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Abstract
Objective: Machine learning (ML) will have a large impact on medicine and accessibility is important. This study’s model was used to explore 
various concepts including how varying features of a model impacted behavior.
Materials and Methods: This study built an ML model that classified chest X-rays as normal or abnormal by using ResNet50 as a base with 
transfer learning. A contrast enhancement mechanism was implemented to improve performance. After training with a dataset of publicly avail-
able chest radiographs, performance metrics were determined with a test set. The ResNet50 base was substituted with deeper architectures 
(ResNet101/152) and visualization methods used to help determine patterns of inference.
Results: Performance metrics were an accuracy of 79%, recall 69%, precision 96%, and area under the curve of 0.9023. Accuracy improved to 
82% and recall to 74% with contrast enhancement. When visualization methods were applied and the ratio of pixels used for inference meas-
ured, deeper architectures resulted in the model using larger portions of the image for inference as compared to ResNet50.
Discussion: The model performed on par with many existing models despite consumer-grade hardware and smaller datasets. Individual models 
vary thus a single model’s explainability may not be generalizable. Therefore, this study varied architecture and studied patterns of inference. 
With deeper ResNet architectures, the machine used larger portions of the image to make decisions.
Conclusion: An example using a custom model showed that AI (Artificial Intelligence) can be accessible on consumer-grade hardware, and it 
also demonstrated an example of studying themes of ML explainability by varying ResNet architectures.

Lay Summary
Artificial intelligence (AI) will make a big impact on healthcare. This study creates an example AI application that reads chest X-rays to explore a vari-
ety of concepts. First it tried to show that AI work can be accessible to widely available computer hardware and public datasets. Secondly, it 
showed some new ways of processing chest X-ray data, by increasing the difference between colors in the picture. Thirdly it also explores ways 
we can better understand how AI’s think. This study successfully performed the tasks on a personal computer with datasets from Kaggle (a public 
website), although real AI work in medicine will require many other factors in addition to these. It found that the special step did improve the AI a 
little bit. The project tried to look at 3 different AIs with increasing complexity to look at how complexity affects how AIs think. It found that more 
complex AIs tended to look at larger parts of a chest X-ray to make their final decision when compared to less complex AIs.
Key words: development; chest X-ray; classification; model; budget; SHAP. 

Background and significance
Machine learning (ML) is poised to make large impacts in 
healthcare, advancing medical care but also fundamentally 
changing and improving our existing delivery of care. ML 
applications have been developed that perform at or even 
exceed human capacity.1,2 However, there are unique chal-
lenges and considerations that remain unresolved.

Traditionally AI requires significant computational resources,3

which may have led to a digital divide in ML research.4 Genera-
tion of large datasets may be linked to research, potentially caus-
ing a compounding effect.5 Approaches enhancing accessibility of 
AI work could support broader engagement.4,6

While other fields have seen enormous changes from AI, 
ranging from self-driving cars to chatbots and fraud detection, 
healthcare has been understandably slower due to confidential-
ity, logistic, and privacy concerns. It is challenging to curate 
massive scale, granular databases in healthcare. Much existing 
work has been on specific tasks, such as identifying infections 
on chest radiographs (CXR).7 However, generalized tasks are 
significantly more difficult and have often required massive 
datasets.3 For instance, CheXNet (based on Densenet-121) has 
been employed by numerous authors to detect abnormalities on 
CXR.8,9 Other model architectures such as Inception V3, 
VGG16, and even ResNet have been employed in the past.10,11
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Furthermore, while knowledge of the advancement of ML 
in the technology industry is widespread, ML is a topic where 
many clinicians are less knowledgeable.12–14 Consequently, 
many may not be aware that creation of certain ML models 
can be accomplished with consumer-level resources. Very few 
manuscripts in the medical domain discuss the hardware 
required for ML work and of these most used professional 
hardware.15–18 This study attempts to perform ML work 
with publicly available datasets and consumer grade 
hardware.

Additionally, while convolutional neural networks (CNNs) 
have been used for radiography ML models, work is still 
undergoing as to optimal architectures and pre-processing 
steps. Histogram equalization has been explored as a techni-
que for contrast enhancement in chest radiography studies; 
however, most of this work has focused on specific condi-
tions, with the vast majority in COVID-19.19,20 However, its 
use in a generalized rather than focused task helps researchers 
better understand the potential applications of contrast 
enhancement.

Finally, a concern in AI is that the processes by which a 
machine makes inferences are often unknown. This black 
box is unsettling as there may be inherent flaws in perform-
ance or unintended bias. In its guidance for healthcare AI, the 
WHO has also called for AI to be explainable.6 Recently, 
numerous visualization methods have emerged to help 
deduce reasoning in ML models.21,22 However, each ML 
model is different and conclusions on 1 model do not neces-
sarily translate to others. Indeed, each instance of training, 
even in the same model, is inherently stochastic. Thus, much 
like individual humans, the way 1 model makes inferences is 
not translatable to another. While studies on AI explainabil-
ity have begun to emerge, they have focused on individual 
models and not on larger patterns and themes. A systematic 
way of studying concepts in inference generation would help 
us better understand ML.

While using ML for radiographs has been previously 
reported, this study explores various concepts through devel-
opment of an example ML model (CNN to classify CXR as 
normal or abnormal). This work’s insights will help future 
healthcare researchers in ML studies.

Objective
This study creates an ML model, a CNN trained to classify 
CXR as normal/abnormal. Through the development of this 
model, it explores various concepts. Firstly, it creates and 
trains this model using fully publicly available datasets and 
consumer-grade hardware. The intent was not to create the 
highest performing model in literature, but rather to demon-
strate the feasibility of doing this without elite-level resour-
ces. Secondly, it explores a mechanism of contrast 
enhancement that could be useful in improving the radio-
graph classification performance. Finally, the study explores 
the idea of using AI explainability to analyze overarching the-
matic elements of how models make inferences (rather than 
individual performance).

Methods
Training data and hardware
As an objective was to utilize widely available hardware, the 
entire work, including data pre-processing and training, was 

performed using a consumer-grade personal computer. Some 
pre-processing used a central processor unit; however, most 
tasks including training utilized a single graphics processing 
unit (GPU) (eVGA nVidia 3090).

A second study objective was to demonstrate the ability to 
use publicly available, limited datasets to train an operational 
ML classification model. As such datasets were obtained 
within Kaggle.

As the intent of this work was to demonstrate the ability to 
make ML more accessible and to use publicly available data-
sets, limitations of these public datasets had to be accounted 
for. Many publicly available datasets were not large enough 
or diverse enough to provide robust training to the model. 
Therefore, 3 datasets were combined to help improve our 
model’s performance. A subset of the NIH (National Insti-
tutes of Health) Chest X-ray Dataset was used with proper 
classification.23,24 These images were combined with the 
publicly available COVID Qu-Ex Dataset25–29 and Tubercu-
losis (TB) Chest X-Ray Database.30 These 2 datasets were 
chosen as they were publicly available and contained large 
volumes of clinically accurate data. However, given they 
focused on specific conditions, it was important to ensure 
those diagnoses were not over-represented which would have 
led to overfitting. Thus, only a selection of the COVID-19 
and TB data was chosen. The specific amount taken was a 
process of trial and error through multiple iterations of model 
development. A total of 2509 images were used and are avail-
able on GitHub (https://github.com/leestephenz/cxrproject/).

Machine learning model and development
The model was trained and built with Python 3.9.16 and 
TensorFlow 2.6.0. The model created used transfer learning. 
ResNet50 was chosen as the base model. Additional custom 
layers were added to ResNet50 and hyperparameters were 
tuned based on this architecture to maximize our test statis-
tics. Some tuning, such as batch sizing and filters in custom 
layers, were limited by hardware capabilities. The architec-
ture of this study’s model is seen in Figure 1. Vanishing gra-
dients is a problem that arises when building deep neural 
networks which may be required with advanced computing 
tasks. ResNet is an architecture designed to solve the vanish-
ing gradient problem through the concept of skip connections 
that bypass layers, first described by He et al.31

The convolutional layers used 32 filters each with other 
parameters seen in Figure 1. In these layers, the scaled expo-
nential linear unit (SELU) activation function was chosen, as 
it was found to lead to faster convergence in training and bet-
ter performance when compared to other activation functions 
trialed. In the fully connected layers, 64 filters were used, and 
the traditional rectified linear unit (ReLU) activation function 
was chosen. In testing, 2 drop layers in the fully connected 
layers helped prevent overfitting and increased the ability for 
the model to generalize in the test set. Finally, an output layer 
with a sigmoid activation for binary classification determined 
whether the CXR was coded as normal or abnormal.

An adaptive moment estimation (Adam) optimizer was 
chosen and hyperparameter tuning performed for the decay 
steps and rate. A learning rate of 0.001 was used with expo-
nential decay and a batch size of 32 used.

The development of the model was iterative in nature, as is 
typical in ML work.32 During the coding process, multiple 
errors were encountered which required code debugging 
and iterations improved final model performance. While 

2                                                                                                                                                                                               JAMIA Open, 2024, Vol. 7, No. 2 

https://github.com/leestephenz/cxrproject/


unfeasible to report the entire log of debugging, code 
improvements, data cleaning, and hyperparameter tuning 
iterations, there were significant milestones in development. 
One of the largest milestones was a clinical review of the 
datasets. The initial version of the NIH Chest X-ray dataset 
resulted in low model performance (�50% accuracy) and 
upon manual review by the clinician author, it was discov-
ered the original NIH Chest X-ray dataset was erroneous. A 
smaller modified version (available on Kaggle) where images 
were read by 5 American Board-certified radiologists was 
used.23,24 Other milestones included hyperparameter tuning 
and model modifications, of which the most significant were 
modifications to batch size, epoch cycles, neurons per layer, 
total layers, and the addition of drop layers. The nVidia 3090 
had 24 GB of memory and thus did have limitations in data 
processing. As such different permutations of batch size, neu-
rons per layer, and number of layers were performed to bal-
ance overfitting, model performance, and number of 
parameters (too many parameters caused kernel failure due 
to overwhelmed memory). Drop layers were added and 
reduced overfitting. Too little epoch cycles would result in a 
lack of convergence (the model did not have enough cycles to 
learn) while too many epoch cycles resulted in overfitting.

Finally in accordance with best practices, a review of exist-
ing appropriate frameworks was performed,33 and the most 
appropriate framework chosen for this model34 (Table S1).

Data processing, testing, and contrast enhancement 
module
The full details of our code, including pre-processing and our 
machine learning model are available for re-use or access on 
GitHub. Data was split into training and testing; a separate 
section of code was written for model testing and test images 
were never seen by the model during training. This separation 
ensured the model performance was not confounded. The 
images presented to evaluate performance were completely 
novel. A total of 464 images were used for testing and were a 
novel sub-section of the images previously mentioned. It was 
composed of images from all 3 sources (NIH Chest X-ray, 
COVID Qu-Ex, TB). Based on the pairing of labels with 
images, there was no missing data (GitHub).

In clinical encounters, when an image has subtle abnormal-
ities, human clinicians may use contrast-enhancement techni-
ques (computer tools with digitized CXRs or using light 
boxes prior computerization35) As such, a similar process 
was built into our model, using a contrast enhancement mod-
ule during the testing phase. As clinically it is important to 
identify abnormalities, it was deemed important to improve 
sensitivity (recall), so this contrast module was applied only 
to those classified as normal.

For images where the prediction of the machine was 
greater than 0.3 but less than 0.49999 (images that came 
close to being abnormal), the machine would use histogram 
equalization.36 After modification of the images, it would 
then put these back through the model and re-run the 
predictions.

Explainable AI
This study used the Shapeley Additive exPlanations (SHAP) 
method to help interpret the machine’s inferences.37

As different models and even instances can cause differing 
SHAP heatmaps, to help better understand AI in general, this 
study attempted to characterize patterns of inference genera-
tion based on characteristics of architecture. The base model 
was changed from ResNet50 to ResNet101 and ResNet152 
to determine what effects changing depth would have on the 
SHAP heatmaps. All other elements stayed the same and the 
concept driving the architecture of the base model (ResNet’s 
skip blocks) remained the same. Each increasing ResNet 
architecture contained the corresponding number of layers 
(50, 101, and 152, respectively). Furthermore, increasing 
architecture also increased the number of residual blocks 
with ResNet50 starting at 16.38 In summary, each higher 
level ResNet added depth and complexity.

To quantify the exact number of pixels used, custom code 
was constructed to quantify the number of colored pixels as a 
percentage of the total pixels (available on GitHub).

Results
The primary model (custom CNN built on top of ResNet 50) 
achieved an accuracy of 0.7866, recall of 0.6873, precision of 
0.9615, and an AUC of 0.9023. When the contrast 

Figure 1. Model architecture.
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enhancement was applied, the accuracy improved to 0.8190 
and recall to 0.7423 (Table 1).

Directly comparing this study’s model to ResNet50 alone 
(without customized additions) was not possible as ResNet50 
was designed to identify multiple different classes of non- 
medical images rather than a binary outcome. However, to 
approximate ResNet50’s un-modified performance, a single 
flatten and fully connected output layer was added. The 
model was not trained and simply ran on the test dataset. 
Our model performed significantly better than this base 
ResNet50 with minimal modifications (Table 1).

To help elucidate the effect of deeper ResNet architectures, 
we substituted the ResNet50 base with ResNet101 and 
ResNet152. Hyperparameters were tuned for our primary 
model, the custom CNN built on ResNet50, and to maintain 
consistency, they were not modified for the deeper architec-
tures. Results are seen in Table 1.

SHAP values were run across the images to attempt to find 
patterns in machine inference. This study looked at the SHAP 
values for our primary model but also how this changed 
based on deeper base models (Figure 2). As the ResNet base 
model became deeper, more of the image was used to make 
an inference.

The percentage of colored pixels, thus the number of pixels 
used in inference, increased based on the depth of the ResNet 
model. For the first CXR, 6.28% was used by ResNet50, 
67.48% by ResNet101, and 87.69% by ResNet152. For the 
second CXR, 56.40% was used by ResNet50, 83.57% by 
ResNet101, and 96.99% by ResNet152.

Discussion
This study created a model that displayed an ability to prop-
erly classify CXR as normal or abnormal across a wide range 
of conditions (Accuracy 79%, Precision: 96%, Recall 69%, 
AUC 0.9023; Post-Contrast Adjustment Accuracy 82%, 
Precision 96%, Recall 74%, AUC 0.9020). While our 
model does not outperform respirologists and radiologists, it 
does outperform some clinicians.39 Direct comparisons are 
difficult as other models often focus on targeted rather than 
general tasks, but this model has a comparable performance 
to many works.9,11,40 Regardless we primarily use this 
model to explore ML concepts rather than focusing on its 
performance.

In clinical practice, a technique used by clinicians involves 
increasing contrast to visualize subtleties.35 Similarly, this 
study used histogram equalization in a post-processing step 
whereby borderline CXRs below the threshold underwent 
contrast enhancement and were re-fed through the predictive 
model.36 Using this human analogous process, performance 
increased slightly (Accuracy 82%, Precision 96%, Recall 

74%, AUC 0.9020). While described in general imaging 
tasks, such methods are not as often reported for general 
CXR tasks and warrant future clinical study. While our mod-
ification improved recall by decreasing false negatives, a simi-
lar technique could be applied to precision by decreasing 
false positives.

While ML is poised to make a big impact in healthcare, it 
may create inequities due to resource disparities.4,41 Tradi-
tional ML models created by industry have massive data-
sets.42–44 In healthcare, this is difficult given multiple 
limitations such as privacy, logistics, lack of data science 
knowledge, and limited pre-trained models. Furthermore, not 
all institutions have capabilities of curating massive scale 
datasets, and those that do, do not share publicly. A study 
showed that there is a bias in research productivity and data-
sets.5 This limitation has traditionally formed a barrier to the 
advancement of healthcare ML.

This study used a dataset of 2509 images with consumer 
hardware, one GeForce 3090 RTX, to achieve a reasonable 
performance on a model that classified CXRs as normal or 
abnormal across a variety of generalized abnormalities 
(including hernias, pulmonary, and cardiac abnormalities). 
To achieve our metrics, we utilized transfer learning com-
bined with our own custom CNN. ResNet50 (public package 
on Python) was a general image recognition model trained on 
everyday images.31 Our additional steps improved model per-
formance on CXRs. The base performance of the ResNet50 
model without further layers or training was significantly 
lower than the custom model (Table 1). The transfer learning 
of ResNet pre-taught our model general recognition tasks 
which lowered overall computational and dataset 
requirements.

Recognizing the importance of transparency as highlighted 
in multiple frameworks,33 this study provides a case for the 
viability of consumer-grade hardware and public datasets in 
healthcare ML studies. While the power of consumer-grade 
hardware is known within the technology community, few 
medical studies have reported specific hardware used.15–18

Future work could investigate the role of transfer learning to 
help adapt trained models to under-represented populations. 
If existing models trained in areas with over-representation in 
research are found to have poor generalizability, transfer learn-
ing combined with additional architecture or datasets could 
help. This could circumvent limitations of building new models 
from scratch with small datasets.

CNNs have traditionally been thought of as black boxes 
because the features a machine uses to make inferences are 
not readily decipherable by humans.45 This uncertainty has 
led many to describe inadvertent risks of ML. Gichoya et al 
showed that an ML model was able to differentiate patient 
race on radiographs. It persevered despite image 

Table 1. Test performance on various models.

Model Accuracy Recall Precision AUC

Custom model (ResNet50 Base) 0.7866 0.6873 0.9615 0.9023
With contrast enhancement 0.8190 0.7423 0.9600 0.9020

Custom model (ResNet101 Base) 0.7845 0.7113 0.9283 0.8823
With contrast enhancement 0.7931 0.7354 0.9185 0.8834

Custom model (ResNet152 Base) 0.7672 0.6667 0.9463 0.8664
With contrast enhancement 0.7672 0.6667 0.9463 0.8724

ResNet50 Base (no additional layers or training) 0.3685 0.0103 0.3750 0.2815
With contrast enhancement 0.3685 0.0103 0.3750 0.2812
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manipulation and the researchers could not determine how 
the machine made its inferences. ML has great potential for 
improving healthcare; however, it is not without risks. 
Despite these risks, ML integration in medicine will be inevi-
table. We must find ways to systematically study machine 
learning inference.

However, other models did not have similar concerns.46

This difference illustrates that individual architectures, mod-
els, and even instances behave differently: an over-arching 
conclusion cannot be reached regarding ML. Each model’s 
training process and each instance of training is stochastic, 
thus is not comparable across studies. For instance, one can-
not say that all AIs recognize pleural effusions by looking at 
blunting of the costovertebral angle, rather only that a spe-
cific model recognizes pleural effusions via angle blunting. 
Due to these variations, an approach where we, instead, look 
at types of models and patterns of inference may be useful in 
helping explain AI.

While directly understanding the function of each neuron 
or layer is not feasible, there exist indirect methods of observ-
ing a machine’s attention.47 ResNet’s architecture was 
designed around the concept of a skip connection, which 
tackles vanishing gradients in deep networks.31 There are 
variations of ResNet based on the number of layers it con-
tains. While this study’s primary model was built around and 
tuned with ResNet50 (50 layers) as the base for transfer 
learning, ResNet50 was substituted with ResNet101 and 
ResNet152 to determine what effect deeper ResNet architec-
tures may have on machine inference. ResNet101/152 are 
sequentially deeper and more complex, characterized by 
increasing number of layers and residual blocks.31 In all cases 
the additional custom CNN layers and hyperparameters 
remained consistent. SHAP was used to determine which 
areas of the image the machine focused on, and how each 
area it focused on affected its classification. These images 

were compared across the three base architectures. It was 
found that, like human clinicians, the machine focused on 
lung fields when looking at CXRs to classify them. It gener-
ally looked at areas of high contrast (opacities against the 
black background). These findings mimic those of a study 
looking at breast density where for correct predictions, the 
machine would focus its attention on areas that also seem 
intuitive to humans.48

Such AI explainability methods are important as without 
them, it is possible the model is using an aberrant method of 
inference. For instance, if certain hospitals had more abnor-
mal CXRs, the model could end up using a hospital image 
watermark to predict abnormality. Using SHAP helped us 
increase our confidence that the model behaved properly.

While this is important, the use of SHAP has already been 
reported.49 What is unique about this study is that we use 
SHAP not to explain the behavior of a specific model, but 
rather, it studied how varying a specific feature or character-
istic of a model impacts its behavior. An analogy could be 
drawn to the neurosciences, where functional magnetic reso-
nance (fMRI) may be used to study the cortical activation of 
various tasks.50 Rather than looking at the fMRI of a single 
brain, one could look at the effect a temporal lobe has on 
cognition in general.

This study found that the deeper the ResNet-base architec-
ture, the wider focus the machine employed. All the models 
were supplied with the entire image. In the ResNet50 images, 
the machine would focus on specific quadrants. However, 
with ResNet101/152 the machine showed attention to multi-
ple quadrants or even the entire CXR (evidenced by increas-
ing ratio of colored to non-colored pixels). Of note a 
comparison of ResNet50/101/152 performance is not possi-
ble as hyperparameters were tuned for ResNet50 and equal 
tuning could have resulted in benefits.

Figure 2. SHAP images for CXR Inference, ResNet50, ResNet101, ResNet152 base model.
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This use is novel and important as each model and even 
each instance of a model can vary due to different instantia-
tions. AI explainability conclusions from a single model can-
not be extrapolated to a wider understanding of ML. 
However, by studying thematic elements, such as varying 
depths of ResNet on behaviour, researchers may achieve bet-
ter understanding of ML in general. Indeed, experts have 
advocated for a hierarchy of understanding AI, from trans-
parency to explainability.51 This study’s approach to study-
ing thematic elements of architecture could be a different 
paradigm for studying ML behavior and help us achieve a 
higher level of understanding how ML functions. This would 
be in an analogous fashion to understanding general psycho-
logical principles or behavioral patterns as compared to 
understanding the cognition or decisions of a single 
individual.

Understanding ML is key to ensuring we build models that 
do not have aberrant inference processes; thus, the greatest 
benefit of thematic work is a new way to study inference. 
However, this work also has concrete benefits. Traditionally 
AI explainability methods have been applied after model 
completion. However, if general rules apply to various archi-
tectures, researchers can make choices even before model 
construction; for instance, choosing a deeper ResNet archi-
tecture if one desires larger parts of an image to be used in 
inference. This could reduce resources and time required for 
model development. Furthermore, it also establishes a foun-
dational methodology for broader exploratory research in 
AI. Future work could analyze other themes in ML work. An 
example could be the differences in inferencing behavior 
between DenseNet8,9 and ResNet31 architectures or the effect 
of the residual block itself. This could lead to the develop-
ment of methods for forward-looking prediction of behavior.

A series of limitations exists with this study. ML models 
differ from each other. Performance and inference change 
based on the set of training data that models are exposed to, 
hyperparameter settings, or even per instance of training (ini-
tialization of model weights and biases are random). Thus, 
findings cannot be extrapolated literally, and performance 
may not be consistent with other datasets. Specifically, it is 
noted that the process of model development and training is 
inherently stochastic, the reported version is one of the higher 
performing iterations, but it is possible that performance esti-
mates are optimistic and not generalizable. While the intent 
was to demonstrate accessibility of AI using consumer grade 
hardware and public datasets, true democratization requires 
internet access and advanced data science skillsets. In health-
care it also requires considerations of patient privacy and 
dealing with the challenges of nuanced tasks. However, this 
study demonstrates that consumer grade hardware and lack 
of access to massive scale data does not inherently form an 
absolute barrier.

A particular limitation was the nature of publicly curated 
datasets. While such datasets have led to significant progress 
in ML, often they do not have detailed methodological 
descriptions in the curation process. It is vital that models 
deployed in clinical settings be tested rigorously with multiple 
datasets. While it may not be possible to train models in the 
development phase with such data, testing could occur with 
highly validated privately curated datasets from hospital 
authorities. Furthermore, this limitation underscores the need 
for high quality data to progress healthcare ML.

The intention of this study is less model performance, 
rather the use of the model to explore concepts, such as the 
ML work accessibility, contrast enhancement, and finally an 
example of studying themes in AI explainability rather than 
individual models. It is limited in that it is based off one 
model and future detailed work could be performed on each 
concept independently.

Conclusion
Using a novel CXR classification model, this study demon-
strated the possibility of performing medical studies on 
consumer-grade hardware using public datasets, employed 
contrast enhancement, and demonstrated using AI explain-
ability methods in a novel fashion, by looking at thematic ele-
ments of models (varying ResNet depths) rather than an 
individual model’s behavior. By doing so, it determined that 
increasing ResNet depths used increased inference area. This 
technique could be used to help researchers better understand 
ML behavior. This work explored concepts that could be 
studied in future studies with different models and tasks.
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