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HIV-1 (human immunodeficiency virus-1) has been causing severe pandemics by attacking the immune

system of its host. Left untreated, it can lead to AIDS (acquired immunodeficiency syndrome), where

death is inevitable due to opportunistic diseases. Therefore, discovering new antiviral drugs against HIV-1

is crucial. This study aimed to explore a novel machine learning approach to classify compounds that

inhibit HIV-1 integrase and screen the dataset of repurposing compounds. The present study had two

main stages: selecting the best type of fingerprint or molecular descriptor using the Wilcoxon signed-

rank test and building a computational model based on machine learning. In the first stage, we

calculated 16 different types of fingerprint or molecular descriptors from the dataset and used each of

them as input features for 10 machine-learning models, which were evaluated through cross-validation.

Then, a meta-analysis was performed with the Wilcoxon signed-rank test to select the optimal

fingerprint or molecular descriptor types. In the second stage, we constructed a model based on the

optimal fingerprint or molecular descriptor type. This data followed the machine learning procedure,

including data preprocessing, outlier handling, normalization, feature selection, model selection, external

validation, and model optimization. In the end, an XGBoost model and RDK7 fingerprint were identified

as the most suitable. The model achieved promising results, with an average precision of 0.928 ± 0.027

and an F1-score of 0.848 ± 0.041 in cross-validation. The model achieved an average precision of 0.921

and an F1-score of 0.889 in external validation. Molecular docking was performed and validated by

redocking for docking power and retrospective control for screening power, with the AUC metrics being

0.876 and the threshold being identified at −9.71 kcal mol−1. Finally, 44 compounds from DrugBank

repurposing data were selected from the QSAR model, then three candidates were identified as potential

compounds from molecular docking, and PSI-697 was detected as the most promising molecule, with in

vitro experiment being not performed (docking score: −17.14 kcal mol−1, HIV integrase inhibitory

probability: 69.81%)
1. Introduction

According to the UNAIDS 2021 statistics (United Nations Joint
Programme on HIV/AIDS),1 there were more than 38.4 million
people worldwide living with HIV. Since HIV was rst discovered
in the 1980s, the disease has caused about 34.7 million deaths.
However, there are no specic drugs or vaccines, so individuals
living with HIV can only be treated with antiviral therapy like
antiretroviral drugs (ARV), suppressing symptoms and slowing
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down the process leading to AIDS. Following several HIV-1
treatment regimens, clinical therapy should incorporate
multiple ARV drugs to ensure the antiviral effect and reduce the
risk of drug resistance. Therefore, many ARV drugs have been
studied and developed, including reverse transcriptase inhibitors
comprising both nucleoside2 and non-nucleoside inhibitors,3

protease inhibitors,4 integrase inhibitors5 and fusion inhibitors.6

Regarding protein targets, the integrase (IN) enzyme stands as
a prominent target for medicinal chemistry researchers.7 This
enzyme is produced by a virus with reverse transcription,
a process in which viral nucleic acids are catalyzed to form
covalent bonds between its genetic information and the DNA
(deoxyribonucleic acid) of the host's infected cells.8 Thus, inhi-
bition of integrase during strand transfer can prevent viral
proliferation and, therefore, prolong the host's lifetime. These
inhibitory compounds are called integrase strand transfer
inhibitors (INSTIs), and oen combine IN inhibitors with other
HIV medicines to mitigate drug resistance.9
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Machine learning has revolutionized many elds, including
drug discovery. In this eld, AI (articial intelligence) has been
used to create predictive models for ADMET, drug response,10

toxicity,11 and anticancer activity.12 These models allow virtual
screening and prediction of compound activity.13 Several
studies have been conducted on building models based on
machine learning to predict the activity of compounds against
IN, including those by A. Kurczyk et al. (2015), Y. Li et al. (2017),
and L. A. Machado et al. (2022).14–16 In contrast to traditional
QSAR models,17 which solely focused on linear equations to
correlate the molecular descriptor with biological activities, the
machine learning approach enables the implementation of
non-linear models for QSAR.

This study aimed to discover promising candidates for
organic synthesis plans by building computational models and
using those models to screen the dataset of repurposing
compounds from the DrugBank database for potential IN
inhibitors. In this study, a novel approach was taken to select
ngerprints or descriptors using the Wilcoxon signed-rank
test.18 Likewise, the model selection process for determining
the optimal model was conducted differently from the approach
used by Y. Li et al. (2017).14 The study of Y. Li et al. utilized
ECFP_4 ngerprint as the model input along with Support
Vector Machine, Decision Tree, Function Tree, and Random
Forest for machine learning model.
2. Methods

This study was carried out using Python 3.8 with AMD Ryzen
93900X CPU core consisting of 12 processors, 3.79 GHz
processor speed, 500 GB memory, and 96.0 GB RAM operating
on Linux 22.04. Molecular descriptors and ngerprints were
generated via open-source packages, including Padel 2.21
Descriptor,14 RDKit 2020.3.1,19 Mordred 1.2.0,20 Map 4 1.0,21 and
MHFP.22 The machine learning model was completed using
scikit-learn 1.1.1 library23 with the steps described in the
diagram below (Fig. 1). All stages of the study were conducted
Fig. 1 Model development pipeline includes two stages: dataset selecti

© 2024 The Author(s). Published by the Royal Society of Chemistry
with the same random state (value = 42) to ensure reproduc-
ibility. The source code, all datasets, and the results of this
study are available at: https://github.com/Medicine-Articial-
Intelligence/HIV_IN_Classication.
2.1. Dataset

8979 molecules inhibiting HIV-1 integrase were collected from
the ChEMBL 33 database. Biological activity standardization
was performed, including the target organism being “human
immunodeciency virus 1”, assay type being “B type”, and
“IC50” value in measurement unit columns, followed by can-
onicalizing SMILES structures. Upon completion of these
stages, 2834 compounds remained in the dataset for building
the model. Besides, 15 235 structures collected from the Drug-
Bank database were prepared for virtual screening, with
repurposing and repositioning strategies.
2.2. Optimal dataset selection

SMILES notations were converted into molecules to calculate 16
types of ngerprints or descriptors, called molecular features,
including 3D-Mordred, RDKit descriptor, Mol2vec, MACCS,
PubChem, Avalon, ECFP2, ECFP4, ECFP6, RDK5, RDK6, RDK7,
Cats2D, 2D-Pharmacophore Gobbi (Ph4), MAP4, and SECFP
(raw_data_features). The data preparation process was per-
formed for all molecular features set, including target normal-
ization with the threshold of pIC50 being 7 (meaning active or
class 1 if pIC50 is equal or above 7, and inactive or class 0 for the
counterpart), dataset division (80 : 20) with stratication prin-
ciple resulted in 1995 compounds in the training set and 499
compounds in the external validation set with the imbalance
ratio of 0.404 between the active and inactive classes.

Then, the data mining process was conducted on the
training set and similar methods were applied the external
validation set. First, 1995 compounds with molecular features
underwent data removal to eliminate duplicate rows and
columns, followed by missing values handling utilizing
on and model establishment.
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KNNImputer from the scikit-learn library (only for the 3D-
Mordred dataset) before ending up with low variance removal
using a threshold of 0.05. Next, the Local Outlier Factor (LOF)
technique was employed with a parameter setting of
“n_neighbors = 20” to remove outliers in the training set and
novelty in the external validation set. The nal step in the data
mining process is data normalization using a rescaling method,
in which MinMaxScaler was applied to map all data into the
range [0,1].

Feature extraction was executed using algorithms from the
Random Forest (RF) algorithm, followed by applying 10 different
machine learning algorithms to the molecular features: Logistic
Regression (Logistic), k-Nearest Neighbor (KNN), Support Vector
Machine (SVM), Random Forest (RF), Extra Tree (ExT), Adaboost
(Ada), Gradient Boosting (Grad), XGBoost (XGB), CatBoost (CatB),
and Multilayer Perceptron (MLP). A meta-analysis was conducted
to identify the optimal feature set, employing the Wilcoxon
signed-rank test and utilizing a 3 × 10 Repeated Stratied K-Fold
cross-validation approach with the F1-score serving as the primary
evaluation metric. To account for multiple comparisons in the
Wilcoxon test, the Holm24 method was applied, as indicated by
the p_adjust = ‘holm’ parameter in the scikit-posthocs package,25

crucial for controlling the family-wise error rate amidst numerous
pairwise comparisons. The Holm method systematically adjusts
each p-value from the pairwise tests, reducing false positives and
enhancing the validity of the signicant results, illustrating
a detailed statistical analysis approach and ensuring the reliability
of the molecular feature set selection ndings.
2.3. Machine learning model development

The most effective molecular features set selected above under-
went similar data processing and mining steps but experienced
a slight difference in the feature extraction stage. Instead of just
using Random Forest to select essential features, eight different
methods, consisting of Chi-squared (Chi2), Mutual information
(Mutual_info), Random Forest (RF), Extra Tree (ExT), Adaboost
(Ada), Gradient Boosting (Grad), XGBoost (XGB), and Logistic
Regression (Logistic) were performed to compare the perfor-
mance of these models with the baseline model, for which the
feature extraction was not performed. The optimal algorithm was
then used to reduce the data dimensionality.

The reduced-dimensional data was performed for model
selection to select an optimal algorithm formodel development.
Ten different algorithms were selected for this step, including
Logistic Regression (Logistic), k-Nearest Neighbor (KNN),
Support Vector Machine (SVM), Random Forest (RF), Extra Tree
(ExT), Adaboost (Ada), Gradient Boosting (Grad), XGBoost
(XGB), CatBoost (CatB), and Multilayer Perceptron (MLP). 3 ×

10 RepeatedStratiedKFold cross-validation with Wilcoxon
signed-rank test26 was also performed for these two stages.

Moreover, the Tree-structured Parzen Estimator (TPE) algo-
rithm from the Optuna library was utilized for Bayesian Opti-
mization (BO) to optimize the hyperparameters. BO is a global
optimization technique that builds a surrogate model of the
objective function and uses an acquisition function to suggest
the next sample point.27,28
14508 | RSC Adv., 2024, 14, 14506–14513
2.4. Model evaluation

The performance of a model can be evaluated by its learnability
from data and generalizability on unseen datasets, performed
through internal and external validation, respectively. Internal
validation (IV) involves cross-validation techniques for training
models and hyperparameter tuning. External validation (EV), on
the other hand, utilizes a validation dataset from an indepen-
dent source to assess the model's performance unbiasedly. As
such, the results of EV provide crucial evidence for the gener-
alizability of a QSAR model.29

The models' performance in this study was evaluated using
statistical parameters such as F1-score, average precision,
precision, and recall. Precision is calculated as the ratio of true
positive predictions to the sum of true positive and false posi-
tive predictions.30

Precision ¼ true positive

true positiveþ false positive

Recall is a statistical measure that quanties the proportion
of true positive instances that are correctly identied by
a predictive model.30

Recall ¼ true positive

true positiveþ false negative

Average Precision (AP) is calculated as the weighted mean of
precision at each threshold, the weight is the increase in recall
from the prior threshold.31

AP ¼
X

n

ðrecalln � recalln�1Þ � precisionn

The F1-score is calculated as the harmonic mean of precision
and recall, providing a measure of the trade-off between them.30

F1-score ¼ 2� precision� recall

precisionþ recall

2.5. Molecular docking

In this study, we retrieved the structure of HIV Integrase from the
Protein Data Bank (PDB ID: 6PUW),32 and split it into ligand and
protein components. For protein preparation, we extracted the
protein's .pdb le (PDB ID: 6PUW), removed the co-crystal ligand
and water molecules, and retained only the protein chains.
Hydrogens and Gasteiger charges were added to the protein using
MGLTools 1.5.7, converting it into a .pdbqt le. In parallel, ligand
preparation involved converting compounds in SMILES format into
2D structures using RDKit's MolFromSmiles, then transforming
these into 3D conformations using the EmbedMoleculemodule with
a random seed of 42. Aer energyminimization using theMMFF94
force eld through MMFFOptimizeMolecule, capped at 10 000
iterations, the ligands were saved in .pdb format. Further prep-
aration with MGLTools 1.5.7 added hydrogens and Gasteiger
charges, resulting in the nal.pdbqt les for the ligands. Finally,
the grid box was dened as a cube of 60 × 60 × 60 grid points,
with coordinates x= 143.399 Å, y= 159.402 Å, and z= 177.382 Å.
Molecular docking was performed using AutoDock-GPU,
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 3 The heatmap illustrated the Wilcoxon signed-rank test 16 types
of fingerprints and descriptors for meta-analysis.
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employing specic parameters to guide the process. The seed
parameter was set to a random number seed of 42 to ensure
reproducibility. We used 1000 runs of the Lamarckian genetic
algorithm (nrun) to thoroughly explore the potential binding
congurations. Additionally, a maximum of 2 × 109 score eval-
uations per LGA run (nev) was specied, allowing an extensive
assessment of the docking interactions within each run.

The performance of the docking model was validated by
redocking to validate docking power (RMSD #2 Å) and retro-
spective control (enrichment analysis) to validate screening
power. DeepCoy was utilized to generate decoy (active: decoy= 1 :
50) for the latter step,33 and the performance wasmeasured by the
Receiver Operating Characteristic (ROC) curve and Area Under the
Curve (AUC). Additionally, the Geometric Mean (G-Mean) was
employed to determine the optimal cut-off point for the ROC
curve.34 The G-Mean is a metric measuring the balance between
classication performance for majority and minority classes.
3. Results
3.1. Molecular features set selection

The meta-analysis utilized the Wilcoxon signed-rank test to
identify the optimal features set. The F1-score was the primary
metric used to compare the performance of 16 molecular
feature sets. The evaluation results are detailed in Table S1
(ESI),†while the summarized comparison is illustrated in Fig. 2.

From Fig. 2, the RDK7 ngerprint experienced the highest
average F1-score in accordance with cross-validation (0.811),
calculated from 10 models with 300 observations the whole.
Meta-analysis was also conducted for pairwise comparison
among ngerprints and descriptors using the Wilcoxon signed-
rank test, illustrated in Table S2 (ESI).† As shown in Fig. 3, RDK7
showed a statistically higher signicance of average F1-score
compared to other datasets (p < 0.05). Therefore, RDK7 was
selected as the optimal molecular feature to develop a machine
learning model.
3.2. Model selection

3.2.1 Feature extraction. In this stage, our main objective
was to select the optimal subset of RDK7 ngerprint, building
the prediction model based on two criteria. Firstly, the model
used for selection had to achieve the highest average F1-score in
cross-validation with signicant differences based on the
Fig. 2 The meta-analysis of 16 types of fingerprints and descriptors
utilizing F1-score metric.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Wilcoxon signed-rank test. Secondly, the model used for feature
selection should yield the result with the minimum number of
ngerprints to accelerate the optimization step. Fig. 4 illustrates
the results of internal cross-validation among the ngerprint
selection methods.

According to the box and whisker plot in Fig. 4, feature
selection methods were stable except for mutual information,
Logistic Regression, and AdaBoost returning F1-score outliers
aer 30 times cross-validation. While using the Wilcoxon
signed-rank test for F1-score comparison among 8 models, only
the Chi-squared and Mutual information gave statistically
signicantly lower results than the baseline model (p < 0.05).
Other models had no statistically signicant difference
compared to the baseline model, so the feature extraction
methods did not meet the rst criterion.

On the other hand, the XGBoost and the Logistic Regression
achieved the highest average F1-score among all the models,
except for the baseline model. However, according to pairwise
assessment of these two models (Fig. S1 ESI†), there was no
statistically signicant difference (p > 0.05). The second crite-
rion, aimed at reducing computational resources by mini-
mizing the number of features, was taken into consideration.
The XGBoost algorithm had 533 bits, a lower number of features
than the Logistic Regression algorithm, which had 744 bits.
Therefore, the XGBoost algorithm was selected to reduce the
Fig. 4 The feature extraction methods comparision for RDK7 dataset.

RSC Adv., 2024, 14, 14506–14513 | 14509



Fig. 6 The Wilcoxon signed-rank test compared 10 machine learning
algorithms using F1-score.

Fig. 7 The machine learning algorithms comparision for RDK7 dataset
utilizing average precision score.

RSC Advances Paper
dimension of the RDK7 dataset. The results of the features
selection comparison are illustrated in Table S3 (ESI†).

3.2.2 Machine learning model selection. Ten different
machine learning algorithms were employed, and internal
cross-validation along with the Wilcoxon signed-rank test was
utilized to identify the most efficient machine learning model
based on two criteria. The rst criterion focused on selecting the
model with an average F1-score derived from cross-validation
that was signicantly higher than the other models. As for the
second criterion, the model with an average precision (AP)
derived from cross-validation showed signicantly higher
performance compared to the other models and required
a shorter training time.

Based on the box and whisker plot in Fig. 5, XGBoost (0.842
± 0.039) and CatBoost (0.842 ± 0.044) achieved the highest
average F1-score. However, when the Wilcoxon signed-rank test
was applied, these differences were not statistically signicant
(p > 0.05) compared to Logistic Regression, Random Forest,
Gradient Boosting, and Multilayer Perceptron (Fig. 6).

We continued to use average precision (AP) to evaluate
model performance (Fig. 7). Two models, including XGBoost
(0.929 ± 0.029) and CatBoost (0.927 ± 0.030) remained the best
performers. In this case, XGBoost showed signicant differ-
ences when compared to most of the others (p < 0.05). In
addition, XGBoost had a shorter training time than CatBoost.
Thus, in terms of the second criterion for this step, XGBoost
model was selected for the optimization.

3.2.3 Machine learning model optimization. In the study,
hyperparameters were optimized using Bayesian Optimization
through 1000 trials. Aer analyzing the results, it was found that
the highest average F1-score across all trials in the cross-
validation was 0.854. Therefore, the hyperparameters associ-
ated with this trial were selected to be used for the XGBoost
model. The results of this step are shown in Table S4 (ESI†).

The results derived from the cross-validation and external
validation were consistent. This external validation result was
highly generalizable and can be applied in virtual screening.

3.2.4 Evaluating the generalizability of the model. The
external validation dataset (20%) divided from the beginning
was used to evaluate the generalizability of the model. The
results are illustrated in Table 1.

According to Fig. 8, the CV-recall values are signicantly
higher aer optimization than the default hyperparameter
Fig. 5 Themachine learning algorithms comparision for RDK7 dataset
utilizing F1-score.
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model, with a p-value# 0.01. However, the average CV-AP and CV-
F1 scores do not show a statistically signicant improvement
aer optimization, with p-values of 0.33 and 0.06 respectively.

Compared with the study of L. A. Machado et al.,16 a state-of-
the-art machine learning model targeting HIV integrase
utilizing Mordred descriptor, our model could not outperform
in external validation, with F1-score being 0.89 lower than the
0.93 of their study. However, our model development procedure
is more rigid, with several decision-making stages, supported by
theWilcoxon signed-rank test of cross-validation. Moreover, our
study performed cross-validation in the development pipeline
for selection and optimization. At the same time, external vali-
dation was conducted in the nal stage to prove the general-
ization of the machine learning model. The applicability
domain was also investigated to remove ve substances in the
external validation set to ensure the interpolation of our model
(Fig. 9). From Fig. 9 the red point was detected as a novelty, or
outside applicability domain, which was far from the training
set (grey points). This could solve the problem of sparse space in
the bounding box approach.

3.3. Molecular docking

The model evaluation was conducted based on redocking data
collected from Autodock-GPU.35 Based on the largest cluster of
© 2024 The Author(s). Published by the Royal Society of Chemistry



Table 1 Internal and external validation results for the Gradient Boosting model

Cross-validation External validation

AP F1-score Recall AP F1-score Recall

Baseline 0.929 � 0.030 0.842 � 0.038 0.835 � 0.045 0.921 0.856 0.878
Optimize 0.928 � 0.027 0.848 � 0.041 0.855 � 0.052 0.921 0.889 0.921

Fig. 8 The internal cross-validation results of the model, both before and after hyperparameter optimization, (A) average precision, (B) F1-score,
(C) recall.

Fig. 9 Application of LOF in applicability domain. The grey, blue, and
red points describe the training set, external validation set in and out
the applicability domain.

Fig. 10 The results of redocking (A) and retrospective control (B) evalu
conformations, including the most negative (ad4_gpu_min), the most
(ad4_gpu_mean) of docked conformation distribution.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the redocking procedure, which comprised approximately 20%
of all generated conformations, the RMSD value of the best-
docked conformation (the most negative) did not exceed 2 Å
(0.63 Å), which is illustrated in Fig. 10A.

According to the AUC-ROC curve in Fig. 10B, the AUC value
was 0.876 for the most negative conformation (ad_gpu_min)
with the G-Mean value reaching 0.841. The docking threshold
extrapolated from the G-Mean was −9.71 kcal mol−1.
3.4. Virtual screening process

A total of 15 235 substances from DrugBank were subjected to
a medicinal chemistry lter, incorporating Lipinski's Rule36 of 5
(RO5 = 4), SAscore,37 and PAINS,38 yielding 8333 structures.
Subsequent screening through a 2D-QSAR classication model
ation. The retrospective control was conducted utilizing four types of
positive (ad4_gpu_max), the median (ad4_gpu_median), and mean

RSC Adv., 2024, 14, 14506–14513 | 14511



Fig. 11 The results of virtual screening process.

Fig. 13 Bictegravir (red) and PSI-697 (green) in the active site.

RSC Advances Paper
identied 44 compounds as active. These compounds were
further analyzed using molecular docking, leading to the
identication of three notable compounds: two existing medi-
cines and one hit compound (PSI-697). The outcomes of this
virtual screening process are depicted in Fig. 11.

In general, the results obtained from the molecular docking
process showed that all three compounds in Fig. 12 formed
electrostatic interactions with both Mg2+ ions. This is the rst
and highly important pharmacophore characteristic shared by
all currently available INSTIs on the market. Additionally, all
three selected conformations formed hydrogen bonds with the
sidechain carbonyl group of Asp64, while tting within the
binding pocket between the two subunits of HIV integrase
(matching the binding site of Bictegravir in the initial protein-
ligand complex with PDB ID 6PUW).

Regarding PSI-697 (green) in Fig. 13, the binding mode was
similar to Bictegravir, but the docking score was more negative,
with the gures being −17,14 kcal mol−1 and −11 kcal mol−1,
respectively. This could be explained by the hydrogen bonds with
the sidechain of Glu152, which was observed in the complex of
Fig. 12 The binding modes of three potential candidates from the
QSAR model. Blue: Elvitegravir (−17.32, 98,82%). Red: Dolutegravir
(−11.42, 98,63%). Green: PSI-697 (−17.14, 69,81%).

14512 | RSC Adv., 2024, 14, 14506–14513
Bictegravir and protein. Moreover, the docking score of PSI-697
was also approximately equal to Elvitegravir
(−17,32 kcal mol−1). The HIV integrase inhibitory probability of
PSI-697 from the QSAR model was also good, with the gure
being around 69%. As a result, PSI-697 was the most promising
candidate targeting HIV integrase for both inhibition and
binding ability.

4. Conclusion

Our study introduced a novel approach to machine learning,
where decision-making stages were made based on statistical
tests. We utilized 16 different molecular ngerprints and
descriptors and employed the Wilcoxon signed-rank test of
cross-validation to determine the optimal one for feature and
model selection. The LOF algorithm was implemented to
establish the applicability domain, outperforming the bound-
ing box technique in sparse areas.

The RDK7 ngerprint proved the most suitable and XGBoost
was the best model. External validation yielded impressive
results with an F1-score of 0.889, average precision of 0.921, and
recall of 0.921. These ndings are highly generalizable and
valuable for the virtual screening of potential HIV-1 integrase
inhibitors.

The repurposing structure library was screened, resulting in
the identication of one potential compound. We recommend
the synthesis and biological activity testing of this potential
compound.

Data availability

The source code, notebooks, and all datasets are available at:
https://github.com/Medicine-Articial-Intelligence/
HIV_IN_Classication_ML.
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lecting data, analyzing it to nd meaningful patterns, and
handling the graphical representation ofmolecular docking. T.M.
P managed to compile the package and uploaded it to Github for
public access. Additionally, V. T. T contributed to the analysis and
helped develop the source code for molecular docking. T. N. T
provided insightful suggestions, helped improve the manuscript,
and played a guiding role in the project's direction. All the team
members thoroughly reviewed and gave their approval for the
nal version of the research paper.
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