conditions of viral CAR T cells to increase metabolic fitness, TSCM

properties, and potency,16,17,25,27,29 it is unclear if these benefit
TRAC-CAR T cells, already having been shown to have more potent
memory phenotypes.41 We and others have shown the importance
of restricting glycolysis only during activation as expanding TRAC-
CAR T cells in TexMACs ablates the metabolic phenotype adopted
by MP TRAC-CAR T cells (Figure S2) and produces a lower cell yield
(Figure S3).42 Activating T cells in TexMACs rewires theirmetabolism
away from glycolysis (Figure S1) and it may be possible that factors in
Immunocult XF can uniquely enforce this phenotype post-EP. Higher
glutamine content in Immunocult-XF compared with TexMACs17

may create a glutamine deprivation during activation, which has
been shown to increase metabolic fitness of therapeutic T cells.25,26

Lower glutamine during expansion in TexMACs may force T cells
to take up more glucose to compensate and lower cell yield. In addi-
tion, while themedium choice duringTRAC-CART cell culture seems
to impactmetabolismmore than the choice of cytokines, priming anti-
GD2 TRAC-CAR T cells with IL-2 could produce similar stem cell
memory phenotypes with enhanced in vivo performance.42

Additional strategies will need to be explored to determine if these
effects can be enhanced even further. For example, treating T cells
during activation with N-acetylcysteine, a well-known antioxidant,
can promote expression of stem cell memory markers and lower
glycolysis.29 T cell metabolism could be manipulated using genetic
engineering,38 as PRODH2 overexpression can shift cells to an
OXPHOS-based metabolism with more active mitochondria and an
increased percentage of CD45RA+/CD62L� T cells post-tumor chal-
lenge.38 Transient glucose restriction and treatment of T cells with the
glutamine inhibitor DON have also both been shown to increase
TSCM surface marker expression and lower glycolysis. Advances to
TRAC-CAR T cell biomanufacturing has the capacity to produce
cell therapies with favorable biologic characteristics that could poten-
tially improve CAR T cell responses against solid tumors.

MATERIALS AND METHODS
Cell lines

GD2+ human neuroblastoma CHLA-20 cells were gifted by Dr. Mario
Otto (University ofWisconsin-Madison). These cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with
10% fetal bovine serum (FBS) (Gibco, Thermo Fisher Scientific, Wal-
tham, MA) and 1% penicillin-streptomycin (P/S) (Gibco, Thermo
Fisher Scientific). AkaLucGFP CHLA-20 cells were created through
viral transduction by Dr. James Thomson (Morgridge Institute for
Research). In short, Phoenix cells (ATCC,Manassas, VA) were grown
in DMEM with 10% FBS and 1% P/S and selected with 1 mg/mL
of diphtheria toxin (Cayman Biologics, Ann Arbor, MI) and
300 mg/mL hygromycin (Thermo Fisher Scientific). Selection for
transgene-positive cells was confirmed by flow cytometry for mouse
Lyt2 expression as a reporter gene (BioLegend, San Diego, CA).
3T3 cells were grown in DMEM with 10% FBS and 1% P/S. Cell
authentication was performed using short tandem repeat analysis
4
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(Idexx BioAnalytics, Westbrook, ME) and as per ATCC guidelines
using cell morphology, growth curves, andMycoplasma testing within
6 months using the MycoStrip Mycoplasma Detection Kit (Invitro-
gen). Cell lines were maintained in culture at 37�C in 5% CO2.

Plasmid constructs

A GD2-CAR plasmid construct encoding a 2A.14G2A-CD28-
OX40-CD3z CAR gifted by Malcolm Brenner (Baylor College of
Medicine) was synthesized and the sequence verified (GenScript,
Piscataway, NJ). A separate No CAR Control (mCherry) construct
was contained in an H2B-mCherry sequence in place of the GD2-
CAR and designed, synthesized, and sequenced the same as the
GD2-CAR plasmid (GenScript). Both transgenes were flanked by
500 bp homology arms and cloned into a pUC57 backbone,
grown in 5-alpha competent Escherichia coli (NEB, Ipswich,
MA) and purified using the PureYield MidiPrep System (Promega,
Madison, WI).41

Sanger sequencing

The GD2-CAR and No CAR Control templates had their sequences
verified via Sanger sequencing at the UW-Biotechnology Center
(Madison, WI). In brief, each construct was separated into 20 mL al-
iquots with appropriate primers for sequencing found in Table S3.
PCR was performed, the amplicons separated by gel electrophoresis,
and peaks analyzed for sequence identity.

Nanoplasmid production

Linear dsDNA templates were made via PCR and amplification was
done using the GD2-CAR or No CAR Control plasmid as a template
using Q5 Hot Start Polymerase (cat. no. M0494S, NEB) in 50 mL re-
action volumes. The cycling parameters were 98�C for 10 s, 65�C for
20 s, and 72�C for 90 s, for a total of 35 cycles. These reactions were
then pooled into 600 mL reactions for solid-phase reversible immobi-
lization (SPRI) cleanup (1�) using AMPure XP (cat. no. B23318,
Beckman-Coulter, Brea, CA) beads according to the manufacturer’s
instructions and eluted at 2 mg/mL in DNAase-free water. The linear
products were shipped to Aldevron (Fargo, ND) where they were
blunt cloned into a Nanoplasmid backbone consisting of two compo-
nents: R6K origin of replication and an anti-levansucrase RNA
sequence that enables antibiotic free selection. The RNA-OUT plat-
form prevents the expression of SacB which prevents toxicity from
Levansucrase as well as transgene silencing after genomic inser-
tion.57,61 Nanoplasmid DNA was manufactured on-site at Aldevron
and resuspended in DNAase-free water to 2 mg/mL. Nanoplasmid se-
quences can be found in Table S2. Primer sequences are shown in
Table S3.

Nanoplasmid linearization by restriction digest

To linearize Nanoplasmid for use as a dsDNA HDR template, a re-
striction digest of the Nanoplasmid constructs using SSPI-HF
(cat. no. R3132S, NEB, Ipswich, MA) was performed. Four restriction
digest batch reactions in 1.5 mL Eppendorf tubes (50 mL Nanoplas-
mid, 125 mL CutSmart buffer, 25 mL SSPI-HF enzyme, and 1050 mL
DNAase-free water for 1,250 mL total) were aliquoted (50 mL into
Molec
PCR tubes for a total of 96 reactions). These were incubated in a ther-
mocycler at 37�C for 15–60 min and heat inactivated at 65�C for
20 min according to the manufacturer’s instructions. Gel electropho-
resis was then performed on the finished product to assess if proper
cutting took place, followed by SPRI cleanups to purify and concen-
trate the material to 2 mg/mL. PCR reactions were pooled into eight
1.5 mL Eppendorf tubes (600 mL) with an equal volume of solid-phase
reversible immobilization (SPRI) (Beckman-Coulter) beads that were
incubated for 5 min at room temperature. The product was washed
twice with 70% ethanol and eluted in 75 mL of DNase-free water
and pooled into one tube (600 mL). This product was subject to a sec-
ond round of cleanups and eluted in 30 mL of water. DNA was quan-
tified using the NanoDrop2000 Qubit dsDNA Broad Range (BR)
Assay (ThermoFisher Scientific, Waltham, MA) and diluted to
2 mg/mL according to Qubit measurements.

Isolation of T cells from peripheral blood

Peripheral blood was drawn from healthy donors using an IRB-
approved protocol (UW-Madison 2018-0103). Blood was collected
into lithium heparin-coated vacutainer tubes and transferred to
50 mL conical tubes. CD3+ primary human T cells were isolated by
negative selection as per the manufacturer’s instructions (cat. nos.
15021 and 15061, RosetteSep Human T cell Enrichment Cocktail,
STEMCELL Technologies, Vancouver, Canada). T cell pellets were
resuspended in dilution medium and counted using a hemocytometer
with 0.4% trypan blue viability stain (Thermo Fisher Scientific). Cells
were then resuspended at 1 million/mL in either Immunocult-XF
T cell Expansion Medium (cat. no. 10981, STEMCELL Technologies)
or TEXMACs Cell Culture Medium (cat. no. 130-097-196, Miltenyi
Biotec, Bergisch Gladbach, Germany). T cell cultures were supple-
mented with 200 U/mL IL-2 (cat. no. 200-02, PeproTech, Cranbury,
NJ) or 10 ng/mL of IL-7 (cat. no. 207-IL-005/CF, BioTechne, Minne-
apolis, MN) and 10 ng/mL of IL-15 (cat. no. 247-ILB-005/CF,
BioTechne) and stimulated with Immunocult Human CD3/CD28/
CD2 T cell Activator (25 mL for each mL of culture, cat. nos. 10990
and 10970, STEMCELL) for 48 h or T cell TransAct (10 mL for
each mL of culture, cat. no. 130-111-160, Miltenyi Biotec) for 72 h,
respectively.

Isolation of T cells from LRS cones

Leukocyte reduction system (LRS) cones (Versiti Blood Bank, Mil-
waukee, WI) were purchased as an alternative to drawing from
healthy donors. In brief, red blood cell (RBC)-depleted peripheral
blood was flushed out of the cone with a blunt gauge needle and dilu-
tion medium (2% FBS in dPBS). The solution was diluted 1:1 with
dilution medium and 30 mL was carefully layered on top of 15 mL
of Lymphoprep (cat. no. 07811, STEMCELL Technologies) solution.
Tubes were centrifuged for 1,200� g� 20min with the brake off. The
white monolayer containing leukocytes was then gently pipetted into
a 15 mL conical tube, which was spun at 300� g� 5 min and washed
twice. T cells were then positively selected using an EasySep T cell kit
(cat. no. 17951, STEMCELL Technologies) and an EasySep Magnet
(STEMCELL Technologies) as per the manufacturer’s protocol.
T cell supernatant was collected from the magnet and the cells were
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then counted, resuspended in culture medium, and activated as
above.

T cell electroporation on the Lonza 4D Nucleofector

Following T cell activation, RNPs and DNA were electroporated into
T cells in 16 well EP cuvettes on a 4D Nucleofector X unit (cat. no.
V4XP-3032, Lonza, Walkersville, VA) using pulse code EH-115.
One million cells were electroporated per well in the cuvette. Per re-
action, a single-guide RNA (Integrated DNA Technologies, Coral-
ville, IA) specific for the TRAC locus (2 mL of 100 mM, IDT) was incu-
bated with SpCas9 (0.8 mL of 10 mg/mL, cat. no. 9212–0.25MG,
Aldevron, Madison, WI) and poly-L-glutamic acid (PGA [15,000–
50,000 kDa], 1.6 mL of 10 mg/mL solution in DNase-free water, cat.
no. 26247-79-0, Millipore Sigma, Burlington, MA) for 15 min at
37�C to form the RNP complex. During incubation, T cells were
centrifuged for 300 � g for 5 min and counted on the Countess II
FL Automated Cell Counter (Thermo Fisher Scientific) with 0.4% try-
pan blue viability stain. One million cells per reaction were then ali-
quoted and spun for 90 � g for 10 min. Following RNP incubation,
linearized dsDNA HDR templates were added to the mixtures
(2 mL) in PCR tubes and incubated for at least 5 min. Cells were
then resuspended in 17.6 mL of P3 buffer (Lonza) and transferred
to PCR tubes containing the RNP:DNA mixtures. Contents were
then transferred to cuvettes (total volume 24 mL) and electroporated.
Immediately following EP, 80 mL of Immunocult XF (STEMCELL
Technologies) or TexMACS medium (Miltenyi Biotec) with no cyto-
kineswas added to each reaction, which were then rested for 30 min at
37�C. Cells were then moved to a flat-bottom 96 well plate containing
160 mL of medium supplemented with 500 U/mL IL-2 (PeproTech,
Cranbury, NJ) or 10 ng/mL of IL-7 (BioTechne) and 10 ng/mL of
IL-15 (BioTechne). Cells were cultured for 24 h and then transferred
to 12-well plates with 1mL ofmedium and incubated at 37�C for 48 h.
The TRAC guide sequence can be found in Table S3.

T cell culture

MP or Control TRAC-CAR T cells were cultured in TexMACS or Im-
munocult XF medium supplemented with IL-7/IL-15 (10 ng/mL) or
IL-2 (200 U/mL) at 1 million cells/mL, respectively, for the first
3 days. After EP, both MP and Control TRAC-CAR T cells were
cultured in Immunocult XF for 7 days with IL-7/IL-15 (10 ng/mL)
or IL-2 (500 U/mL). Every 2 days, cells were centrifuged for
300 � g for 5 min and counted on the Countess II FL Automated
Cell Counter (ThermoFisher, Waltham, MA) with 0.4% trypan blue
viability stain. Cells were then resuspended in culture medium at 1
million cells/mL and the process was repeated on days 5 and 7
post-EP.

Scaled-up GMP-compatible T cell manufacturing

For GMP-compatible experiments, T cells were isolated and acti-
vated and cultured with either TransAct in TexMACS supple-
mented with IL-7 (10 ng/mL) or IL-15 (10 ng/mL) or with Immu-
nocult XF activator and medium supplemented with 200 U/mL
IL-2. Following activation, 20–50 million cells were electroporated
on the CTS Xenon Electroporation System (Thermo Fisher Scienti-
10 Molecular Therapy: Methods & Clinical Development Vol. 32 June 20
fic). TRAC sgRNA (1 mL/1e6 cells) (IDT, Coralville, IA) and SpCas9
(0.8 mL/1e6 cells) (Aldevron, Madison, WI) were mixed and incu-
bated for 15 min at 37�C. Following incubation, linearized Nano-
plasmid template 1 mL/1e6 cells) was then added to the RNP mix-
tures. Cells were spun, counted, spun again for 5 min at 300 � g,
and resuspended in enough Genome Editing Buffer (cat. no.
A4998001, Thermo Fisher) for a final volume of 1 mL when com-
bined with the RNP:DNA mixture. Cells, DNA, and RNPs were
then added together, loaded into a single-shot cuvette (cat. no.
A50305, Thermo Fisher), and electroporated on the Xenon unit at
1,720 V with a pulse width of 20 ms. Cells were then transferred
to a T-25 flask with 4 mL of Immunocult XF medium containing
no additives. After 30 min of rest at 37�C, Immunocult XF medium
containing either IL-7 (10 ng/mL) with IL-15 (10 ng/mL) or
500 U/mL IL-2 was added to the T-75 flasks to bring the final con-
centration to 4 million cells/mL. After 24 h, cells were transferred to
a G-Rex 6M plate (10–e6 per well) (cat. no. P/N 80660M, Wilson
Wolf, New Brighton, MN) and the final volume brought to
100 mL per well. Cells were then cultured at 37�C for 6 days, after
which 75 mL of medium was aspirated, cells were collected, spun for
300 � g for 5 min, and counted for use in endpoint assays.

Flow cytometry analysis

CARwas detected using a 1A7 anti-14G2A antibody (National Cancer
Institute, Biological Resources Branch), conjugated to APC using a
Lightning Link APC Antibody Labeling kit (cat. no. 705-0010, Novus
Biologicals). TCR was detected using an anti-human TCR a/b anti-
body conjugate to BV421 (BioLegend). Flow cytometry to assess
CAR and TCR positivity was performed on day 8 of manufacturing
on an Attune NxT flow cytometer (Thermo Fisher Scientific). Immu-
nophenotyping of cells was performed on day 10 ofmanufacturing us-
ing a spectral immunophenotyping panel on an Aurora spectral
cytometer (Cytek, Fremont, CA). In brief, cells were plated in a
96-well round bottom plate (100k for CAR/TCR and 250k for spectral
immunophenotyping), washed with 200 mL of PBS, and spun at
1,200 � g for 1 min, twice. Cells were then stained for viability with
either GhostRed 780 (cat. no. 50-105-2988, Tonbo Biosciences) or
Live-Dead Blue (cat. no. L23105, Thermo Fisher Scientific). For
CAR/TCR staining, 1 mL of Ghostred 780 was added to 10 mL of
PBS to make a stock solution, 100 mL of stock solution was added to
each sample and incubated for 30 min in the dark. For spectral flow
staining, Live-Dead Blue stain was resuspended in 50 mL of DMSO,
1 mL added per 1mL PBS tomake a stock solution, and 200 mL of stock
solution was added to each sample and incubated for 30 min in the
dark. After viability staining, samples were washed twice and blocked
for 30 min with 50 mL FACS buffer (0.5% BSA in PBS) with TruStain
FcX solution (0.5mL/sample) (cat. no. 422301, BioLegend). Antibodies
were then added to 100mLof BDBrilliant Stain Buffer (cat. no. 659611,
BD Biosciences, Franklin Lakes, NJ) at the optimized amounts found
inTable S4 and incubated for 1 h. Cells were thenwashed, resuspended
in 200 or 75 mL of FACS buffer, and analyzed on the Attune or Aurora,
respectively. For spectral immunophenotyping, we used CD4, CD8,
TCR, and CAR positivity to define populations and for all markers
cells were gated by relative size, shape, singlets, viability, TCR
24
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negativity, and CAR transgene positivity to find an analyzable popu-
lation of viable CAR T cells. All antibodies are listed in Table S4.
In vitro cytotoxicity assay on IncuCyte

A total of 5,000 AkaLUC-GFP CHLA-20 cells was seeded in triplicate
on 96-well plates and incubated for 24 h at 37�C. Twenty-four hours
later 50,000, 25,000, or 10,000 CAR+ T cells from day 10 of
manufacturing were added to each well for effector:target ratios of
5:1, 2.5:1, or 1:1. The plate was centrifuged for 5 min at 100 � g and
then placed in the IncuCyte S3 Live-Cell Analysis System (Sartorius,
Gӧttingen, Germany) and stored at 37�C, 5% CO2. Images were taken
every 3 h for 48 h. Green object countwas used to calculate the number
of cancer cells in each well and fluorescent images were analyzed with
IncuCyte Base Analysis Software.
In vivo infusion into mice with human xenografts

All animal experiments were approved by the University of
Wisconsin-Madison Animal Care andUse Committee (ACUC proto-
col M005915). Male and female NOD-SCID-gc�/� (NSG) mice
(9–25 weeks old; Jackson Laboratory, Bar Harbor, ME) were subcuta-
neously injected with 10 million AkaLUC-GFP CHLA-20 GD2+ hu-
man neuroblastoma cells in the flank to establish tumors. After 6 days,
tumor size was verified using bioluminescence measurements on the
In Vivo Imaging System (IVIS) (PerkinElmer, Waltham, MA) and 3
million CAR+ T cells from day 10 of manufacturing were injected
into the tail vein of each mouse. Mice were imaged on the IVIS every
3–4 days after being sedated with isoflurane and intraperitoneal injec-
tions of�120 mg/kg D-luciferin (GoldBio, St. Louis, MO). Mice were
injected with 100,000 IU of human IL-2 (National Cancer Institute,
Biological Resources Branch) subcutaneously on day 0 and following
imaging. To quantify the total flux in images, a region of interest was
drawn around established tumors on day 0 and calculated by Living
Image Software (PerkinElmer; total flux = radiance (photons/s) in
each pixel integrated over ROI area (cm2) � 4p). The minimum
flux value was subtracted from each image to normalize for back-
ground signal.
Flow cytometry of splenocytes

Spleens were removed, mechanically dissociated, and filtered using a
Corning 70 mM cell strainer. Suspensions were centrifuged for 10 min
at 300 � g and digested with ACK lysing buffer (Lonza). The cells
were then washed with PBS, centrifuged for 10 min at 300 � g, and
resuspended in 1 mL of PBS. Cells were counted using trypan blue
exclusion on the Countess II FL Automated Cell Counter. A total
of 1 � 106 total cells was then added to 96-well round bottom plates
and stained for a spectral immunophenotyping panel for analysis
on an Aurora spectral cytometer (Cytek). In brief, samples were
washed with PBS, stained with Live-Dead Blue for 30 min, blocked
with FACS buffer and Trustain FcX, and incubated with the spectral
immunophenotyping panel overnight. For spectral immunopheno-
typing, we used CD4, CD8, TCR, and CAR positivity to define pop-
ulations and for all markers cells were gated by relative size, shape,
singlets, viability, CD5 positivity, CD45 positivity, TCR negativity,
Molecu
and CAR transgene positivity to find an analyzable population of
viable CAR T cells. All antibodies and amounts are listed in Table S4.
In vitro serial stimulation and flow cytometry analysis of

lymphocytes

We added 120,000 CHLA-20 cells in duplicate to 6-well plates. We
then seeded 120,000 CAR+ T cells from day 10 of manufacturing
and incubated cells at 37�C, 5% CO2. A total of 240,000 CHLA-20
cells was then added every 2–3 days for up to 20 days when the wells
were harvested and stained for flow spectral cytometry. In brief,
CHLA-20/CAR T cell samples were washed with PBS, stained with
Live-Dead Blue for 60 min, blocked with FACS buffer and Trustain
FcX, and incubated with the spectral immunophenotyping panel
overnight. For spectral immunophenotyping, we used TCR negativity
to define populations and all markers cells were gated by relative size,
shape, singlets, viability, CD5 positivity, CD45 positivity, and TCR
negativity to find an analyzable population of viable T cells. All anti-
bodies and amounts are listed in Table S4.
Cytokine analysis

The supernatant of CAR T and cancer co-culture systems was
measured for their expression of cytokines using the LegendPlex Hu-
man Essential Immune Response Panel (cat. no. 740930, BioLegend)
(IL-4, IL-2, CXCL10 [IP-10], IL-1b, TNF-a, CCL2 [MCP-1], IL-17A,
IL-6, IL-10, IFN-g, IL-12p70, CXCL8 [IL-8], TGF-b1 [free active
form]). In brief, 50,000 AkaLUC-GFP CHLA-20 neuroblastoma cells
were plated in 24-well plates with the addition of 250,000 CAR T cells
24 h later. Suspension cells were harvested 24 h later, spun for 5min at
300� g, cells counted, the supernatant flash frozen in liquid nitrogen,
and stored at�20 C. Medium samples were thawed and the manufac-
turer’s protocol for bead staining and analysis on an Attune NxT Cy-
tometer (Thermo Fisher Scientific ) was followed. In brief, standards
for cytokines were prepared using 1:4 serial dilutions and co-culture
supernatant added directly to a 96-well V-bottom plate. Mixed beads
were added to each well and incubated on a plate mixer for 2 h. The
plate was then washed twice, detection antibody added to each well,
incubated for 1 h, and Streptavidin A (SA)-PE was added to each
well. The plate was incubated for 30 min, washed twice, and analyzed
on the Attune Cytometer. Data were exported to the LEGENDplex
Data Analysis Software Suite where cytokine concentration was
calculated. The data were exported to Excel, and cytokine concentra-
tion was normalized to the total number of T cells in co-culture.
Mitochondrial staining

The mitochondrial mass and membrane potential of T cells was
measured by performing flow cytometry on cells stained with
MitoTracker Green (cat. no. M7514, Thermo Fisher Scientific) and
tetramethylrhodamine methyl ester perchlorate (TMRE) (Thermo
Fisher Scientific) dyes. In brief, a stock solution of PBS containing
0.08 mL/mL of MitoTracker Green and 0.1 mL/mL of a 10 mM
TMRE dye stock was created (200 mL per sample of 250,000
T cells). Cells were stained for 20 min at 37�C, washed, and resus-
pended in 75 mL of FACS buffer (0.5% BSA in PBS).
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Metabolite analysis

Medium samples were taken from CAR T cell cultures on day 10 of
manufacturing and frozen at �20�C for future analysis. The
Glucose-Glo and Lactate-Glo kits (cat. nos. J6021 and J5021, Prom-
ega, Madison, WI) were used to measure the apparent glucose and
lactate concentrations in medium samples according to the manufac-
turer’s protocol. Raw luminescence data were converted to concentra-
tion using the metabolite standards.

Extracellular flux assay (Seahorse assay)

The OCR and ECAR were measured following the manufacturer’s in-
structions for the Seahorse XF Cell Mito Stress Test Kit (Agilent,
Madison, WI). In brief, 5 � 105 T cells were resuspended in RPMI
XF medium supplemented with 10 mM glucose and 2 mM glutamine
and plated in a poly-L-lysine-coated XF96 plate. The T cell culture
plate was centrifuged at 200� g for 1 min (no brake) and checked un-
der the microscope to ensure even adhesion of T cells. T cells were
then kept in a non-CO2 incubator for at least 1 h before running
the assay. The OCR and ECAR under basal conditions and in
response to oligomycin (2.5 mM), fluorocarbonylcyanide-phenylhy-
drazone (1 mM), and rotenone/antimycin A (0.5 mM) were measured
using an XF96 Extracellular Flux Analyzer (Seahorse Bioscience,
Madison, WI). Data was exported into Excel (v.2311) using Agilent
software and converted into graphs.

Spectral flow cytometry data analysis

Analysis of spectral flow cytometry data was performed using Cytek’s
SpectroFlo program, Single positive controls for each color were
collected and analyzed in SpectroFlo for positive and negative
populations. SpectroFlo’s unmixing algorithm was then used to
compensate for spillover and autofluorescence of cells. Data were
then exported to FlowJo (v.10.9.0) where samples were gated for
non-debris, singlets, and live cells. TCR and CAR positivity were
used to gate cell populations for in vitro samples and CD45, CD5,
TCR, and CAR positivity for in vivo T cell samples. Median fluores-
cent intensity for each sample was calculated and input into Excel.
Representative plots were generated in FlowJo using fluorescence
minus one controls to set positive gates.

Optical metabolic imaging

As described previously,62,63 200,000 CAR T cells in 75 mL fresh me-
dium were plated on a poly-D-lysine-coated 35 mm glass-bottom im-
aging dish (MatTek, Ashland, MA). Autofluorescence signals from
NAD(P)H and FAD were imaged on a two-photon microscope
(Ti-E, Nikon, Tokyo, Japan) at 750 nm excitation (440/80 nm emis-
sion) and 890 nm excitation (550/50 nm emission), respectively.
Fluorescence decay was collected with time-correlated single-photon
counting electronics (SPC 150, Becker & Hickl) and fitted to a two-
component exponential decay in SPCImage (v.8.0, Becker and Hickl)
to extract mean fluorescence lifetime (tm) and fractional contribution
of short- and long-lifetime components (a1 and a2). Single-cell nu-
cleus and cytoplasmwere manually segmented with a customCellPro-
filer pipeline and applied to the corresponding OMI images to quan-
tify mean values of OMI parameters for each cell cytoplasm.
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Data analysis and software

All data analyses were performed in GraphPad Prism (v.10.0.2) and
Microsoft Excel. Statistical tests were done in GraphPad Prism and
indicated in the figure legends. Nanoplasmid sequences were de-
signed in Benchling. FlowJo was used to analyze .fcs files exported
from SpectroFlo and Attune NxT software. Representative flow plots
were exported from FlowJo. UMAPs were created using the
DownSample and UMAP_R plugins from to FlowJo to select for
and cluster pooled data in a concatenated .fcs file. Figures were
created and organized using Adobe Illustrator (v.28.0). A p value
less than 0.05 was defined as significant. Cohen’s effect size was calcu-
lated by dividing the difference between treated and control group
means and dividing by the pooled standard deviation of them.
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