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Abstract 

Chronic pain, a complex and debilitating condition, poses a significant challenge to both patients and healthcare 
providers worldwide. Conventional pharmacological interventions often prove inadequate in delivering satisfactory 
relief while carrying the risks of addiction and adverse reactions. In recent years, electric neuromodulation emerged 
as a promising alternative in chronic pain management. This method entails the precise administration of electrical 
stimulation to specific nerves or regions within the central nervous system to regulate pain signals. Through mecha-
nisms that include the alteration of neural activity and the release of endogenous pain-relieving substances, electric 
neuromodulation can effectively alleviate pain and improve patients’ quality of life. Several modalities of electric 
neuromodulation, with a different grade of invasiveness, provide tailored strategies to tackle various forms and origins 
of chronic pain. Through an exploration of the anatomical and physiological pathways of chronic pain, encompass-
ing neurotransmitter involvement, this narrative review offers insights into electrical therapies’ mechanisms of action, 
clinical utility, and future perspectives in chronic pain management.
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Introduction
The International Association for the Study of Pain 
(IASP) defines pain as "an unpleasant sensory and emo-
tional experience associated with, or resembling that 
associated with, actual or potential tissue damage" [1]. 
In 2013, the IASP established a task force to develop and 
update a classification of pain disorders. This effort led to 
the inclusion of a chronic pain classification in the 2019 
edition of the International Classification of Diseases 
(ICD-11), formally adopted by the World Health Organi-
zation [2, 3]. Chronic pain is defined by a duration of at 
least three months or beyond the usual healing period. It 
can be further categorized into nociceptive, neuropathic, 
and nociplastic pain types [4]. Chronic pain presents a 
significant public health challenge, affecting millions of 
patients and incurring substantial medical expenses and 
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lost productivity [5, 6]. According to the Global Burden 
of Disease Study, tension-type headache, migraine, low 
back pain, neck pain, diabetic neuropathy are among the 
most common and prevalent chronic pain syndromes in 
the population, increasing their years lived with disability 
[6].

In a certain percentage of patients, conventional treat-
ments, including surgery, pharmacological therapies, 
combined with psychological, physical and occupational 
therapies, fail [7–9]. In these patients, neuromodulation 
may have a role in treatment. Neuromodulation refers to 
a broad category of techniques or therapies that modu-
late the activity of the nervous system to achieve thera-
peutic effects through chemical (i.e. pharmacological) 
interventions or electrical stimulation (i.e. neuromodu-
lation). Neurostimulation, which involve modifying or 
stimulating nerve activity through targeted electrical 
at specific neurological sites, is increasingly utilized in 
patients with chronic pain of varied origins [10]. These 
modalities represent the evolving landscape for chronic 
pain management, each offering unique advantages and 
considerations [11].

This review aims to provide a comprehensive under-
standing of the neuroanatomy and neurophysiology of 
chronic pain, with an emphasis on the role of electrical 
neuromodulation in its treatment.

Neuroanatomy and neurophysiology of chronic pain
Pain pathways are intricate and dynamic systems com-
prising sensory, cognitive, and behavioral components. 
These mechanisms have evolved to recognize, integrate, 
and coordinate protective responses to noxious stimuli. 
They encompass both primitive spinal reactions and the 
nuanced emotional experiences consciously identified as 
pain in humans [12].

In addition to the peripheral pain pathways, which 
include receptors and neural fibers, the central nerv-
ous system (CNS) pain pathways involve a network of 
structures. These structures comprise the spinal cord, 
thalamus, amygdala, hypothalamus, periaqueductal 
grey (PAG) matter, basal ganglia, insular and cingulate 
cortices, as well as the sensory and motor cortices [13]. 
Figure  1 illustrates a schematic representation of pain 
pathways.

Pain signaling from periphery to ascending pathways
The intricate process of a painful stimulus begins in the 
periphery with specialized nociceptors activated by stim-
uli like pressure, extreme temperatures, or tissue dam-
age. Nociceptors transmit the pain stimulus to primary 
afferent fibers, responsible for carrying sensory infor-
mation from the periphery to the CNS. Classified based 
on diameter and conduction velocity, two basic types of 

nerve fibers exist: myelinated Type A and unmyelinated 
Type C. Pain transmission occurs through two types: 
rapid (associated with Aδ-fibers) and slow (related to pol-
ymodal receptors and C fibers), each transmitting pain at 
different speeds. The cell bodies of sensory neurons are 
situated in the dorsal root ganglia (DRG); these neurons 
are capable of encoding and transmitting information 
derived from external stimuli. As these primary afferent 
fibers approach the spinal cord, they enter through the 
dorsal roots (i.e., dorsal root entry zone) [12, 13]. Inside 
the spinal cord, unmyelinated and small myelinated 
axons project laterally to enter the Lissauer tract, a mar-
ginal zone or layer of the dorsal horn. Here, they synapse 
with neurons in the dorsal horn. Aδ fibers ascend three 
to four segments in the Lissauer tract before terminating 
in the Rexed’s lamina I, II outer, or V. In contrast, C fibers 
typically ascend one segment before ending in lamina II.

One of the principal conduits in this relay of pain sig-
nals is the spinothalamic tract. This major ascending 
pathway serves as a dedicated highway for transmitting 
pain signals to the brain. The second-order neurons of 
the spinothalamic tract, crucial intermediaries in this 
relay, undergo a remarkable anatomical phenomenon 
known as decussation. These neurons cross over to the 
contralateral side of the spinal cord before ascending 
towards the thalamus, a central hub for sensory process-
ing [14]. The thalamus acts as a sensory relay station, 
receives the pain signals, and orchestrates their distribu-
tion to various cortical areas. From the thalamus, projec-
tions fan out to regions of the brain responsible for the 
conscious perception of pain. These cortical areas, intri-
cately connected and functioning in concert, give rise to 
the multifaceted experience of pain that encompasses its 
sensory, emotional, and cognitive dimensions [14].

The spinoreticular tract, diverging from traditional sen-
sory pathways, projects to the reticular formation in the 
brainstem, influencing emotional and autonomic aspects 
of pain perception. Additionally, the spinocerebellar 
tract, known for proprioceptive transmission, also con-
tributes to nociception and motor responses to pain, fur-
ther intertwining sensory perception and motor output 
[13].

Pain modulation from descending pathways
As pain signals ascend from the periphery to the brain 
through the intricate pathways, a parallel network of 
descending modulatory pathways operates in concert, 
finely tuning the transmission and perception of pain, 
maintaining a delicate balance between the intensity of 
noxious stimuli and the perceptual experience of pain.

One of the most prominent players in the descending 
modulatory orchestra is the descending inhibitory path-
way. This pathway exerts its influence through a series of 
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neural structures, i.e. the PAG, situated around the cer-
ebral aqueduct in the midbrain, and the rostroventral 
medulla (RVM), a region placed in the brainstem. These 
regions control the release of endogenous opioids and 
other neurotransmitters that act as pain inhibitors [15, 
16]. In particular, the PAG integrates information from 
various brain regions; its activation largely reduces per-
ception of pain [17].

Descending from the PAG, the inhibitory signals make 
their way to the RVM. The RVM acts as a relay station, 
forwarding the inhibitory commands to the spinal cord. 
Within the spinal cord, these commands target nocicep-
tive neurons, the primary relay stations for pain signals. 
The release of endogenous opioids, such as enkephalins 
and endorphins, is a hallmark of this inhibitory process 

[18]. These opioids bind to receptors on nociceptive neu-
rons, effectively dampening their activity and reducing 
the transmission of pain signals. Beyond endogenous 
opioids, neurotransmitters like serotonin and norepi-
nephrine also play crucial roles in the descending inhibi-
tory pathway. The release of these neurotransmitters 
contributes to the overall suppression of nociceptive sig-
nals. Serotonin is known for its involvement in pain mod-
ulation and mood regulation, highlighting the intricate 
interplay between sensory and emotional components in 
pain perception[18].

The descending inhibitory pathway not only reduces 
the transmission of pain signals but also contributes 
to the phenomenon of "pain gating". The Gate Control 
Theory, proposed by Melzack and Wall, suggests that 

Fig. 1  Anatomical pathways of chronic pain and neurotransmitters. The figure depicts the ascending and descending anatomical pathways of pain 
modulation. In the inner panel, neurotransmitters (depicted as squares) and receptors (depicted as V shapes) are illustrated. These include GABA 
(red), glycine (black), opiates (brown), norepinephrine (gray), glutamate (green), substance P (light blue), and serotonin (violet), each with their 
respective inhibitory (-) or excitatory ( +) activity indicated
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non-nociceptive inputs can modulate pain perception 
[19].

The dorsal column of the spinal cord comprises various 
neural fibers, with certain types such as Aδ and C fibers 
being triggered by painful stimuli, while the larger Aβ fib-
ers serve to suppress the transmission of these signals. 
According to the "Gate Control Theory," the interplay 
between the activity of Aδ and C fibers versus that of Aβ 
fibers dictates the perception of painful stimuli [7].

RVM is also known for the presence of "on-cells," which 
release neurotransmitters such as Substance P, glutamate, 
and norepinephrine. These neurotransmitters have the 
effect of amplifying the activity of nociceptive neurons in 
the spinal cord rather than inhibiting them [18].

Neurotransmitters of pain
Multiple neurotransmitters participate in both transmit-
ting and modulating pain signals, exerting effects that can 
either enhance or suppress the perception of pain [20].

Substance P, a neuropeptide functioning as an excita-
tory neurotransmitter, is primarily synthesized and 
secreted by nociceptive neurons, transmitting and modu-
lating pain signals throughout the CNS [21]. In the spinal 
cord, Substance P is released both at synaptic junctions 
and non-synaptic sites within the dorsal horn. It binds to 
tachykinins (NK1, NK2 and NK3) receptors located on 
lamina 1 neurons and the dendrites of lamina 5 neurons 
[22]. This interaction facilitates the transmission of pain 
signals from peripheral nerves to the CNS and assists in 
relaying these signals to higher brain regions responsible 
for processing pain perception. Additionally, Substance P 
can induce the release of other neurotransmitters, such 
as glutamate, thereby intensifying the pain signals [23]. 
Moreover, Substance P contributes to the emotional and 
affective dimensions of pain perception, influencing brain 
areas associated with mood regulation, stress responses, 
and emotional processing [24].

Glutamate is another excitatory neurotransmitter 
in the CNS involved in the conduction of pain signals 
by activating amino-3-hydroxy-5-methyl-4-isoxazole-
propionic acid (AMPA) and N-Methyl-D-Aspartate 
(NMDA) receptors on postsynaptic neurons in the dor-
sal horn of the spinal cord [25]. This activation induces 
the depolarization of postsynaptic neurons, generating 
action potentials and transmitting pain signals along 
ascending pathways to the brain centers [26]. NMDA 
receptors are crucial for amplifying and modulat-
ing pain signals, especially in chronic pain conditions. 
Unlike AMPA receptors, NMDA receptors necessi-
tate both glutamate binding and postsynaptic depo-
larization for full activation of their ion channels. This 
property allows NMDA receptors to integrate synaptic 
activity and contribute to the phenomenon of central 

sensitization, wherein pain signals are amplified and 
prolonged in chronic pain conditions [27].

Calcitonin Gene-Related Peptide (CGRP) is a neuro-
peptide synthetized and released from sensory nerves 
in response to noxious stimuli, inflammation, and tis-
sue injury. CGRP is a potent vasodilator, and it con-
tributes to inflammation and hypersensitivity [28]. In 
addition, it enhances the excitability of sensory neurons 
and promotes the release of other neurotransmitters, 
such as substance P [29]. CGRP has received signifi-
cant attention in the context of migraine since elevated 
levels have been found in the blood and cerebrospinal 
fluid during attacks. Therefore, CGRP has become a 
target for novel treatments for these patients [30].

Norepinephrine is released from descending path-
ways (particularly from the locus coeruleus), having 
both inhibitory and excitatory effects on pain trans-
mission. Its net effect depends on the receptors it acts 
upon, with α2-adrenergic receptors generally inhibiting 
pain signals [31, 32]. Direct stimulation of the PAG or 
RVM elevates norepinephrine levels in the cerebrospi-
nal fluid, then modulating pain transmission in the spi-
nal cord by inhibition of the release of glutamate and 
substance P [33].

Serotonin, also known as 5-hydroxytryptamine (5-HT), 
is another neurotransmitter involved in pain modula-
tion. It exhibits both excitatory and inhibitory effects on 
pain transmission, which are contingent upon the recep-
tor subtype activated and the neural pathways engaged 
[34]. 5-HT exerts its effects through multiple receptor 
subtypes (including 5-HT1, 5-HT2, 5-HT3, and so on), 
differently distributed throughout the nervous system 
and with distinct functional properties. Of note, 5-HT 
is characterized by an excitatory or inhibitory effect on 
pain transmission according to the activated subtype of 
receptors [35]. For example, 5-HT2 and 5-HT3 receptors 
enhance pain transmission by increasing neuronal excit-
ability and amplifying the signaling of pain pathways. 
Conversely, 5-HT1 receptors suppress the release of 
excitatory neurotransmitters, dampen neuronal activity, 
and reduce the transmission of pain signals, resulting in 
pain relief [34]. It’s worth noting that in the typical condi-
tion, 5-HT concentrations are relatively low, with a cer-
tain level of facilitation mediated by 5-HT3 and 5-HT2 
receptors. Subsequent elevations in spinal 5-HT then 
result in the inhibitory actions of the 5-HT7 receptor 
[35].

5-HT exerts regulatory effects on pain pathways across 
various levels of the nervous system. Apart from its role 
in the spinal cord, it also impacts pain processing in 
several brain regions associated with pain and anxiety, 
including the thalamus, frontal cortex, amygdala, and 
brainstem [36].
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Gamma-Aminobutyric Acid (GABA) is the principal 
inhibitory neurotransmitter in the CNS. GABA produces 
its inhibitory effects by inducing hyperpolarization of 
postsynaptic neurons, thereby increasing the negativity 
of the neuron’s membrane potential. This hyperpolariza-
tion reduces the likelihood of the neuron generating an 
action potential, leading to decreased excitability and 
limiting the propagation of signals along the neural path-
way [37]. Within pain modulation, GABAergic activ-
ity mitigates pain signals, regulating both the intensity 
and duration of pain perception [24]. In the spinal cord, 
GABA is released onto postsynaptic neurons subsequent 
to receiving inputs from primary nociceptive neurons, 
exerting inhibitory control [38]. Conversely, GABA mod-
ulates various regions in the brain such as the thalamus, 
where it inhibits transmission to the cortex, as well as 
the somatosensory cortex, insula, and anterior cingulate 
cortex. Furthermore, GABA influences descending pain 
pathways including the PAG and RVM [39]. Addition-
ally, GABAergic inhibition extends to the emotional and 
affective dimensions of pain processing, impacting brain 
regions like the amygdala and prefrontal cortex, thus 
modulating emotions such as fear, anxiety, and depres-
sion [24].

Endorphins and enkephalins, endogenous opioids 
synthesized in diverse CNS locales such as the hypo-
thalamus, pituitary gland, and spinal cord, serve as neu-
rotransmitters and neuromodulators, predominantly 
triggered by stress, pain, and physical exertion [40]. A 
key function of these compounds is pain signal inhibi-
tion, facilitated by their binding to mu (μ), delta (δ), and 
kappa (κ) opioid receptors on neurons in the spinal cord 
and brain, initiating intracellular cascades that lead to 
neuronal suppression [41]. Within the spinal cord, endor-
phins and enkephalins hinder the release of substance P 
and glutamate while diminishing the excitability of pain-
transmitting neurons, thereby modulating the trans-
mission of pain signals from the periphery to the brain. 
Moreover, these opioids exert their analgesic effects 
across various brain regions, including the PAG, RVM, 
thalamus, and limbic system [42].

Peripheral and central sensitization
Peripheral sensitization is a condition defined by the 
IASP as a state of “Increased responsiveness and dimin-
ished threshold of nociceptive neurons in the periph-
ery to the stimulation of their receptive fields” [43, 44]. 
This phenomenon occurs because of chemical mediators 
released by nociceptors and various non-neuronal cells, 
such as mast cells, basophils, platelets, macrophages, 
neutrophils, endothelial cells, keratinocytes, and fibro-
blasts, at the site of tissue injury or inflammation. 
A plethora of signaling molecules is involved in this 

process, including protons, ATP, prostaglandins (PGE2), 
thromboxanes, leukotrienes, endocannabinoids, growth 
factors (neurotrophins, granulocyte- or granulocyte-
macrophage colony-stimulating factors), cytokines (IL6, 
IL1β, TNFα), chemokines, neuropeptides (CGRP, sub-
stance P, bradykinin, histamine), lipids, and various pro-
teases [45–49].

Conversely, central sensitization is a complex phe-
nomenon defined by an amplification of neural signal-
ing within the CNS that elicits pain hypersensitivity 
[50]. In particular, it is marked by lasting changes in the 
excitability of second-order neurons within the spinal 
cord, induced by increased afferent activity. This results 
in significant alterations to the somatosensory system 
itself [51]. The profound significance of this concept was 
emphasized by the description of the long-term poten-
tiation in the hippocampus, revealing that synchronous 
high-frequency input enhances synaptic efficacy [52]. 
Central sensitization has been postulated to contribute 
in several chronic pain syndromes, such as rheumatoid 
arthritis, osteoarthritis, temporomandibular disorders, 
fibromyalgia, musculoskeletal disorders, headache, neu-
ropathic pain, complex regional pain syndrome [50, 53].

Neurostimulation techniques
The fundamental principle of neurostimulation in 
chronic pain revolves around precisely delivering electri-
cal impulses to modulate nervous system activity, thereby 
modifying pain perception, and providing relief. This 
approach aims to interrupt or dampen pain signals along 
neural pathways, by either stimulating specific nerves to 
block pain transmission or influencing the brain’s pro-
cessing of pain signals [54]. More precisely, in the com-
plexity of anatomical and physiological mechanisms of 
chronic pain, neurostimulation, in its various forms, 
interferes with the hyperexcitability of circuits involved 
in pain processing (such as the spinal cord stimulation 
and peripheral nerve stimulation) [55, 56], enhances 
endogenous pain inhibition (such as the motor cortex 
stimulation and the transcranial magnetic stimulation) 
[57–59], or modulates the affective component of pain 
[54, 60, 61]. Neurostimulation is an alternative or adjunc-
tive approach to manage chronic pain, particularly when 
medical or surgical treatments have been ineffective or 
associated with undesirable side effects [54].

Neurostimulation therapies can be classified by inva-
siveness. Invasive methods involve surgical implantation 
of electrodes or devices, including motor cortex stimu-
lation, deep brain stimulation, vagus nerve stimulation, 
spinal cord stimulation, and peripheral nerve stimula-
tion (Figure 2). Minimally invasive modalities, like pulsed 
radiofrequency therapy and percutaneous electrical 
nerve stimulation are less intrusive but involve some 
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intervention (Figure  3). Lastly, noninvasive techniques, 
such as transcranial direct current stimulation, tran-
scranial magnetic stimulation, transcutaneous electrical 
nerve stimulation, transcranial focused ultrasound, do 
not require any surgical intervention or implantation and 
are typically administered externally to the body (Fig-
ure 3) [54].

Motor cortex stimulation
Motor Cortex Stimulation (MCS) consists in the implan-
tation of an array of electrodes directly onto the motor 
cortex of the brain contralateral to the painful side [62, 
63]. Particularly, after craniotomy, the electrode array 
is positioned in the precentral gyrus or central sul-
cus corresponding to the painful area either in the epi-
dural or subdural spaces [64, 65]. Although there is not 
an evidence-based difference, opting for subdural lead 
placement may be more reasonable due to the reduced 
distance between the leads and the brain cortex com-
pared to epidural placement [66].

MCS is theorized to alleviate pain by influencing 
both the emotional dimension of pain and inhibiting 
pain signals at different neural levels. Specifically, MCS 
relieves pain by activating the perigenual cingulate and 
orbitofrontal cortex, thus modulating the emotional 

component of pain. Simultaneously, MCS inhibits pain 
impulses at the spinal cord level by activating the PAG 
[67].

The research of MCS as a potential treatment for vari-
ous neuropathic chronic pain populations has yielded 
inconsistent results. This variability is primarily attrib-
utable to small sample sizes and study designs of lower 
quality, suggesting that MCS is efficient only in specific 
subgroups of patients. Noteworthy, MCS has demon-
strated effectiveness in addressing chronic pain associ-
ated with phantom limb pain, trigeminal neuropathic 
pain, complex regional pain syndrome, central post-
stroke pain, brachial plexus avulsion, postsurgical pain, 
and pain resulting from spinal cord injury [66, 68–74].

Deep brain stimulation
Deep Brain Stimulation (DBS) consists in the surgical 
implantation of thin electrodes within specific area of the 
brain to be stimulated. In case of chronic pain, electrodes 
are generally positioned in the PAG, in the periventricu-
lar gray matter, the ventralposterior medial or the ventral 
posterior lateral nuclei of the thalamus (contralateral to 
the side of pain), the anterior cingulate cortex or the pos-
terior insula [75, 76]. The positioning generally required 
a frame-based or frame-less stereotactic technique, 

Fig. 2  Invasive neurostimulation techniques. The invasive techniques for neurostimulation of chronic pain are depicted alongside their current 
indications with clear ( +) or unclear ( ±) evidence. The specific characteristics of each modality are explained in the text
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targeting the area with a magnetic resonance imaging on 
the day before surgery and, in some centers, with intra-
operative microelectrode recordings. Electrodes are then 
connected to an impulse generator that neuromodulate 
the target area [77].

When PAG or thalamus are stimulated, DBS seems to 
promote the secretions of endogenous opioids (i.e. beta-
endorphin and methionine enkephalin) [78, 79]. Beside 
these reports, the other underlying mechanisms are still 
obscure.

Clinical studies have demonstrated a significant 
improvement in patients with central post-stroke pain 
[80, 81], in chronic pain associated with Parkinson’s dis-
ease [82, 83] and in those patients with spinal cord injury 
[84]. The most favorable outcomes in DBS, characterized 
by effects surpassing 50%, were observed when stimulat-
ing the somatosensory thalamus in individuals experienc-
ing peripheral neuropathic pain [85, 86]. Nevertheless, 
the current trend indicates a decline in the number of 
patients undergoing implantation, primarily attributed 
to the emergence of new and less invasive treatment 
modalities. In addition, although considered safe, DBS is 
affected by adverse event in 8–9% of patients, including 

lead fractures, wound infections, intra-operative seizure 
and postoperative burr hole site erosion [87]. It is note-
worthy that individuals exhibiting severe, debilitating 
neuropathic pain accompanied by verifiable pathology, 
resistant to conventional treatments, appear to be the 
most suitable candidates for this approach.

Vagus nerve stimulation
Vagus Nerve Stimulation (VNS) is a therapeutic method 
that employs electrical impulses to activate the vagus 
nerve, a component of the autonomic nervous system. 
Although widely recognized for its efficacy in treating 
epilepsy [88] and depression [89], VNS has also been 
investigated in chronic pain [90]. VNS involves the sur-
gical placement of a stimulator device, delivering regular 
electrical impulses, connected to electrodes stimulating 
the vagus nerve. More recently, transcutaneous VNS and 
minimally invasive form of percutaneous VNS have been 
also developed [90].

The vagus nerve’s afferent pathway initiates from vagal 
afferents that supply the cervical, thoracic, and abdomi-
nal organs. Primarily traversing the nucleus of the soli-
tary tract, it ultimately reaches higher brain regions, 

Fig. 3  Mini-invasive and non-invasive neurostimulation techniques. The mini-invasive (i.e. pulsed radiofrequency therapy and percutaneous 
electrical nerve stimulation) and non-invasive (i.e. transcranial direct current stimulation, transcranial magnetic stimulation, transcutaneous electrical 
nerve stimulation and transcranial focused ultrasound) techniques for neurostimulation of chronic pain are schematized in the representation 
alongside their current indications with clear ( +) or unclear ( ±) evidence. The specific characteristics of each modality are explained in the text
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including the thalamus, hypothalamus, parabrachial 
nucleus, PAG, amygdala, and locus coeruleus [91–94]. 
The stimulation of vagus nerve modulates the descend-
ing serotoninergic and noradrenergic neurons, modu-
lating the central sensitization and reducing the pain 
transmission [90]. VNS also induces anti-inflammatory 
effects through diverse pathways, such as the cholinergic 
anti-inflammatory pathway, the hypothalamic–pituitary–
adrenal axis pathway, and the production of specialized 
pro-resolving mediators. Specifically, VNS initiates the 
release of acetylcholine from Vagus Nerve efferents in 
the coeliac ganglia and norepinephrine from the splenic 
nerve, subsequently promoting further release of acetyl-
choline [95]. Following its release, acetylcholine binds to 
the α7 nicotinic Ach receptors present on macrophages, 
leading to a decrease in cytokine production [95, 96]. 
Additionally, VNS activates the hypothalamic–pituitary–
adrenal axis, triggering the release of adrenocorticotropic 
hormone. This hormone, in turn, acts on the adrenal 
glands, promoting the synthesis of cortisol [97]. Further-
more, VNS has the potential to induce the production of 
specialized pro-resolving mediators [98], which act on 
receptors expressed on immune cells, gliacytes, and neu-
rons, thereby exerting a modulatory effect on inflamma-
tion and neuroinflammation [99–101].

Therapeutic effects on chronic pain have been casually 
discovered during the application of VNS for epilepsy. 
Some epileptic patients reported a reduction in head-
ache frequency and intensity that after VNS implantation 
[102–104]. Following these first reports, several studies 
demonstrated the efficiency of VNS in preventing and 
reducing the intensity of headache, either with invasive 
implantation [105] and during transcutaneous stimula-
tion [106–109]. Given the efficacy in modulation of cen-
tral sensitization [90] and in depressive disease [89], VNS 
was reported to successfully reduce symptoms in patients 
with fibromyalgia [110], although these results were not 
further confirmed by other investigations [111]. VNS 
has been also investigated in other scenarios of chronic 
neuropathic pain (i.e. trigeminal allodynia and diabetic 
peripheral neuropathic pain) in animal models [112–
115]. However, data in patients still lack and clinical stud-
ies are needed to validate the positive findings reported 
by animal studies.

Spinal cord stimulation
Spinal Cord Stimulation (SCS) is a neuromostimula-
tion technique designed to address and alleviate neuro-
pathic chronic pain. This method involves an implanted 
generator that produces pulsed electrical signals, which 
are then delivered to a specific area of the spinal cord 
through electrodes implanted within the epidural space 
[7]. Advancements in SCS techniques and equipment are 

ongoing, with dedicated literature available elsewhere 
[7]. SCS operates through neurophysiological and neuro-
chemical mechanisms rooted in the "gate control theory” 
for pain transmission [7, 19].

SCS disrupts the processing of nociceptive sig-
nals through the lateral spinothalamic tract, influenc-
ing supraspinal brain centers like the ventral posterior 
nucleus of the thalamus, somatosensory cortex, cingu-
late cortex, and insula [116, 117]. Orthodromically, SCS 
depolarizes Aβ fibers cranially, controlling supraspinal 
centers such as the cuneate and gracile nuclei [118, 119]. 
After supraspinal integration, descending feedback loops 
from the locus coeruleus [120], nucleus raphe magnus 
[121], and rostral ventromedial medulla [122] modulate 
and control the spinal nociceptive signal at the "spinal 
gate" via serotonergic and noradrenergic projections to 
the dorsal horn [118, 119].

In terms of neurochemical mechanisms, SCS modu-
lates gamma-aminobutyric acid (GABA) [123], seroto-
nin [124], acetylcholine and norepinephrine [125, 126]. 
Studies in animal models show increased intraspinal 
release of GABA [127, 128] and attenuation of glutamate 
and aspartate responses [129]. Notably, GABA type "b" 
receptors play a crucial role, suggesting the potential for 
intrathecal baclofen administration to enhance SCS anal-
gesia [130]. SCS also elevates serotonin and substance 
P release [124], enhances dynorphin and enkephalin 
expression [131], and decreases neuronal excitability and 
spinal pain transmission by activating 5-HT2A, 5-HT3, 
and 5-HT4 receptors [132]. Additionally, SCS promotes 
analgesia by modulating cholinergic and adrenergic neu-
rotransmission, releasing acetylcholine and noradrena-
line in the dorsal horn of the spinal cord [125, 126].

SCS is considered for those patients experiencing 
chronic pain, particularly when other conventional treat-
ments (including pharmacological therapies, surgical 
treatments or physiotherapy) have proven ineffective 
or are associated with intolerable side effects. To define 
the indication of SCS implantation, the selection of the 
patient is fundamental for its success [133]. Firstly, SCS 
should be contemplated within two years of symptom 
onset, following the ineffectiveness of all standard ther-
apies [134, 135]. It should be mentioned that the time 
between initial pain diagnosis and SCS implantation is 
still debated. In a study by Kumar et  al., a time to SCS 
treatment < 2  years was characterized by a higher long 
term success rate (around 85%), declining precipitously 
at the lengthening of the diagnosis to implantation inter-
val [136]. Another study by the same group reported that 
the greatest improvement in pain relief was obtained in 
case of SCS implantation within one year from the onset 
of symptoms [137]. However, several studies have shown 
a symptom-to-implantation waiting time from 5 to 
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6 years [138, 139]. Secondly, individuals with underlying 
psychiatric conditions, complete cognitive impairment, 
psychological comorbidities, or substance abuse are 
ineligible for SCS implantation [140]. However, if there 
is partial cognitive impairment, SCS may be considered, 
with a preference for non-rechargeable over recharge-
able implantable pulse generators [134]. Thirdly, SCS is a 
viable option for neuropathic pain conditions (e.g., failed 
back surgery syndrome, arachnoiditis, complex regional 
pain syndrome, causalgia, peripheral neuropathy, chronic 
radiculopathy), while its efficacy is limited for nocicep-
tive symptoms or central neuropathic pain [134]. SCS is 
strongly recommended in specific scenarios, including 
failed back surgery syndrome without neurologic pro-
gression [141], axial low back pain [142] and complex 
regional pain syndrome [143]. Furthermore, SCS is rec-
ommended for chronic refractory angina unresponsive to 
maximal medical therapy, bypass surgery, and percuta-
neous angioplasty of the legs [144], as well as for periph-
eral artery disease or non-reconstructable critical leg 
ischemia [145]. In particular, SCS is employed in patients 
experiencing chronic leg ischemia that is not suitable for 
open surgical or endovascular intervention [146]. This 
condition is typically characterized by either rest pain 
alone (Fontaine stage III) or the presence of rest pain 
accompanied by arterial ulcers less than 3 cm in diameter 
(Fontaine stage IV) [147].

Dorsal root ganglion stimulation
Dorsal root ganglion (DRG) stimulation resembles 
SCS, but with devices specifically design to target the 
first-order sensory neurons located in the DRG. The 
DRG’s advantageous position within the epidural space, 
immersed in cerebral spinal fluid, makes it an ideal tar-
get for stimulation, allowing precise targeting of chronic 
pain. DRG stimulation applies an electrical field directly 
over the nuclei of primary afferent neurons, enabling 
modulation prior to signal propagation within the spinal 
cord. This modulation potentially includes inhibition at 
synapses with second-order neurons in the dorsal horn 
[148].

Recent pre-clinical and clinical research is shedding 
light on the mechanisms and therapeutic effects of DRG 
stimulation, highlighting differences compared to SCS. 
Unlike SCS, DRG stimulation does not elevate the inhibi-
tory GABA neurotransmitter in either the dorsal horn or 
the DRG itself [149, 150]. The most accepted mechanism 
of DRG stimulation involves impeding the transmission 
of afferent pain signals and ectopic action potential trans-
mission, supported by basic science research [151–153]. 
However, its effects on multi-dermatomal conditions 
with a single lead placement may depend on orthodromic 
propagation, a mechanism often discussed in SCS but 

less so in DRG stimulation [154, 155]. DRG stimulation 
is believed to activate Aδ-, Aβ-, and C-fiber low thresh-
old mechanoreceptor fibers, utilizing the endogenous 
opioid system to modulate touch and pain processes at 
clinically utilized frequencies [156–158]. Furthermore, 
DRG stimulation has effects on the sympathetic nervous 
system, including antidromic effects in the treatment of 
peripheral vascular disease, reduction in blood pressure, 
and attenuation of neuroinflammation [159–162].

In 2019, the Neuromodulation Appropriateness Con-
sensus Committee highlighted the significant efficacy of 
DRG stimulation in treating both complex regional pain 
syndrome types I and II, as well as focal neuropathic pain 
with identifiable pathology [163]. In fact, a large pro-
spective randomized controlled trial, comparing SCS to 
DRG stimulation in patients affected by complex regional 
pain syndrome types I and II, demonstrated that 81.2% 
of DRG patients achieved ≥ 50% pain relief compared to 
55.7% in the SCS arm [164].

Today the DRG stimulation is mainly accepted for the 
treatment of complex regional pain syndrome types I 
and II, although it has been attempted in several other 
forms of neuropathic chronic pain (including painful 
diabetic neuropathy, mononeuropathy, polyneuropathy) 
with for these latter a low-quality study and limited evi-
dence [148, 165].

Peripheral nerve stimulation
Peripheral Nerve Stimulation (PNS) consists in the deliv-
ery of electrical impulses through electrodes surgically 
implanted near peripheral nerves, to modulate the trans-
mission of pain signals along these nerves [166]. As per 
the SCS, PNS engages neurophysiological and neuro-
chemical mechanisms based on the "gate control theory" 
of pain transmission, as above discussed [7, 19].

PNS can be implanted in various anatomical regions, 
including the upper extremities (brachial plexus, supras-
capular nerve, axillary nerve, radial nerve, median nerve, 
or ulnar nerve), lower extremities (sciatic nerve, obtura-
tor nerve, femoral nerve, lateral femoral cutaneous nerve, 
genicular nerve, saphenous nerve, common peroneal 
nerve, tibial nerve, sural nerve, and superficial pero-
neal nerve), as well as other nerves in the head (occipital 
nerve, trigeminal nerve, and supraorbital nerve), trunk, 
abdomen, back, or pelvis (medial branch nerve, ilioin-
guinal nerve, iliohypogastric nerve, genitofemoral nerve, 
cluneal nerve, and pudendal nerve) [166].

The available evidence on PNS in the head and neck 
region has predominantly centered in case reports or 
small case series around the stimulation of occipital 
nerves for the treatment of headache disorders with a 
positive therapeutic effect [167–170]. On the opposite, 
the evidence for facial pain is still weak, lacking high 
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quality studies [171–174]. Indeed, the current guidelines 
do not recommend PNS for chronic facial pain, whereas 
they state that PNS can be considered in case of chronic 
migraine headache after failure of conventional treat-
ments [175].

According to the guidelines [175], PNS can also be 
considered as a treatment option for mononeuropathies 
affecting the upper extremity, failed back surgery syn-
drome, and chronic low back pain (supported by substan-
tial evidence). Additionally, it may be explored in cases of 
radiculopathy and post-herpetic neuralgia, although the 
evidence for these conditions is limited. Furthermore, 
PNS shows promise in managing neuropathic pain in the 
lower extremities, including post-amputation pain, as 
well as in individuals with Complex Regional Pain Syn-
drome Type I/II or peripheral causalgia (while acknowl-
edging that SCS remains the preferred neurostimulation 
option) [175].

Pulsed radiofrequency therapy
Pulsed Radiofrequency Therapy (PRF) is a medical inter-
vention employed in the management of chronic pain 
conditions. In contrast to continuous radiofrequency, 
which subjects target nerves or tissues to sustained high 
temperatures (70–90  °C) through electrical stimulation 
[176], PRF utilizes electrical pulses delivered to spe-
cific nerves via an electrode generating localized ther-
mal effects without causing substantial tissue damage 
[177]. Specifically, PRF employs a radiofrequency current 
characterized by alternately repeated electrical stimula-
tion with a short duration (around 20 ms) followed by a 
resting phase (around 480  ms). This alternating pattern 
induces a temperature on the target tissue that remains 
below 42 °C [178].

PRF induces a targeted and prolonged reduction in 
spinal sensitization mediated by C-fibers. As a result, 
it effectively inhibits the transmission of pain signals 
from peripheral nerves to the central nervous system 
[179, 180]. PRF is reversible and temporary, it provides 
relief for a variable duration, and the procedure may be 
repeated if necessary [178].

PRF is commonly applied to peripheral nerves, DRG, 
or other nerve structures contributing to chronic pain. 
Therefore, PRF is often used to modulate neural activ-
ity and disrupt pain signals without causing tissue dam-
age, whereas continuous radiofrequency creates thermal 
lesions that disrupt nerve function and alleviate pain 
[176–178]. Based on these different effects, PRF is com-
monly employed for conditions where nerve-related 
pain is the primary concern, such as neuropathic pain 
syndromes or neuralgias. On the opposite, continu-
ous radiofrequency is frequently used for conditions 
characterized by localized pain arising from specific 

anatomical structures, such as facet joints or sacroiliac 
joints [176–178].

The most important efficacy of PRF has been shown in 
the treatment of postherpetic neuralgia [181] targeting 
the areas near the DRG via the angulus costae [182] or 
paravertebral puncture [183] or targeting the intercostal 
nerves [184, 185].

In recent findings, the literature has indicated limited 
and weak evidence for the use of PRF on the lumbar DRG 
for radicular pain [186]; in facets’ pain, PRF has been also 
considered to be inferior to continuous radiofrequency 
and it should be used only in selected cases [187]. Similar 
conclusions have been also drawn for cervical radicular 
pain and lumbar face pain [187]. On the opposite, intra-
discal PRF seems to be a promising technique in case of 
discogenic pain, radiculitis, or spinal stenosis, although 
further studies are still required to confirm this indica-
tion [187].

Percutaneous electrical nerve stimulation
Percutaneous Electrical Nerve Stimulation (PENS) is a 
procedure using thin needles inserted through the skin 
to deliver electrical impulses to specific nerves or tissues 
[188]. The objective is to alleviate persistent and chronic 
pain by stimulation of peripheral sensory nerves through 
the insertion of needles in the outer layers of the skin, 
characterized by high resistance [188].

Today, the evidence in favor of PENS is quite weak. 
PENS (alone or in adjunct to other treatments) was 
shown to not provide a sufficient advantage in the control 
of musculoskeletal pain [189]. In one study including 17 
patients with neuropathic pain due to spinal cord injury, 
PENS reduced the symptoms in 63% of cases [190]. How-
ever, no other studies have been conducted so far in this 
population, and the indication still lacks clear evidence. 
Another trial conducted in a population of patients with 
chronic low back pain secondary to degenerative disk 
disease, PENS was more effective in reducing pain and 
post-treatment function, as compared to Transcutaneous 
Electrical Nerve Stimulation (TENS) or other exercise 
therapies [191]. Finally, in a randomized double-blind 
crossover trial on 31 patients with neuropathic chronic 
pain, preliminary findings indicated that PENS may offer 
effective short-term pain relief [192].

Unfortunately, the underlying mechanisms of action of 
PENS are still few investigated, although they are thought 
to rely in the Gate Control Theory [7]. Despite its poten-
tial benefits in pain management, the precise indications 
for PENS, as well as the most effective treatment parame-
ters, remain topics of discussion and investigation within 
the medical community. Additionally, comparative stud-
ies evaluating PENS against other therapeutic modali-
ties are limited, leaving uncertainties about its relative 
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efficacy and place in treatment algorithms [189, 193, 
194]. To address these gaps in knowledge, future research 
efforts should prioritize well-designed studies that inves-
tigate the clinical utility of PENS across various pain con-
ditions. These studies should aim to delineate the specific 
patient populations most likely to benefit from PENS, 
identify optimal stimulation parameters, and compare its 
efficacy and safety to other established treatments [189, 
193, 194]. Furthermore, incorporating mechanistic stud-
ies to elucidate the underlying pathways through which 
PENS exerts its therapeutic effects can provide valuable 
insights into its mode of action and potential advantages 
over alternative interventions.

Transcranial direct current stimulation
Transcranial Direct Current Stimulation (tDCS) involves 
the non-invasive delivery of low-intensity electri-
cal currents to specific brain regions for a duration of 
20–30  min. These currents induce polarity-dependent 
shifts in resting membrane potential, thereby modulating 
neuronal activity at the site of stimulation and its asso-
ciated structures [195, 196]. Typically, two electrodes, 
one anode positioned over the primary motor cortex and 
the other a cathode over the contralateral supraorbital 
region, are placed on the scalp. This setting generates a 
current flow through the prefrontal cortex, the cingulate 
cortex, the insula, and deeper structures such as thalamic 
and brainstem nuclei. The current flow modulates the 
rest membrane potential of axons, promoting the allevia-
tion of pain [197].

To date, the efficacy of tDCS is limited to treatment of 
chronic neuropathic pain secondary to spinal cord injury 
[195] or for peripheral neuropathic pain [198]. Another 
recent meta-analysis has demonstrated that tDCS does 
not reduce the pain and related disability in non-specific 
chronic low-back pain syndrome, limiting the support for 
its use in this field [199]. Furthermore, a recent system-
atic review has assessed the efficacy of tDCS in migraine, 
reporting a positive effect on treatment success, although 
the included studies were quite heterogeneous and the 
sample size was small; therefore, these limitations pre-
cluded any definitive conclusion on the real efficacy of 
tDCS in this field of application [200].

Transcranial magnetic stimulation
Repetitive Transcranial Magnetic Stimulation (rTMS) is 
a non-invasive neurostimulation technique, applying a 
magnetic field externally to the scalp to induce electri-
cal currents in targeted regions of the brain beneath the 
coil [201]. TMS operates on Faraday’s principle of elec-
tromagnetic induction, where a rapid electric current 
passing through a coil for a brief duration, typically 1 ms, 
generates a potent electromagnetic field [202]. In TMS, 

the magnetic field is painlessly administered to the scalp, 
and cortical axons serve as the electrical conductors that 
receive the induced electric current [202].

The analgesic effect is obtained by stimulating the pri-
mary motor cortex (precentral gyrus), with a stimulation 
frequency ranging between 5 to 20 Hz, contralaterally to 
the side of pain localization [203, 204]. Therefore, rTMS 
has the capacity to regulate cortical hyperexcitability and 
pain pathways, including descending inhibitory path-
ways [205, 206]. These pathways exert an influence on 
supraspinal pain tracts and regions of the brain associ-
ated with social-affective functions, such as the right 
temporal lobe [207, 208].

rTMS has been applied in different populations of 
patients with chronic pain. In patients with migraine, 
rTMS decreases the intensity of the attack soon after the 
treatment application, particularly in those patients with 
cephalgia after traumatic brain injury [209]. High fre-
quency rTMS on motor cortex has also proved to provide 
a positive temporary effect on pain in patients with neu-
ropathic chronic pain correlated to phantom limb [210] 
and to manage pain alongside cognition and sleep distur-
bances in patients of fibromyalgia [211].

Finally, rTMS provides the additional purpose of antici-
pating the individual responsiveness of patients who may 
undergo subsequent implantation of a device for MCS 
[212]. In fact, a preoperative trial utilizing rTMS has 
demonstrated the ability to predict satisfactory pain relief 
in approximately 80 to 90% of cases where MCS implan-
tation is performed [213, 214].

Transcutaneous electrical nerve stimulation
Transcutaneous Electrical Nerve Stimulation (TENS) is a 
non-invasive therapeutic technique based on the applica-
tion of low-voltage electrical currents to the skin surface, 
through electrodes placed on or near the area of pain or 
along the nerve pathways [215]. The principles of TENS 
stay in the Gate Control Theory (see above) [7].

TENS is commonly employed for various types of pain. 
TENS has been studied to treat chronic low back pain. 
Two large randomized controlled trials were firstly con-
ducted with contrasting results, mainly due to the dif-
ferent design, population, and modulation settings [216, 
217]. A very recent systematic review, including the 
whole literature on this topic (i.e. 17 randomized con-
trolled trials with a total of 1027 adults), has suggested 
that TENS may marginally reduce the perceived chronic 
low back pain for a short period, to an extent that can-
not be considered clinically relevant [218]. TENS has also 
been tested in 43 patients with fibromyalgia, demonstrat-
ing that one 30-min application improved the pain per-
ception during movement, but not at rest [219]. Then, 
several studies have been conducted so far in patients 
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with fibromyalgia; the most recent pooled data analysis 
suggests that TENS improves pain symptoms in this pop-
ulation of patients [220]. A modified system for TENS 
specifically developed to stimulate the terminal supraor-
bital branch of the trigeminal nerve has been also dem-
onstrated to prevent [221] or to treat attacks of episodic 
migraine [222]. However, the current evidence is still 
weak to recommend its use in this scenario.

Transcranial focused ultrasound
Transcranial Focused Ultrasound (tFUS) for chronic pain 
represents an emerging non-invasive neurostimulation 
method that utilizes focused ultrasound waves to modu-
late brain activity for therapeutic purposes [223]. This 
technique is characterized by a high spatial resolution, 
targeting any site of the peripheral or central nervous sys-
tem [223].

tFUS induces mechanical vibrations and thermal 
effects influencing the neurons excitability, altering the 
synaptic transmission, and affecting the excitatory/inhib-
itory balance of neurotransmitters [224]. tFUS may also 
release endorphins or other neurochemicals involved in 
pain modulation [224]. In the application for chronic pain 
treatment, tFUS is centered to specific areas involved in 
the pain perception, such as the somatosensory cortex, 
thalamus, or limbic system [225–227].

Today, tFUS is approved in Europe for neuromodula-
tion in neuropathic chronic pain not responsive to con-
ventional pharmacological treatments [228]. Indeed, data 
available are limited to chronic neuropathic pain, phan-
tom limb pain, neuropathic pain related to spinal cord 
injury in clinical and preclinical settings [229–231].

Future perspectives of neurostimulation
Although the growing literature investigating the com-
plexity of pain transmission and the biochemical effects 
of neurostimulation, clear indications and strong recom-
mendations still lack. The complexity of anatomical and 
physiological pathways of pain modulation, together with 
the various etiopathogenesis and pathophysiology of dif-
ferent forms of chronic pain, should probably require a 
personalized approach to neurostimulation.

Patients can develop chronic pain through various 
pathophysiological pathways. However, any single treat-
ment, whether pharmacological or involving neurostim-
ulation, has a finite number of mechanisms of action. 
Consequently, it may only be effective for a specific sub-
set of patients. Monotherapy, whether it’s pharmacologi-
cal, neurostimulatory, surgical, or psychological, is thus 
likely to result in some individuals who do not respond 
adequately. These individuals, termed "non-responders," 
have underlying disease mechanisms that do not align 

with the mechanism of action of the chosen therapy 
[212, 232].

Novel approaches to neurostimulation, inspired by 
the principles of the personalized and precision medi-
cine, have been proposed for other diseases, like tinni-
tus [233–237], Parkinson’s disease [238, 239], epilepsy 
[240] and depression [241, 242]. A recent publication 
explores the reasoning and basis for personalized elec-
trical neurostimulation in individuals suffering from 
chronic neuropathic pain [212].Noninvasive methods of 
neurostimulation may predict the response of every sin-
gle patient to more invasive techniques such a MCS or 
DBS [212]. Beside the prediction of responsiveness to a 
specific treatment, the study of clinical phenotypes [243], 
brain networks and oscillatory patterns [244–247], and 
patient’s genotype with the corresponding single nucleo-
tide polymorphism [248–251] may also guide the clini-
cian in the adoption of the best strategy for every single 
patient. In addition, the differences in neuropathophysi-
ological processes underlying various painful syndromes 
should be taken into consideration when selecting a neu-
rostimulation strategy, as recently suggested [252].

It should also be considered that technical advances 
(such as microelectronics, feedback-based system design, 
biomimetic stimulation patterns), and the integration of 
genomics with device-based therapies are revolutionizing 
the conceptualization of neuromodulation, with a trend 
towards miniaturization and noninvasive therapies [253].

In this complex scenario, we believe that the scientific 
literature should be directed on the way to better clarify 
those underlying anatomical and pathophysiological 
mechanisms that are still obscure. Once these bases are 
clearer, more detailed, and better focused studies could 
be specifically designed to assess and to define the crite-
ria of choice of one technique over another one, for every 
single chronic pain manifestation.

Meanwhile, the approach to a patient suffering from 
chronic pain necessitating neurostimulation demands 
meticulous evaluation, taking into account the underly-
ing condition, individual characteristics (including psy-
chological factors), and prior treatment modalities. Given 
the absence of comprehensive cost-effectiveness studies, 
except for SCS, physicians may opt to transition from 
non-invasive to more invasive techniques known to be 
efficacious for that particular painful condition.

Conclusions
The electrical neuromodulation of pain comprises 
various techniques targeting distinct neural pathways 
involved in pain modulation. Despite numerous stud-
ies and trials, determining the most effective technique 
for each patient remains challenging. Patient selection 
plays a pivotal role in achieving optimal outcomes, 
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considering factors such as the specific type and origin 
of chronic pain. Additionally, the invasiveness of the 
chosen treatment should align and be proportional with 
the patient’s clinical status. Further trials are essential 
to refine these considerations. Meanwhile, a personal-
ized approach to neurostimulation should guide clini-
cians in selecting the most appropriate treatment for 
individual patients.
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