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Shareable abstract (@ERSpublications)
Rifampicin is used for the treatment of Mycobacterium avium complex pulmonary disease, but
pharmacokinetic and pharmacodynamic studies suggest that rifampicin cannot have therapeutic
utility. We need to find better alternatives, using PK-PD science. https://bit.ly/3PUGvbV
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Current rifampicin/ethambutol/azithromycin regimens for the treatment of Mycobacterium avium complex
pulmonary disease (MAC-PD) are long, toxic and yield relatively poor outcomes [1]: a meta-analysis
lumping nodular bronchiectatic disease and fibro-cavitary disease reported a 65% prolonged culture
conversion rate; following initially successful treatment, recurrence rates of 30% have been reported [2].

The MAC-PD literature often reports an apparent disconnect between in vitro susceptibility of causative
bacteria and clinical outcomes, especially for classic antituberculosis drugs such as rifampicin and
ethambutol [3]. However, a review of published minimal inhibitory concentration (MIC) data,
pharmacokinetic/pharmacodynamic (PK-PD) parameters and outcomes shows that there is no such
disconnect for rifampicin. Three distinct lines of evidence show that rifampicin is simply inactive in
MAC-PD treatment. This needs to become common knowledge amongst pulmonologists, infectious disease
physicians and clinical microbiologists, as well as in the nontuberculous mycobacteria (NTM) drug
discovery community.

First, MIC distributions of rifampicin against Mycobacterium tuberculosis, Staphylococcus aureus and M.
avium (figure 1) show that rifampicin MICs against M. avium (as a representative of MAC) are far above
current clinical breakpoints for S. aureus (0.06 mg·L−1; www.eucast.org) and M. tuberculosis (0.5 mg·L−1

[4–6]). It has been suggested that this low intrinsic activity is overcome by synergy with other drugs in the
regimen, i.e. ethambutol and macrolides. Yet in vitro studies that show this synergy also show that even in
combinations, rifampicin MICs never come below 0.5 mg·L−1 and still preclude meeting
pharmacodynamic targets [7, 8]. The clinical relevance of this synergy remains unproven.

Second, PK-PD studies preclude a role of rifampicin in MAC-PD treatment. Recently, a target area under
the time–concentration curve (AUC)/MIC ratio of >197.3 was identified as driving efficacy of rifampicin
against MAC [9]. Given the previously recorded rifampicin mean AUC of 68.42 mg·h·L−1 in MAC-PD
patients [8], only MAC isolates with MICs of (68.42/197.3) 0.35 mg·L−1 or lower can be successfully
treated with rifampicin. The median MIC of 4 mg·L−1 (figure 1) shows that AUCs as high as (197.3×4)
789.2 mg·h·L−1 are needed for rifampicin to become effective; even the intolerable 50 mg·kg−1 dose in
tuberculosis patients failed to achieve such exposures, with a mean AUC of 571 mg·h·L−1 [10]. Even
when accounting for synergy, these pharmacodynamic targets are not met [7, 8].
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The hope that rifampicin accumulation at the site of disease and hypothetical physiological properties of MAC
in lung lesions may compensate for the unachievable AUC/MIC ratio is unsubstantiated. In fact, a recent
hollow fibre model study of M. avium pulmonary disease, which accounted for site-of-infection-specific (i.e.
epithelial lining fluid) and intracellular pharmacokinetics of rifampicin, found that omission of rifampicin from
the treatment regimen did not have any impact on antimycobacterial activity [11].

Third, two clinical studies in patients with nodular bronchiectatic MAC-PD have now suggested, in line with
the hollow fibre model observation, that two-drug ethambutol/macrolide regimens can be as efficacious as the
classic rifampicin-containing three-drug regimen [12, 13]. Both studies noted that high bacterial loads
(cavities, smear positivity) increased the risk of treatment failure [12, 13], but the same is true for the
rifampicin-containing regimen [14], so that is not a consequence of omitting rifampicin. Two-drug regimens
did not present an increased risk for the emergence of macrolide resistance, neither in the clinical studies
[12, 13], nor in the hollow fibre model [11]. For MAC-PD with high bacterial loads, three-drug regimens are
likely required, but the third drug should not be rifampicin. For MAC-PD with low bacterial loads, as in most
patients with nodular bronchiectatic disease, a randomised trial of ethambutol/azithromycin versus rifampicin/
ethambutol/azithromycin treatment is currently ongoing (ClinicalTrials.gov identifier: NCT03672630). This
will more definitively show whether rifampicin adds any activity to MAC-PD regimens.

In addition to being inactive in itself, rifampicin also negatively affects the pharmacokinetics of macrolides
and other antibiotics via CYP3A4 induction; rifampicin reduces azithromycin exposure by 30% and
clarithromycin exposure by 65% [8]. Azithromycin peak blood concentrations >0.4 mg·L−1 are known to be
associated with good treatment outcomes in MAC-PD [15]. Concurrent administration of rifampicin leads to
mean azithromycin peak concentrations of 0.27±0.18 mg·L−1, as compared to the more favourable
0.35±0.26 mg·L−1 in the absence of rifamycins in MAC-PD patients [8]. The clinical significance hereof has
been contested, using azithromycin’s well-known accumulation in the lung and inside macrophages as an
argument. Yet this accumulation is a result of a gradient, resulting from transporters and passive diffusion,
evidenced by stable blood:epithelial lining fluid and blood:alveolar macrophage concentration ratios [16]. The
lower blood concentrations thus, in turn, also lead to lower azithromycin concentrations at the site of infection.

There is no rationale for NTM disease and treatment being immune to the principles of PK-PD science.
Rather, we should come to the sobering realisation that rifampicin appears in MAC-PD treatment
guidelines but does not add any appreciable activity to the regimens. The so-called discrepancy between
in vitro and in vivo activity is no more: rifampicin is inactive in vitro and in vivo against MAC. The time is
now to consider removing rifamycins from MAC-PD therapies.

Along the same lines, we should reconsider the true role and optimal dosing of all other commonly applied
drugs, particularly ethambutol, clofazimine and azithromycin. We need to move forward and improve
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FIGURE 1 Rifampicin minimal inhibitory concentration distributions for Mycobacterium avium in comparison to
Mycobacterium tuberculosis and Staphylococcus aureus. Breakpoints for S. aureus and M. tuberculosis are 0.06
and 0.5 mg·L−1, respectively. Data from [4–6].
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regimens using PK-PD science and rational regimen design. For azithromycin and clofazimine, peak serum
levels are predictive of good treatment outcomes [15, 17], providing the incentive to explore higher dosing
for MAC. Omitting rifampicin from regimens will be an important first step to optimising azithromycin
exposure [8].

As a short-term solution, could any repurposed antibiotics or clinical development candidates replace
rifampicin against MAC-PD? A reasonable target product profile may include oral bioavailability or
delivery via inhalation, strong bactericidal and sterilising activity, acceptable tolerability, absence of
pharmacokinetic interactions with other relevant antimycobacterial drugs and 6-month treatment duration to
deliver cure within a combination. Several repurposed oral and inhaled drugs either are in clinical
development for NTM disease or exhibit attractive PK-PD properties and could be considered: high-dose
clofazimine, SPR720 by Spero Pharmaceuticals, omadacycline by Paratek Pharmaceuticals, epetraborole by
AN2 Therapeutics, amikacin liposome inhalation suspension by Insmed and inhaled clofazimine by
MannKind (for all trials, see https://clinicaltrials.gov/). Whether these new candidates for inclusion in
regimens meet the target product profile and achieve PK-PD targets at tolerated doses remains to be
determined.

As a longer-term strategy, chemical optimisation of the rifamycins to overcome intrinsic resistance could be
considered to rehabilitate the class for the treatment of MAC-PD. This approach has delivered promising
preclinical results for Mycobacterium abscessus [18]. A similar strategy could be applied for other
bactericidal drugs, such as fluoroquinolones, suffering from unfavourable MIC distributions in MAC [4].

In summary, the role of rifampicin in the treatment of MAC-PD is questionable and not supported by
PK-PD science; its in vitro activity is low, PK-PD targets cannot be attained by safe and tolerable doses
and preclinical (as well as clinical) studies suggest that it does not add any activity to the ethambutol/
azithromycin backbone and does not prevent the emergence of macrolide resistance. Its negative
pharmacokinetic interactions with macrolides are another important reason to reconsider its place in
treatment regimens. Its simple omission, thus two-drug regimens, may be suitable for MAC-PD with low
bacterial loads. High failure rates suggest that three-drug regimens are required for MAC-PD with high
bacterial loads and in those a replacement for rifampicin should be sought. Potential replacements should
meet agreed target product profiles and adhere to PK-PD science.
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