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ABSTRACT
◥

Resistance to androgen-deprivation therapies leads to metastatic
castration-resistant prostate cancer (mCRPC) of adenocarcinoma
(AdCa) origin that can transform into emergent aggressive variant
prostate cancer (AVPC), which has neuroendocrine (NE)-like
features. In this work, we used LuCaP patient-derived xenograft
(PDX) tumors, clinically relevant models that reflect and retain key
features of the tumor from advanced prostate cancer patients. Here
we performed proteome and phosphoproteome characterization of
48 LuCaP PDX tumors and identified over 94,000 peptides and
9,700 phosphopeptides corresponding to 7,738 proteins. We com-
pared 15 NE versus 33 AdCa samples, which included six different
PDX tumors for each group in biological replicates, and identified

309 unique proteins and 476 unique phosphopeptides that were
significantly altered and corresponded to proteins that are known to
distinguish these two phenotypes. Assessment of concordance from
PDX tumor-matched protein and mRNA revealed increased dis-
sonance in transcriptionally regulated proteins in NE and metab-
olite interconversion enzymes in AdCa.

Implications: Overall, our study highlights the importance of
protein-based identification when compared with RNA and pro-
vides a rich resource of new and feasible targets for clinical assay
development and in understanding the underlying biology of these
tumors.

Introduction
Prostate cancer is the most diagnosed cancer in men in the United

States. Early detection via regular screening of serum prostate-specific
antigen (PSA) levels has facilitated prostate cancer diagnosis in organ-
confined tumors before cancer spreads (1). If a patient presents with
aggressive prostate cancer, a classic upfront therapy involves radiation
or surgery with androgen-deprivation therapy (ADT; refs. 2, 3).
Although ADT response is effective initially, tumors progress to a
more aggressive disease known as metastatic castration-resistance
prostate cancer (mCRPC; refs. 3, 4). Treatment of mCRPC with
adenocarcinoma (AdCa) features consists of hormonal therapies such
as enzalutamide, abiraterone acetate, darolutamide, and apalutamide;
however, these therapies can often induce novel phenotypes such as
aggressive variant prostate cancer (AVPC). AVPC has genetic aberra-
tions, including PTEN and RB1 loss, TP53mutations, and diminished

androgen receptor (AR) signaling activity. Several definitions of AVPC
have been described including treatment-emergent small cell carci-
noma, double-negative prostate cancer, amphicrine, or neuroendo-
crine prostate cancer (NEPC; refs. 5, 6). The emergence of these drug-
resistant phenotypes creates a large unmet medical need to identify
new protein or phosphoprotein drug targets for potential biomarker
and therapeutic development for this subset of CRPC patients.

Analysis of the genomic aberrations has contributed to the under-
standing of drug resistance mechanisms in prostate cancer. These
include mutations and focal amplifications in the AR, PIK3CA/B
mutations, fusions in BRAF/RAF1, mutations in APC, mutations and
amplifications in CTNNB1, focal homozygous deletions in
ZBTB16/PLZF, biallelic loss, inactivation and somatic point mutations
in BRCA1 and BRCA2, and biallelic loss and point mutations in
ATM (7). Additional alterations among other biologically relevant
genes include point mutations of SPOP, FOXA1, and TP53, copy-
number alterations in MYC, RB1, PTEN, and CHD1, and E26 trans-
formation-specific (ETS) fusions (8–15). The identification of such
alterations has paved the way to define pathologic categorizations of
mCRPCbetweenARþ (AdCa) andAR� (NE) disease states. These two
types of metastatic phenotypes show distinct pathologic features,
which in most cases are consequences of the implementation of
different treatment modalities with no curative therapies available.
In solid tumors, prostate cancer’s nonsynchronous mutational rate is
in the lower 25% quartile compared with esophageal and colorectal
tumors, which are in the higher 75% quartile (7, 16–22). Furthermore,
somatic alterations, such as in the PI3K pathway, are present in 49%
(73/150) of the mCRPC-afflicted patients, and still half of this pop-
ulation likelywill fail to respond if treatedwithPI3Kinhibitors (7, 9, 23).
Overall, this information indicates that the genomic feature of prostate
cancer explains some of the tumor progression and therapy responses
but dismisses key phenotypic functional expression coming from
proteins that may be driving the biology and drug resistance.

Several patient-derived xenograft (PDX) tumor models have been
developed in prostate cancer reflecting different clinical subtypes
including the typical prostate AdCa and the atypical patterns of
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progression known as AVPC that includes tumors with NE features.
These models have been shown to closely reflect the characteristics
of the heterogeneity of the patient tumor population, maintaining
histopathologic architecture, and the genomic footprint of the
tumors from which they were derived (24–28). The LuCaP series
has been extensively characterized, including analyses of genomic
alterations, transcriptomic profiles, and single tandem repeats (29).
However, little is known about the proteomic profiles of these
tumors and, specifically, post-translational modifications of these
proteins such as phosphorylation.

Recent technological advancements in mass spectrometry (MS)-
based proteomics have allowed an increase in protein detection,
coverage, and quantification (30, 31). Here, we used Field Asymmetric
IonMobility Spectrometry (FAIMS; ref. 31) technology andperformed
a global proteome and phosphoproteome analysis of the LuCaP PDX
series to elucidate proteome-wide signatures and unique activated
pathways between AdCa andAVPC (with an emphasis onNEPC).We
have developed the largest proteome and phosphoproteome database
of prostate cancer PDX models, which provides an extensive list of
protein targets for drug development, predicted kinase activities,
proteins found in blood (plasma), proteins that are secreted, surface
proteins, or proteins within biological pathways.Most importantly, we
integrated mRNA sequencing data from the same PDX models with
our proteomic data and evaluated the concordance between protein
and mRNA. The results revealed dissonance between protein and
mRNA expression of some important biological targets that would
have been dismissed if only mRNA was analyzed from these tumors.
Overall, this large proteomic and phosphoproteomic resource will
further our understanding of the underlying cell signaling mechan-
isms, identification and functional validation of novel drug targets, and
future biomarker development in prostate cancer.

Materials and Methods
LuCaP PDX tumors

A total of 48 PDX tumors from the LuCaP series (29) representing 18
LuCaP PDX models—6 AdCa noncastrated (NCR) mice, 6 AdCa cas-
trated (CR) mice, and 6 neuroendocrine-like (2–3 independent tumors
samples per model)—were used for this analysis. These PDXs were
obtained in a frozen pellet that originated from subcutaneously imp-
lanted patient-derived advanced prostate cancer from primary tumors
andmetastatic sites as described previously (29). The age and passage of
these tumors are Supplementary Table S1 and the characterization of
these PDX tumors shall be found in Nguyen and colleagues (29).

Cell preparation and protein extraction from PDX tumors for
proteome and phosphoproteome enrichment

Approximately 150 mg of each tumor was processed as previously
described (32). The lysis buffer contained 7 mol/L urea, 2 mol/L
thiourea, 0.4 mol/L Tris pH 8.0, 20% acetonitrile (ACN), 10 mmol/L
TCEP, 25 mmol/L chloroacetamide, Thermo Scientific’s Halt protease
inhibitor cocktail 1� concentration (originally 100�), and phospha-
tase inhibitors (HALT from Thermo). After adding 500 mL of the lysis
buffer to the tumor pieces, samples were placed on ice, then vortexed
and centrifuged at 12,000 � g for 10 minutes. The samples were then
sonicated for 5 seconds using a probe sonicator set at 30% amplitude
and kept on ice during the entire sonication process. After sonication,
the samples were incubated for 0.5 hours at 37�C, then at room
temperature for 15 minutes to reduce and alkylate cysteines and
centrifuged at 12,000 � g for 10 minutes at 18�C. Protein concentra-
tion was measured using Bradford Assay (Bio-Rad).

We then used 2.5 mg of protein, added 10 mg of 20 mg/mL lysyl
endopeptidase (WAKO, 125-05061) and incubated the samples at
room temperature for 5 to 6 hours at pH7.4. Then adjusted pH to 7.5 to
8.0 using 1 mol/L Tris, pH 11. Then, we added Worthington TPCK-
treated trypsin (1 mg/mL) dissolved in 1 mmol/L HCl supplemented
with 20mmol/L of CaCl2 to prevent autolysis. The trypsinmixture was
incubated at 4�C for about 1 hour prior to adding to the protein lysate.
Samples were diluted 5-fold by adding 10mmol/L Tris, pH 8.0 to dilute
urea <2 mol/L followed by Lys-C and trypsin addition at 1:50 enzyme/
protein ratio overnight at 37�C.

After incubation, samples were acidified with TFA to pH 3 or
less. Two sequential reverse-phase extraction methods were used
first. Hydrophilic–lipophilic balance (HLB) was used first and then
the flow through from HLB and wash fractions was vacuum dried,
resuspended, and cleaned up again using a C18 solid phase extrac-
tion method. The peptides were combined from HLB and C18
cleanups, and peptide yield was measured using the BCA peptide
assay (Thermo Fisher Scientific, cat no. 23275). Sample digestion
efficiency prior to MS analysis was inspected by evaluating samples
before and after enzymatic digestion using SDS-PAGE gels and
again after MS analysis.

Mass spectrometry
1 mg of purified peptides was submitted for MS analysis (proteome)

and 2 mg of peptides was kept and used for enrichment of phospho-
peptides using the Sequential Metal Oxide Affinity Chromatography
(SMOAC) Kit (Thermo Fisher; cat no. A32993, A32992). The quan-
titative analysis of phosphoserine, phosphotyrosine, and phospho-
threonine peptides by quantitative MS was performed as previously
described (33, 34) with minor modifications in-tandem using the
SMOAC assay. The desalted peptide mixture was fractionated
online using EASY-spray columns (25 cm3 � 75 mm ID, PepMap
RSLC C18 2 mm). The gradient was delivered by an easy-nano Liquid
Chromatography 1000 ultra-high-pressure liquid chromatography
system (Thermo Scientific). Tandem mass spectrometry (MS/MS)
spectra were collected on the FAIMS TRIBRID mass spectrometer
(Thermo Scientific). Samples were run in biological replicates, and raw
MS files were analyzed using MaxQuant version 1.4.1.2 (35). MS/MS
fragmentation spectrawere searched usingANDROMEDAagainst the
UniProt human reference proteome database with canonical and
isoform sequences (downloaded August 1st, 2021, from http://uni
prot.org). N-terminal acetylation, oxidized methionine, and phos-
phorylated serine, threonine, or tyrosine were set as variable mod-
ifications, and carbamidomethyl cysteine (�C) was set as a fixed
modification. The false discovery rate was set to 1% using a composite
target-reversed decoy database search strategy. Group-specific para-
meters included max missed cleavages of two and label-free quanti-
tation (LFQ) with an LFQ minimum ratio count of one. Global
parameters included match between runs with a match time and
alignment time window of 5 and 20 minutes, respectively, and match
unidentified features selected.

MS preprocessing of proteomic and phosphoproteomic data
Maxquant imputed peptide-level raw intensity files were obtained

for each sample after theMS runs. At least two peptides had tomap to a
protein in order to be included in our data analysis for the proteome.
We first summed the intensity of duplicated peptides based on the
peptide sequences. In considering peptides with missed cleavages, we
identified and then summed groups of peptides of variable length but
had identical base sequences. We then mapped the peptide sequences
to the most likely protein candidate based on algorithms by
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MaxQuant (35). We then averaged the intensity of the peptides that
belonged to the same protein. To note, this averaging was per-
formed only for the proteomic data and not the phosphoproteomic
data. At this stage, we aggregated all samples and then conducted
variance stabilization normalization (VSN) for each data set (36, 37).
We omitted one 208.1 NEPC sample due to the unexpected exp-
ression of AR, which is normally detected only in AdCa. To
nominate statistically significant proteins or phospho-peptides, we
utilized reproducibility-optimized test statistic (ROTS; ref. 38).
FDR-adjusted P values were computed which we deemed less than
0.05 as statistically significant. This was used as the threshold for
differentially represented features in AdCa or NEPC (Supplemen-
tary Tables S4 and S9). We performed this for both proteomic and
phosphoproteomic outputs. Hierarchical clustering was performed
using the Cluster 3.0 program with the Pearson correlation and
pairwise complete linkage analysis (39). Java TreeView was used to
visualize clustering results (40). Quantitative data for each peptide
and phosphopeptide can be found in Supplementary Tables S2 and
S7, respectively, and upstream mapping for each phosphopeptide
along with kinase substrate enrichment analysis (KSEA) can be
found in Supplementary Tables S10 and S11.

Proteomic and transcriptomic correlation
mRNA data were obtained from the same PDX samples (41) in

which we averaged, by sample ID, the log2 FPKM data for the
mRNA sequencing or the VSN normalized protein abundance data.
We only included genes that were detected in both data sets and
then conducted Spearman correlations between the mRNA expres-
sion and protein abundance levels for each gene across all samples.
Concordance analysis was done by comparing the hyperabundant
proteins from the NE and AdCa groups with the mRNA levels in the
transcriptomic data. Concordance indicates that the protein and
mRNA fold change is greater than 1.5. Nonconcordance was
defined as proteins that are greater than 1.5-fold change, with
mRNA between �1.5- and 1.5-fold change. Discordance is defined
as proteins that are 1.5-fold change hyper abundant, with mRNA
lower than �1.5-fold change. All were statistically significant with
an adjusted P value of <0.05.

Protein annotations and databases
We analyzed protein functional annotations using Human Prote-

ome Atlas (HPA version 22.0 http://www.proteinatlas.org/) that has
categorized blood proteins, secretome (42) and surfaceome (43).
Ontologies were identified using gene set enrichment analysis (GSEA
version 4.2.1). Potential drug targets were further mapped to gene
symbol, to PhosphoSitePlus (44), Therapeutic Target Database (TTD;
ref. 45) Genomics of Drug Sensitivity in Cancer (GDSC; ref. 46), and
HPA to acquire additional information on whether the targets had
drug response data, or they were receptors, kinases, or known can-
cer/FDA-approved/potential drug targets.

IHC on the LuCaP PDX tissues
The LuCaPUWTMA103was constructed from subcutaneous PDX

tumors. It contains 39 LuCaP PDX models; 3 tumors per PDX model,
and 3 punches per PDX model (together 9 cores per model). The
antibodies used for IHC were as follows: HOXB 13 (Cell Signaling
Technologies, cat no. #90944, 1:50, antigen retrieval pH6), SYP (Santa
Cruz sc-17750, 1:100 antigen retrieval pH6), AR (BioGenex MU256-
0717 1:100Antigen retrieval pH9), ASCL1 (ABCAMab-211327, 1:100,
antigen retrieval pH6). The scoring of each TMA was performed as
previously published (29).

Statistical analysis
All statistical data were presented after either t tests or ROTS as

described in the figure legends. The tumors collected from the PDX
models and different mice yielded samples that represented AdCa-CR
(n ¼ 18), AdCa-NCR (n ¼ 15), and NE (n ¼ 15). We applied the
statistical tests with the assumption that each sample would have
independent proteomic and phosphoproteomic profiles.

Data availability
The data can be obtained via the following databases:
LuCaP PDX mRNA sequencing data are available at the Gene-

Expression Omnibus under accession GSE199596.
LuCaP PDX phosphoproteome data are available at ProteomeX-

change PDX042859.
LuCaP PDX proteome data are available at ProteomeXchange

PXD042867.

Results
Proteomic and phosphoproteomic platform analysis

We assessed the global proteome and phosphoproteome of 48 PDX
tumor samples, which include 6 differentAdCa tumors grown in intact
mice (AdCa-NCR, n ¼ 15), 6 AdCa grown in castrated mice (AdCa-
CR, n ¼ 18) and 6 neuroendocrine (NE, n ¼ 15) tumors (Fig. 1A,
sample collection). These samples were all processed in parallel on the
same day and bottom-up proteomics was performed (Fig. 1A, sample
processing). To evaluate the phosphoproteome, we performed phos-
photyrosine (pY), phosphoserine (pS), and phosphothreonine (pT)
enrichment using a SMOAC assay (Fig. 1A, sample processing-II). In
parallel, from the pool of peptides prior to phospho-STY enrichment,
we used this fraction and evaluated the overall peptide mix, which we
defined as the proteome (Fig. 1A, sample processing-I). The enriched
phosphopeptides and total peptides were analyzed using a state-of-the-
art instrument containing a high-FAIMS, which is an atmospheric
pressure ion mobility technique that separates gas-phase ions by their
behavior in strong andweak electric fields. This approach allows better
separation and detection of stable peptides (>þ2 charge state ions) for
confident quantification (31) compared with no FAIMS application
where the instrument collects þ1 charge state ions, which are very
unstable and not quantifiable, among other advantageous features.
We used an in-house proteome and phosphoproteome analysis pipe-
line (32) that includes MaxQuant (35) for peptide/phosphopeptide
searches and data processing (Supplementary Fig. S1). Using a 1%
FDR, we identified a total of 94,517 peptides that mapped to 7,738
nonredundant proteins at the proteome level and a total of 9,722
phosphopeptides that mapped to 3,759 nonredundant phosphopro-
teins (Fig. 1B and C; Supplementary Tables S2 and S7) with a
phosphosite probability > 0.75. In combination, we identified 8,612
unique master proteins from these samples, where 32.6% of these
proteins overlapped between the proteome and phosphoproteome
data sets whereas 9.9% were unique to the phosphoproteome and
57.5% were unique to the proteome (Fig. 1D).

To infer protein abundance, we used intensity-based absolute
quantification (iBAQ; ref. 47). To identify the significantly altered
proteins, we performed a VSN (36) making the sample variances
nondependent from their mean intensities using P value adjusted
< 0.05 and a log2 fold change. Using this approach, we identified 147
proteins that were hyper-abundant in the NE group and 162 proteins
in the AdCa group (Fig. 1E; Supplementary Table S4). Using similar
statistical analyses, we identified 259 unique hyperphosphorylated
peptides in the NE samples and 217 unique hyperphosphorylated
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Figure 1.

Proteomic and phosphoproteomic platform and characterization.A, The LuCaP series of 48 PDX tumors is depicted in the table, where 33 AdCa either castrated and
noncastrated tumors are shown in dark blue and 15 NEPC tumors are shown in orange, n ¼ 2–3 biological replicates (BR). The PDXs were processed by extracting
proteins and an enzymatic digestion was performed using Trypsin and LysC. Peptides were purified by reversed-phase chromatography. The final peptide pool was
run as the proteome (I) and in parallel a SMOAC assay was performed to enrich for phosphorylated serine, threonine and tyrosine which was run as the
phosphoproteome (II). Finally, raw data were searched, processed, and analyzed. B, Overall proteome results using 1% FDR for protein identification and P value
adjusted < 0.05 log2 fold change (FC) significance. C, Overall proteome results using 1% FDR for phosphoprotein identification and P value adjusted <0.05 log2 fold
change (FC) significance and >0.75 phosphosite probability threshold. D, Venn diagram of the proteome and phosphoproteome shows the total number of 8,612
master proteins identifiedwhen both data sets are overlaid. E,Volcano plot of the proteome depicting the intensity-based average quantification (iBAQ) enriched in
NE and AdCa. F, Volcano plot of the phosphoprotein enriched in NE vs. AdCa. Gray lines in the x-axis and y-axis are the cutoff threshold for NE 2-fold change and for
AdCa 2-fold change and P value adjusted to (�log10 FDR), respectively in E–F.
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peptides in the AdCa group (Fig. 1F; Supplementary Table S9). We
performed several comparisons between AdCa grown in castrated
mice (CR) versus AdCa grown in intact, or noncastrated, mice (NCR),
AdCa-CR versus NE, and AdCa-NCR plus AdCa-CR (pooled AdCa)
versus NE. We made all possible comparisons among the different
cohorts such as NCR and CR, CR and NE, and AdCa and NE
(Supplementary Tables S18–S26). However, we observed most of the
differences between pooled AdCa (NCR þ CR) versus NE; therefore,
we proceededwith the rest of the analyses comparingNEversus pooled
AdCa all.

The LuCaP PDX tumor proteome is consistent with established
NE and AdCa gene signatures

To evaluate differences in the overall proteome landscape between
NE and the pooledAdCaPDX samples, we performed an unsupervised
clustering of all the proteins measured. We observed that there is
distinct intertumor variability across all PDX samples (Fig. 2A). More
specifically, there is more variability across noncastrated (NCR) and
castrated (CR) AdCa PDX patient-matched pairs than all of the NE
samples, which indicates that the relative protein abundance in NE
PDX samples are more similar than we might have expected. We then
evaluated if this variability is consistent with the top 50 most highly
upregulated proteins across all samples and observed that the inter-
tumor variability mostly disappears in the AdCa PDX samples but
clearly clustered uniquely and distinctly from theNE tumors (Fig. 2B).

UMAP analysis showed that the PDX tumors clustered within their
subgroups (AdCa or NE) despite inter-PDX tumor variability
(Fig. 2C). Most importantly, individually analyzed proteins that
differentiate clinical NEPC (ASCL1, RET, CEACAM5, CHGA, DLL3,
SYP, and KIT) from CRPC AdCa (AR, FOXA1, HOXB13, NKX3-1,
STEAP1, STEAP4, and TACSTD2) also were hyper-abundant in their
corresponding tumor phenotypes (Fig. 2D–F; Supplementary
Table S3). Four of these proteins (AR, HOXB13, SYP, and ASCL1)
were validated on LuCaP tissue microarrays and were indeed
expressed primarily in the corresponding tumor phenotype, as
expected (Supplementary Fig. S2). Pathway analysis showed that there
are 34 pathways enriched in NE and 267 in AdCa. Canonical pathways
enriched in the AdCa PDX tumors consisted of sulfide oxidation to
sulfate, b-oxidation of very long-chain fatty acids (VLC-FA; Fig. 2G;
Supplementary Table S5). In theNEPDX tumor samples, we identified
an enrichment of proteins involved in the processing and activation of
SUMO, ALK2 pathway, polymerase switching, and attachment of GPI
anchor to u-PAR (urokinase-type plasminogen activator; Fig. 2G).We
also observed distinct hallmark gene signatures with oxidative phos-
phorylation and androgen response, among others enriched in the
AdCa PDX tumors whereas E2F targets, G2M checkpoint, and EMT
were enriched in the NE PDX tumors (Fig. 2H; Supplementary
Table S6). These results provide evidence that the PDX tumor protein
profiles maintain the proteome architecture and footprint similar to
the clinical phenotypes previously observed.

The LuCaP PDX tumor phosphoproteome reveals increased
interpatient similarity with established NE and AdCa gene
signatures

To evaluate the overall phosphoproteome in the LuCaP PDX sam-
ples, we performed a sequential metal oxide phospho-enrichment
targeting phosphoserine (pS), phosphothreonine (pT), and phospho-
tyrosine (pY) residues (Fig. 1A, II). Unsupervised hierarchical clustering
showed that the AdCa PDX tumors LuCaP 96CR (replicate 10C), 105,
105CR, 167, and 167CR clustered more closely with NE PDX tumors
LuCaP 49 (replicate 3A), 145.2, 173.1, and 208.1 whereas the other NE

PDX tumors, LuCaP 49 and 145.1, clusteredmore closely to AdCa PDX
tumors LuCaP 35, 35CR, 70, 70CR, 96, 96CR, 77, and 77CR (Fig. 3A).
This indicates that the phosphoproteome has more interpatient cross-
over of similar phosphoproteins between NE and AdCa PDX tumors
than the proteome, and the clustering patterns seem to also reflect less
interpatient heterogeneity when compared with the proteome. These
data provide new insights into the phosphorylation profile of these two
mCRPC subgroups where protein phosphorylation reveals more sig-
naling overlap, allowing for the testing of novel drug targets that may
treat both AdCa and NE tumors. When clustering the top 50 proteins
that mapped to hyper-phosphorylated peptides from each of the AdCa
and NE PDX tumors there was distinct segregation between those
subgroups; however, there appeared to be a third group (mainly LuCaP
105, 105CR, 167, and 167CR) that clustered with the AdCa tumors but
certain phosphoproteins fell somewhere between the AdCa and NE
phenotypes (Fig. 3B). Although speculative, these tumors may be
transitioning from an AdCa to a NE state. Similar to the proteome, we
assessed the well-accepted clinical NE and AdCa proteins and mapped
them to the phosphoproteome data. Interestingly, these phosphopep-
tides clustered similarly to the NE and AdCa proteins (Fig. 2D) even
thoughmost of these phosphoresidues have never been analyzed in this
context (Fig. 3C; SupplementaryTable S8).UMAPanalyses also showed
that these samples segregated within their corresponding subgroups
(Fig. 3D), although the AdCa PDX tumor samples were not as tightly
clustered as the proteome (Fig. 2C), suggesting that a certain group of
AdCa PDX tumors may be transitioning toward the NE phenotype.
Using the proteins identified from the volcano plot in Fig. 1F, we
mapped several functional phosphoproteins that have druggable
phosphosites (i.e., phosphopeptides that map to phosphoresidues
on proteins with known functional activity) that were unique in
AdCa (AR_pS651, pS310, pS120; MYC_pT58; RB1_pT373 and
SIRT1_pS47) and NE (STMN1_pS38; ADD2_pS697 and pS701;
RET_pS696; CDK1_pT161; ARHGEF2_pS956, pS960; MCM2_pS108;
EZH2_pT345; USP16_pS552; and E2A_pS379) PDX tumors (Fig. 3E;
Supplementary Table S9). KSEA was performed to predict other kinase
activity within the phosphoproteome data set and found ATM and
protein kinaseC (PKC)were enriched in theAdCaPDXtumorswhereas
MAPK activity was enriched in the NE PDX tumors (Fig. 3F; Supple-
mentary Tables S10 and S11). Further, pathways involved in the
metabolism of RNA, RNA processing, and PID–HIF TF pathway were
enriched in AdCa while chromatin modifying enzymes, neurexins and
neuroligins, and transcription regulation by RUNX1 were enriched in
NE PDX tumors (Fig. 3G; Supplementary Table S12). This confirms
that NE PDX tumors are more closely related to a neuronal phenotype,
whereas AdCa is more metabolically defined. GSEA indicated that
androgen response, hypoxia, and MYC targets were enriched in AdCa,
whereasG2–Mcheckpoint andE2F targetswere enriched in theNEPDX
tumors (Fig. 3H; Supplementary Table S13), as expected and similar to
the proteome data. Therefore, despite some interpatient cross-over of
AdCa andNEPDX tumors from the global phosphoproteome, there is a
significant divergence between AdCa and NE PDX tumors when
evaluating the most altered phosphopeptides, including some key
druggable targets.

LuCaP PDX tumor proteomic and transcriptomic integration
reveals dissonance between mRNA and protein targets

It has been established that mRNA expression has a low to
moderate correlation to protein expression with a 40% to 50%
concordance (48–50), which might misguide the potential nomi-
nation of novel targets if evaluated at the mRNA level only. Previous
work on primary prostate cancer tissues observed a weak
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correlation between mRNA and the corresponding protein expres-
sion via MS (median Spearman r ¼ 0.21; ref. 51). We proceeded to
expand upon this and assess the concordance of mRNA and protein
on the LuCaP PDX series derived from metastatic CRPC tumors to
evaluate potential discrepancy and nominate protein targets con-
fidently for a clinical assay or biomarker development. Importantly,
these PDX models provide consistent, reproducible material that
will allow us to test and evaluate these discrepancies functionally.
The LuCaP PDX mRNA data (41) were analyzed against the LuCaP
PDX proteomic data collected in this manuscript. We analyzed and

compared the proteins that were statistically significant and hyper-
abundant (>1.5-fold change) in the NE (336 proteins) and AdCa
(360 proteins) PDX tumors with the corresponding matching
mRNA transcripts that were statistically significant (matching
proteins and mRNA transcripts). We then plotted each protein’s
relative intensity-based average quantification (iBAQ) log2 fold
change against the correspondent transcript FPKM log2 fold
change, the overall linear regression correlation was low with a
statistical significance r2 ¼ 0.2359 as expected from previously
published work (ref. 51; Supplementary Fig. S3). Next, we

Figure 2.

Proteome landscape of PDXs in prostate cancer.A,Unsupervised clustering data drive 7,738master proteins 1% FDR.B,Unsupervised clustering of the top 50NE and 50
AdCA proteins. C, UMAP analysis of all PDXs from the proteome. D, The relative abundance of AdCa signature proteins and E, NE signature proteins. Blue, AdCa PDX
tumors; orange,NEPDXtumors.F,Data-drivensupervisedhierarchical clusteringofNEandAdCasignatureproteins.G,PathwayanalysisofNEandAdCahighlighting four
of the top pathways on each group. H, Hallmarks in cancer analysis of NE and AdCa highlighting four of the top pathways on each group (FDR 0.25).
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Figure 3.

Phosphoproteome landscape of PDXs in prostate cancer.A,Data-driven unsupervised clustering of 9,723 phosphopeptides with 1% FDR. B,Unsupervised clustering
of top 50 NE and 50 AdCA hyper-phosphorylated peptides. C,Unsupervised hierarchical clustering of AdCa and NE signature phosphoproteins.D, UMAP analysis of
all phosphopeptides. E, Volcano plot of functional phosphoproteome of NE and AD hyperphosphorylated peptides. F, Kinase/substrate enrichment (KSEA) analysis
identified unique and known kinases that were predicted from the phosphoproteome (top 10 hits are shown on each group). G–H, GSEA was performed to identify
canonical pathways (F) and hallmarks in cancer (G) enriched in NE (orange) and AdCa (blue). NES, normalized enrichment score; orange, hyperphosphorylated in
NE, and blue hyperphosphorylated in AdCa.
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performed concordance analysis where we focused only on the
hyper-abundant proteins and their matching mRNA expression-
level counterparts. Although all the proteins analyzed here were
statistically significant and hyper-abundant, we observed that only
54% (NE) and 59% (AdCa) of the matching proteins/mRNA
transcripts were concordant (C; mRNA and protein are upregulated
and hyper-abundant, respectively) whereas more than 40% in NE
and 35% in AdCa proteins were nonconcordant either discordant
level I (DC.I; mRNA is not altered/changed significantly and
protein is hyper-abundant) or discordant level II (DC.II; mRNA
is significantly downregulated whereas the protein is hyper-
abundant; Fig. 4A). These data strongly indicate that we are missing
important drug targets and tumor biology within these two PDX
subgroups if we were to focus only on mRNA changes. We then
analyzed the directionality of the proteins versus the mRNA coun-
terpart within the subgroups, and the overall dynamic range of
mRNA expression was greater in the concordant group than the
relative abundance in protein expression (Fig. 4B, right side)
compared with the nonconcordant groups (DC.I and DC.
II; Fig. 4B, left side and middle). We then performed two sub-
analyses focusing on the AdCa and NE PDX tumors alone to show
the overall distribution of the mRNA FPKM versus protein iBAQ
fold changes (Fig. 4C and D). After evaluation of the protein class
analysis (Fig. 4E), we observed that NE hyper-abundant proteins,
which were classified as discordant level I (DC.I) and discordant
level II (DC.II), were mainly categorized as transcriptional regula-
tors (such as NKX2-4, SMARCD1, ATF2, ZBTB21, MYEF2, and
more), chromatin binding proteins (CENPH), and DNA metabolic
proteins (TIPIN). This indicates that the mRNA transcripts of these
proteins were not changed or the expression was downregulated,
whereas the protein was hyper-abundant (Fig. 4D). These targets
have relevance in the biology of NEPC and would have been missed
if only the mRNA transcripts were analyzed.

To identify if the proteins that are discordant level I (DC.I) and
discordant level II (DC.II) share any common characteristics, we
performed a gene ontology protein class analysis (Fig. 4E). From this,
we identified that the proteins involved in chromatin binding, DNA
metabolism, chaperon, and protein modifying enzymes were over-
represented in the NE discordant level I and discordant level II groups
(DC.I þ DC.II) compared with AdCa, whereas translational proteins,
transporter, scaffold proteins, and metabolite interconversion
enzymes were greater in the AdCa DC.I and DC.II groups. These
data also show that there was greater dissonance in the NE DC.I and
DC.II than in AdCa PDX tumors, indicating that these targets would
have been disregarded if only mRNA had been analyzed.

To illustrate an example of extreme discordance patterns between
protein and mRNA, such as in DC.II, we show two examples of
proteins that are highly abundant in AdCa (HIC2, Fig. 4F) and NE
(COL3A1, Fig. 4G), but themRNA expression levels are very low. HIC
ZBTB Transcriptional Repressor 2 (HIC2), a protein that enables
protein C-terminus binding activity, is predicted to be involved in the
regulation of transcription by RNA polymerase. In prostate cancer,
HIC2 protein expression was shown to be increased in tumors
compared with benign hyperplasia and normal tissue with a Gleason
score greater than 7 and grade 3 (52). Collagen Type III Alpha 1 Chain
(COL3A1) is a protein that is found in most soft connective tissues
along with type I collagen (53, 54). It is involved in the regulation of
cortical development, and it is the major ligand of ADGRG1 in the
developing brain. Moreover, COL3A1 binding to ADGRG1 inhibits
neuronal migration and activates the RhoA pathway by coupling
ADGRG1 to GNA13 and possibly GNA12 (55). In prostate cancer,

COL3A1 is suppressed by miR-29b in DU145. After treatment with
the miR-29b inhibitor, COL3A1 expression is increased as well as the
cells’ invasiveness (54). Therefore, in the case of these two proteins and
their vital role in prostate cancer development or metastases, these
targets/biomarkers would have beenmissed if only mRNAwas used to
analyze differential changes, impeding opportunities toward the pos-
sible development of therapies against these proteins.

Systematic analysis of the functional proteome and
phosphoproteome for actionable targets

We further investigated the hyper-abundant proteins and phos-
phoproteins from the NE and AdCa subgroups to identify key
biomarkers and drug targets. We used the following databases for
our query: the secretome (found in the extracellularmatrix; ref. 42) and
blood proteins (found in blood plasma) from the HPA, the surfa-
ceome (43) and drug analysis from the Therapeutic Target Data-
base (45), andGenomics of Drug Sensitivity in Cancer (GDSC; ref. 46).
We analyzed the proteins that were hyper-abundant (Fig. 5A and B;
Supplementary Tables S16, S17, and S27) and hyper-phosphorylated
(Fig. 5C andD; Supplementary Tables S14, S15, and S28) in AdCa and
NE PDXs and searched them against these databases. We included the
concordance stratification level on the proteome and for the phos-
phoproteome, concordance was possible only by mapping the protein
concordance level from the proteome to the phosphorylated peptide
counterpart (Fig. 5C and D). Of the 82 and 70 hyper-abundant
proteins in AdCa and NE, respectively, 44% (36 proteins) and 36%
(25 proteins) have drug targets in different stages of development,
whereas over 50% of the remaining proteins would be categorized as
novel targets for drug development (Fig. 5E and F).

At the phosphoproteome level, 16% (2 proteins) and 36% (5
proteins) of the hyperphosphorylated proteins in AdCa and NE,
respectively, have drug therapies developed in different stages, whereas
the remaining have not been investigated as potential therapeutic
targets. Our data identified several proteins and phosphoproteins that
would be viable biomarkers and cell-surface proteins that could be
used for future biologics such as CAR-T cell therapy, antibody–drug
conjugates, and radio-ligand targeted therapy development. Overall,
our data demonstrated that there is a strong mRNA/protein concor-
dance for certain protein targets, but other protein targets may have
been overlooked or misinterpreted based on mRNA data alone. These
new protein targets could provide new insights into prostate cancer
biology, identification and development of biomarkers, and drug
targets.

Discussion
The continuous emergence of therapeutic resistance to current

treatment modalities in mCRPC necessitates the identification of
novel prognostic and predictive biomarkers as well as specific targets
for personalized patient stratification and the development of new
effective therapies. Different prostate cancer PDX models have been
developed and evaluated at the transcriptome (26, 28, 56, 57), prote-
ome (28), genome (26, 29), copy-number variation (26, 29), and at the
single-cell level (26) to understand the underlying mechanisms of
resistance to therapies. Although these models have elucidated some
very interesting biology, protein posttranslational modifications, such
as phosphorylation, have not been fully explored. In this work, we
expanded beyond the proteome to include the phosphoproteome and
reported one of the largest global proteomic and phosphoproteomic
databases capable of differentiating NE from AdCa in the LuCaP PDX
tumor models. With this approach, we combined both the proteome
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Figure 4.

Proteomic and transcriptomic data integration reveals dissonance of targetable proteins.A, The table shows the threemain stratification levels of protein andmRNA
expression agreements, concordant (C); discordant I (DC.I); discordant II (DC.II) and the total number of hyper-abundant proteins in AdCa (n ¼ 361) and in NE
(n¼ 337) including percent distribution of total, respectively.B, Protein andmRNA log2 fold change evaluating only the hyper-abundant protein in NE (337 proteins)
andAdCa (361 proteins) and simultaneously evaluating thedirection of themRNAexpression of thoseproteins that are stratified as concordant (C;mRNAandprotein
are upregulated and hyper-abundant), discordant I (DC.I; mRNA is not altered significantly and protein is hyper-abundant) and discordant II (DC.II; mRNA is
significantly downregulatedwhereas the protein is hyper-abundant).C–D,AdCa andNE hyper-abundant proteins iBAQ (VSNnormalized andROTS P value adjusted
<0.05 significances)mRNAFPKM (ROTS normalized andP value adjusted <0.05) log2 fold change highlighting proteins of interest. E,GOprotein class analysis of the
NE and AdCa concordant and non-concordant plus discordant proteins. Box plots of protein log2 fold change VSN normalized andmRNA log2 fold change of n¼ 33
AdCa and n ¼ 14 NE evaluating the overall expression in (F) HIC-2 and (G) COL3A1. Data are represented as mean � SEM; ��, P < 0.01; ���, P < 0.001, two-tailed
Welch-corrected.
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and phosphoproteome and we were able to measure over 8,600
proteins and demonstrated inter-PDX tumor variability. Furthermore,
a comparison of individual AdCa-matched tumor pairs grown in
noncastrated (NCR) versus castrated (CR) mice showed that their
proteome and phosphoproteome signals were mainly unchanged and
the differences between the pairs were not significant (Fig. 2A
and B; Fig. 3A and B; Supplementary Tables S18–S26). Interestingly,
unsupervised clustering analysis of the phosphoproteome revealed
that select neuroendocrine PDXs (LuCaP 49, 93, 145.1) clustered with
the majority of the AdCa PDXs, whereas select AdCa PDXs (LuCaP
105, 105CR, 167, and 167 CR) clusteredmore closely with themajority

of the NE PDXs. However, when selecting the top 50 most phosphor-
ylated proteins from both NE and AdCa, the separation between these
two groups was more apparent, highlighting that the differences
between these groups are within the most hyperphosphorylated
proteins. In addition, detected phosphorylated proteins such as AR,
MYC, NDRG1, NDRG2 FOXA1, TACSTD2 in AdCa PDXs, and
ASCL1, RET, DLL3, CHGA in NE PDXs clustered with their known
protein/gene signature counterpart (Fig. 3D). The characterization of
the unsupervised and supervised clustering of these phosphorylated
peptides at a global scale is relatively new in prostate cancer since
phosphoprotein signatures have not been established or defined to

Figure 5.

Functional proteome and phosphoproteome characterization. Heat map data illustrate z-score VSN-normalized protein hyper-abundance expression for AdCa (n¼
82; A) and NE (n ¼ 70; B) Heat map data illustrates z-score VSN normalized proteins hyper-phosphorylated expression for AdCa (n ¼ 13; C) and NE (n ¼ 14;
D). Concordance level was defined by using the master protein counterpart and clustered based on this concordance from the proteome. Pie charts illustrate the
therapeutic target distribution identified across the hyper-abundant proteins in AdCa (E) with a total of 337 and NE (F) with a total of 374 analyzed. Functional
proteins color coding that are identified as blood (red), secreted (yellow) surface (light green), and therapy target type such as clinical trial in blue, patented in green,
research target in light orange, successful in terracotta, and no available data identified as NA in gray.
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date. However, we can clearly observe that the detected phosphory-
lated proteins fall within their respective disease phenotype.

Although the genome is typically constant, the proteome is quite
different from cell to cell, both spatially and temporally. Proteins have
over 400 posttranslational modifications, so the diversity generated
from a single protein is larger than that of the corresponding
gene (58, 59). Many attempts have been made to correlate mRNA
with proteins (35, 49, 50). This has uncovered that for a given amount of
protein to be translated, it will depend on the gene classification that is
transcribed such as a metabolic gene (required for survival) versus a
transcription factor (will be turned on/off or degraded as needed for
different biological responses), the current cell state, and the posttrans-
lational modification that is driving the signal. Based on this informa-
tion, we proceeded to integrate the transcriptomic (41) data into the
current proteome data in this article. There were two main goals of this
work: (i) to investigate concordance/discordance ofmRNA and protein
expression and (ii) to identify protein-based biomarkers that can lead to
the identification or development of therapeutic targets. We initially
performed a traditional Spearman correlation that did not identify any
significant targets due to small sample size (Supplementary Fig. S3).
However, we were able to evaluate the overall dissonance between
mRNA and proteins by comparing the directionality of the differential
protein expression (focusing on the hyper-abundant) and mRNA
(focusing on any directionality: upregulated, downregulated, or not
changed) expression of NE versus pooled AdCa PDXs. Interestingly,
several of the proteins known to be involved in prostate cancer biology
showed discordance between protein and mRNA levels, a finding that
may have future clinical disease management implications.

NEPC has been defined as a disease that is highly transcriptionally
active regulating proteins involved in DNA replication (for example
DNA polymerase, thymidine kinase, dihydrofolate reductase and
cdc6), and chromosomal regulation (60), whereas prostate cancer
AdCa that expresses AR andwithout neuroendocrine features is highly
metabolically (61) regulated. Furthermore, it has been shown that
mRNA from transcription factors have increased average decay rates
compared with other mRNA transcripts and are enriched for “fast-
decaying” mRNA transcripts with half-lives <2 hours (48). On the
other hand, mRNAs related to biosynthetic proteins have decreased
decay rates and are deficient in fast-decaying mRNAs (48, 49). This
discordance can be explained further by comparing half-lives between
proteins and mRNA as well as the timing of data collection. As an
example, there are proteins involved in RNA metabolism that would
have been missed since the mRNA molecules would have degraded
much faster (2–10 hours) than their respective proteins (10–46 hours;
ref. 62). Therefore, the identification of discordance observed between
mRNA and protein expression levels in these two CRPC disease states
(NE vs. AdCa)might be explainedmainly by the nature of the proteins
expressed in that tumor type and/or the timing of data collection.
There are some current algorithms that implement different variables
(time and space), including protein isoforms, that could potentially
increase the probability of mRNA/protein predictability, but these are
still a way off from true implementation (63). Thus, prediction of
protein abundance or activity in either AdCa or NE tumors based on
mRNA transcript levels alone may be misleading and nominating
biomarkers or subsequently designing clinical assays based on the
most stable molecule, such as proteins, and evaluating if these proteins
are either metabolically or transcriptionally involved will be highly
recommended for assay development decision-making.

The limitation of this study, as well as other studies similar to this that
usemousemodels, is that there is an 80%genehomologybetweenhuman
and mouse protein-coding genes, implying that some of our identified

peptides may map to the mouse proteome (64). Importantly, our study
showed that the analyzed LuCaP PDX models have a high degree of
similarity with known AdCa and neuroendocrine-like phenotypes and
recapitulate many of the underlying mechanisms present in human
CRPC. Confirmation and follow-up studies, such as western blot anal-
ysis, evaluating the expression of the protein of interest identified from
mouse models is recommended using human tissue or cell lines. Our
work also revealed a very interesting observation: the global phospho-
proteome data intersected between AdCa andNE phenotypes indicating
a hierarchy of signaling that is somewhat consistent ormaintained across
these phenotypes. Importantly, these phosphoproteins could help iden-
tifynewdruggable targets that overlap across prostate cancer phenotypes.
Unfortunately to date, the use of phosphoprotein analyses and signature
generation is currently hindered by the ability to generate robust
phosphoprotein data from small tissue amounts in clinical samples.

In conclusion, we generated the largest proteome and phospho-
proteome resource database on clinically relevant and widely used
CRPC LuCaP PDX models. Our analysis showed that the overall
proteome maintained its fidelity with known CRPC AdCa (ARþ) and
NE (AR�) markers. We found proteins that are known to be over-
expressed and hyper-phosphorylated such as AR, RET, ASCL1, DLL3,
KIT, CECAM, PSMA/FOHL1, and novel proteins specifically with
important functional characteristics for biomarker or drug develop-
ment, such as surface localization, secreted to the extracellular matrix
and/or found in blood plasma. Furthermore, our analyses showed that
there is discordance between multiple proteins and their mRNA
counterpart that is more dominantly found in transcriptionally reg-
ulated proteins compared with metabolic proteins. Future follow-up
studies where both mRNA and proteins are collected at the same time
and measured in parallel, will be highly recommended to rule in/out
any temporal changes that might affect themRNA levels to the protein
expression. Moving forward, we encourage multiomic level analysis,
including incorporating the proteome, as a vital element for biomarker
and drug development and for effective personalized medicine.
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