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Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized in part by 

difficulties in verbal and nonverbal social communication. Evidence indicates that autistic people, 

compared to neurotypical peers, exhibit differences in head movements, a key form of nonverbal 

communication. Despite the crucial role of head movements in social communication, research 

on this nonverbal cue is relatively scarce compared to other forms of nonverbal communication, 

such as facial expressions and gestures. There is a need for scalable, reliable, and accurate 

instruments for measuring head movements directly within the context of social interactions. 

In this study, we used computer vision and machine learning to examine the head movement 

patterns of neurotypical and autistic individuals during naturalistic, face–to–face conversations, 

at both the individual (monadic) and interpersonal (dyadic) levels. Our model predicts diagnostic 

status using dyadic head movement data with an accuracy of 80%, highlighting the value of 

head movement as a marker of social communication. The monadic data pipeline had lower 
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accuracy (69.2%) compared to the dyadic approach, emphasizing the importance of studying 

back-and-forth social communication cues within a true social context. The proposed classifier is 

not intended for diagnostic purposes, and future research should replicate our findings in larger, 

more representative samples.
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1 INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental condition defined by difficulties 

in three social areas: (i) social–emotional interaction, (ii) nonverbal communication, and (iii) 

forming and maintaining relationships [3]. Prominent early work [25, 32] suggested that 

differences in nonverbal communication skills are a core trait of young children diagnosed 

with autism, and this finding has been substantiated by decades of further behavioral and 

neuroimaging research [1, 12, 27, 30, 35, 36], across several nonverbal communication 

modalities including eye gaze, facial expression, body actions, and head movements [26, 

31, 37, 39]. There remains a pressing need to more precisely characterize nonverbal 

communication patterns in autism across individuals, time, and contexts, in order to better 

characterize its phenomenology, and continue to develop effective intervention strategies 

focused on enhancing nonverbal communication [2, 9, 15].

While effective nonverbal communication involves the simultaneous use of multiple cues 

[14], in this work, we focus on one relatively understudied nonverbal domain: use of head 

movements during conversations. Head movements are used in everyday communication 

to convey meaning, signal engagement and turn–taking, and provide structure in social 

interactions [6, 23]. Variations in head movement can reveal information about mental and 

emotional states [19, 21] and emotional dynamics between interaction partners [16, 17]. 

Converging evidence suggests that autistic children exhibit differences in head movement 

features compared to neurotypical children, with some of these differences emerging 

in infancy, such as head lag [7, 10]. Autistic toddlers show higher rates, acceleration, 

and complexity in head movements while watching movies, compared to neurotypical 

toddlers [20]. Older autistic children also exhibit differences in lateral head displacement 

and velocity while watching social stimuli (ages 2–6 years) [22], and greater and more 

stereotypical head movements during dyadic social interactions (ages 6–13 years) [38, 39].

Despite evidence that head movement is both critical for social communication and may 

be altered in autism, research is scarce compared to other nonverbal domains, such as 

facial expressions and gestures [17]. One barrier has been the difficulty of very precisely 

measuring characteristics of head movements, especially during natural social interactions. 

Traditionally, head movement dynamics (e.g., moments of head nodding) have been studied 

through manual annotations by trained observers, which can be a time–consuming process, 

or one lacking scalability and reliability [4, 11]. Manual annotations are also unable to detect 
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highly subtle or granular aspects of head movements that might differ between autistic and 

neurotypical people. Recent advances in computer vision and machine learning have enabled 

precise, automated analysis of human social behaviors, as they unfold over time, using 

computational models [8, 18, 24]. A growing body of work has demonstrated the utility of 

computational behavior analysis during screen–based tasks (e.g., participant watching videos 

or looking at images) [22] and, less commonly, live social interactions [13].

In this study, we used computational behavior analysis to study head movement patterns in 

neurotypical and autistic individuals (ages 19–49) during face–to–face conversations with 

an unfamiliar adult. Our approach enables study of the progression of head movements 

over time during conversations, rather than just overall kinematic features (e.g., speed, 

spatial range). We aim to understand if and how head movements alone reveal social skill 

differences associated with autism. We studied head movements at two levels, individual 

(monadic: analyzing the participant only) and interpersonal (dyadic: analyzing the back-

and-forth between the two interaction partners), to determine whether measuring head 

movements at the dyadic level is incrementally more informative than studying the cues 

of a single person.

Our results show that the machine learning pipeline built to distinguish between autistic 

and neurotypical individuals based on head movement data from both interaction partners 

(dyadic level) achieves 80% accuracy, suggesting that head movements alone contain rich 

information relevant for social communication in autism.

The same pipeline performs worse (69%) when using head movement data from the 

participant only (monadic level), emphasizing the benefit of studying back-and-forth social 

interaction relative to more traditional, inherently monadic approaches. Our results motivate 

further study of head movement patterns in autism, and their variation across contexts and 

development.

2 METHODS

Sections 2.1 and 2.2 describe the study’s experimental setup. Our computational approach, 

explained in Sections 2.3 – 2.5, uses a state–of–the–art computer vision algorithm to 

quantify head movements along three dimensions (yaw, pitch, roll). These signals are 

processed to generate monadic and dyadic features, capturing the head movement patterns 

used by participants alone or by both participants and conversation partners. These features 

are then used as input for a machine learning pipeline to predict the diagnostic status of 

participants (autism vs. neurotypical). This is a similar pipeline used in a previous work 

[24], with several modifications to better capture social dynamics in autism.

2.1 Participants and Experimental Procedure

Data collection was performed at the Center for Autism Research (CAR) at Children’s 

Hospital of Philadelphia (CHOP). This research was approved by the institutional review 

board (IRB) at CHOP. Fifteen autistic and 27 neurotypical individuals matched on age, 

sex, and general intelligence (IQ) are included in the current study. The age range is 
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19.7 – 49.5 years, with a mean age of 28.2 years. Consistent with the fact that autism is 

disproportionately diagnosed in males, our sample includes 36 males and 6 females.

The experimental procedure consisted of a modified version of the Contextual Assessment 

of Social Skills (CASS) [28], a semi–structured assessment of conversational ability 

designed to mimic real–life first–time encounters. Participants engaged in a 3–minute 

face–to–face conversation with a research confederate (unaware of the dependent variables 

of interest). CASS confederates included undergraduate students and BA–level research 

assistants (all native English speakers). In order to provide opportunities for participants to 

initiate and develop the conversation, confederates had been trained to speak for no more 

than 50% of the time, and to wait 10s to initiate the conversation. If conversational pauses 

occurred, confederates had been trained to wait 5s before re–initiating the conversation. 

Otherwise, conversation partners were told to engage as they normally would.

2.2 Data Collection and Pre–Processing

Continuous audio and video of the 3–minute CASS were recorded using a specialized, 

custom–built “BioSensor” (Figure 1), that was placed between the participant and 

confederate on a floor stand. This device has two HD video cameras pointing in opposite 

directions, as well as two microphones, to allow for synchronous audio–video recording of 

the participant and the confederate as they sit facing each other. The minimal footprint and 

size of the device were intended to minimize the intrusiveness of the technology on the 

natural conversation.

For each video, the first and last 3 seconds were trimmed to remove any frames not 

including the CASS. This time limit was selected based on visual inspection of the videos. 

The videos were either recorded at a frame rate of 30 frames per second (fps), or down–

sampled from 60 fps to 30 fps. Head pose data was extracted using a state–of–the–art 

3D facial analysis algorithm [29]. The output consisted of time–dependent signals for the 

three fundamental head movement angles: yaw, pitch, and roll (Figure 2). In addition, for 

each head angle, the first discrete difference between consecutive frames (i.e., velocity) was 

calculated, yielding another time–dependent signal for each angle.

2.3 Identifying Common Movement Patterns

We used K–Means clustering to group head movement snapshots by similarity, aiming 

to find general patterns. Due to the small sample size, we chose not to optimize the K 
parameter within cross–validation; instead, we set K = 12 based on results from [24]. For 

each participant, the temporal signal of each angle was split into overlapping windows of 

4 seconds (120 frames given a 30 fps), with an overlap size of 8 time instances (roughly 

0.3 seconds), in the same way as in [24]. Each window was subsequently standardized 

to have 0 mean and 1 standard deviation. Windowed data from all participants and all 

angular directions were combined and used to train a K–Means model. The resulting 12 

cluster centers, each represented by an exemplar 4–second signal, captured common head 

movement patterns. The same process was separately repeated for the angle differential 

signals (i.e., velocity signals).
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2.4 Monadic and Dyadic Features

Monadic features were generated by counting the number of 4–second windowed samples of 

participants that were assigned to each cluster, yielding a K–dimensional frequency vector. 

This vector quantifies the number of times each head movement pattern was used by the 

participant. This process, also known as bag of words model [33, 34], was repeated for each 

angular direction (and for velocity signals) independently. The resulting six vectors (three 

angles and three velocity signals) were concatenated, yielding a final feature vector of size 6 

× K.

In the dyadic case, we wanted to capture the interchange between the two people, since 

the correlation and timing of nonverbal cues is highly relevant to effective communication 

[5, 13]. The pattern counts were computed by counting the number of times the windowed 

samples of the participants and confederates were assigned to the clusters simultaneously, 

yielding a K × K matrix for each angle (and velocity). The cell (i, j) of the matrix 

included the number of times the participant made a head movement that was assigned 

to cluster i, while confederate simultaneously made a movement that was assigned to cluster 

j. Concatenating all six matrices and vectorizing the resulting tensor resulted in a 6 ×K 
×K dimensional vector. Finally, we also considered simultaneous movements along different 

directions (e.g., participant’s movement along roll angle vs. confederate’s movement along 

yaw angle). Thus the final feature vector had a size of 3 × 6 × K × K. We also prepared a 

third set of features by simply concatenating monadic and dyadic features.

2.5 Predicting ASD Diagnosis

Monadic, dyadic, and combined head movement features, independently, were used as the 

input to a binary SVM classifier with a linear kernel and C = 1 (i.e., default settings), to 

predict the participants’ diagnostic status: ASD vs. neurotypical (NT). We used 10–fold 

cross–validation. For each fold, part of the data was put aside for testing, and the remaining 

was used for training. At the end of the 10–fold cross–validation, each participant’s data 

had been used in the testing set once. This 10–fold cross–validation was then repeated 100 

times, with a different random seed used each time to shuffle the order of participants, to 

produce statistically robust performance metrics. In addition, in each case, leave–one–out 

cross–validation was also performed on the same data for consistency checks.

We also sought to elucidate the head movement features that contributed most strongly to 

the classification accuracy, to identify specific head movements that differ between ASD 

and NT groups. We extracted the feature weights computed by the SVM. Features with 

high absolute weights are assumed to posses a high information content. We then computed 

average weights for different angular directions to understand the contribution of different 

head movement types.

3 RESULTS AND DISCUSSION

The performance of the machine learning classifier in predicting diagnostic status is listed in 

Table 1. Accuracy, sensitivity, specificity, positive and negative predictive values (PPV and 

NPV) are listed for leave–one–out and 10 fold cross–validation. All performance metrics 
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are significantly better than chance, suggesting the existence of informative signals in the 

head movement patterns of participants. Especially with the dyadic signals, the overall 

performance is very promising with an accuracy of 80.0%. Despite the high accuracy, it is 

important to note that the proposed classifier is not intended for diagnostic purposes. The 

low sensitivity value of 55.9% severely undermines the feasibility of using the classifier for 

such diagnostic purposes.

The lower accuracy of the monadic approach (69.2%) highlights the importance of studying 

social communication cues in a true social context, considering the behavior of both 

individuals in the interaction. This finding elegantly points to the fact that ASD is a 

condition that emerges within social contexts. The combination of monadic and dyadic 

features did not improve classification performance compared to using only dyadic features, 

potentially because concatenating the two sets of features may not be the most effective 

approach. The dimensionality of the dyadic features is much higher than that of the monadic 

features, making the contribution of the monadic ones negligible.

In all cases, the specificity values are higher than the sensitivity values, indicating that 

the method is better at correctly identifying neurotypical individuals (i.e., true negatives) 

than ASD individuals (i.e., true positives). This result is expected, given the small sample 

size and imbalanced group representation (15 autistic individuals versus 27 neurotypical 

individuals). In this small sample, the machine learning classifier appears to be more 

accurate at identifying typical movements, but less confident in detecting subtle atypicalities. 

Overall, it is evident that further research with larger and more balanced samples is 

necessary before a reliable diagnostic tool can be developed.

Figure 3 shows the importance for all types of head movement features used in 

classification. The weights of monadic features are displayed in Figure 3(a), and the 

averages across different feature types in Figure 3(c). Similarly, the weight distributions 

for the dyadic case are shown in Figure 3(b) and Figure 3(d). It is important to note 

that the interpretation of feature weights for a classifier with low accuracy may not be 

reliable. Therefore, here we mostly discuss feature weights for the dyadic case. In general, 

movement angles (i.e., magnitude) are more influential than velocity. It is possible that how 

an individual moves their head in response to their partner’s movements (and vice versa) 

is more important in social interactions than the speed of these movements. However, it 

is important to note that this hypothesis may not hold for certain types of communicative 

cues that are primarily conveyed through the speed of the movement (e.g., nodding to signal 

approval versus nodding to show interest).

Of the three angles (roll, pitch, and yaw), pitch and yaw have the greatest impact on 

this classification process. Movements along the pitch direction (e.g., nodding) are often 

used to convey communicative cues such as agreement, attentiveness, and contemplation. 

Movements along the yaw direction (e.g., shaking or rotating the head) may signal cues such 

as disagreement, attention, or orientation. While it is challenging to draw definitive and clear 

conclusions without further examining the signal shape of individual features (i.e., how the 
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angle changes over a 4–second window), it is clear that these types of cues play a significant 

role in social interactions.

As each feature in our analysis corresponds to a movement over a 4–second window, 

our analysis summarizes how a movement along a particular angle evolves during a 

conversation. It would be even more informative, and potentially more clinically relevant, 

to investigate how these features unfold over time in more detail. However, our analysis 

currently treats movements along different directions (roll, pitch, and yaw) independently, 

whereas real, semantically meaningful head movements involve a combination of 

movements along all three directions.

4 CONCLUSIONS

This work, relying on computer vision and multivariate machine learning strategies, creates 

computational models that distinguishing between autistic and neurotypical individuals 

based on their head movement patterns. Video data were collected from 3–minute, 

face–to–face, semi–structured conversations. Our machine learning model achieved an 

80% classification accuracy when using dyadic head movement features, taking into 

account the coordination of head movements between both conversation partners. These 

results underscore the importance of studying social communication within natural social 

contexts to fully capture the psychological complexity of social interactions and social 

communication differences in autism. Computational behavior analysis, with its precision 

and scalability, facilitates such naturalistic studies. Future work should explore more 

sophisticated feature structures and machine learning models, and replicate these results 

with a larger, more diverse sample. Our findings provide the foundation for such 

explorations.
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CCS CONCEPTS

• Applied computing → Psychology; • Computing methodologies → Computer 
vision; Machine learning; Cluster analysis; Supervised learning by classification; Cross-

validation.
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Figure 1: 
Experimental setup and data collection hardware. In (a), the participant and confederate are 

having a conversation with the “BioSensor” camera placed between them. In (b), the current 

model the of “BioSensor.”
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Figure 2: 
Illustration of the three angles used in the study to quantify head movement.
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Figure 3: 
The weights obtained during classification have been plotted for each feature construction 

scenario: monadic features in (a), dyadic features in (b), statistics for monadic features 

in (c), and statistics for dyadic features in (d). For each feature, the y-axis represents the 

weight coefficients assigned by the SVM classifier in (a) and (b), and the mean and standard 

deviation of those weights in (c) and (d). In the monadic case, features are the single head 

movement angles (upward pointing triangles) and their differentials (downward pointing 

triangles). The dyadic feature plot contains relationships between head angle pairs (upward 

pointing triangles) and their differentials (downward pointing triangles).
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