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Abstract
Background: Evidence is insu�cient to establish a longitudinal association between combined
trajectories of body mass index (BMI) and waist circumference (WC) and dyslipidemia. Our study aimed
to explore the association between multi-trajectories of BMI and WC and incident dyslipidemia and
identify microbiota and metabolite signatures of these trajectories.

Methods: Strati�ed by sex, we used a group-based trajectory modeling approach to identify distinct multi-
trajectories of BMI and WC among 10,678 participants from the China Health and Nutrition Survey over a
24-year period. For each sex, we examined the associations between these multi-trajectories (1991-2015)
and the onset dyslipidemia (2018) using multivariable logistic regression adjusting for sociodemographic
and lifestyles factors. We characterized the gut microbial composition and performed LASSO and logistic
regression to identify gut microbial signatures associated with these multi-trajectories in males and
females, respectively.

Results: We identi�ed four multi-trajectories of BMI and WC among both males and females: Normal
(Group 1), BMI&WC normal increasing (Group 2), BMI&WC overweight increasing (Group 3), and BMI&WC
obesity increasing (Group 4). Among males, Group 2 (OR: 2.10, 95% CI: 1.28–3.46), Group 3 (OR: 2.69,
95% CI: 1.56–4.63) and Group 4 (OR: 3.56, 95% CI: 1.85–6.83) had higher odds of developing
dyslipidemia. However, among females, only those in Group 2 (OR: 1.54, 95% CI: 1.03–2.30) were more
likely to develop dyslipidemia. In males, compared with Group 1, we observed lower alpha-diversity within
Groups 2,3, and 4, and signi�cant beta-diversity differences within Groups 3 and 4 (p � 0.001). We also
identi�ed 3, 8, and 4 characteristic bacterial genera in male Groups 2, 3 and 4, and 2 genera in female
Group 2. A total of 23, 25 and 10 differential metabolites were signi�cantly associated with the above
genera, except for Group 2 in males.

Conclusions: The ascending combined trajectories of BMI and WC are associated with a higher risk of
dyslipidemia, even with normal baseline levels, especially in males. Shared and unique gut microbial and
metabolic signatures among these high-risk trajectories could enhance our understanding of the
mechanisms connecting obesity to dyslipidemia.

Background
Dyslipidemia is a major risk factor for cardiovascular disease and a leading cause of death globally,
accounting for 46.7% and 44.3% of total deaths in rural and urban areas in China in 2019[1]. Given the
increasing global burden and prevalence of dyslipidemia, it is imperative to uncover novel risk factors to
prevent the occurrence and development of dyslipidemia.

Obesity is a major driver of dyslipidemia. Numerous studies have explored the associations between
individual obesity indicators and dyslipidemia. Individuals with higher body mass index (BMI) or waist
circumference (WC) are more likely to develop dyslipidemia[2–5]. BMI, measured by combining weight and
height, is widely used to assess obesity, but it cannot capture the distribution of abdominal adipose
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tissue as WC does. Furthermore, BMI and WC can change throughout the lifespan, and several
longitudinal studies have assessed the possible effects of long-term changes in anthropometric indices
on the risk of dyslipidemia[6–8]. To our knowledge, there are no longitudinal studies reporting the
relationship between multi-trajectories of BMI and WC from early adulthood and dyslipidemia among the
Chinese population.

Emerging evidence suggests a close connection between the gut microbiome and both human obesity[9–

11] and dyslipidemia[12, 13], suggesting that the gut microbiome may play an important role in the obesity-
dyslipidemia relationship. However, most studies on the association between BMI/WC and gut
microbiome still remain at the cross-sectional level. The longitudinal effects of the BMI/WC on the gut
microbiome and related metabolites are unclear. Speci�c gut microbial signatures that demonstrate
patterns of BMI/WC changes over time could help explain mechanistic links between obesity and
dyslipidemia.

Therefore, in the present prospective cohort study followed from 1991 to 2018, we established multi-
trajectories based on 24 years of BMI and WC measurement data and revealed the gut bacterial genera
and serum metabolites associated with those multi-trajectories.

Methods

Study population
This study is based on the China Health and Nutrition Survey (CHNS), an ongoing population-based
longitudinal study. The CHNS collects demographic information, lifestyle details, physical activity levels,
dietary habits, anthropometric measurements, and biological samples [14]. Across 11 survey rounds,
approximately15,000 participants were recruited in each round, representing 16 provinces and megacities
across China. The most recent data available is from the 2018 survey.

According to the analysis process, our study included �ve sub-datasets (Fig. 1A). (1) After excluding
participants < 18 years of age, pregnant or breastfeeding, or patients with cancer, stroke or disabled
patients at the time of the survey, 10,678 individuals (5,222 males and 5,456 females) with at least three
weight, height and WC measurements from 1991 to 2015 were included in the multi-trajectories analysis.
(2) Among these participants, we further excluded those who had developed dyslipidemia in 2015 or did
not continue to participate in the cohort study in 2018 (no lipid data in 2018), leaving 1,992 individuals
(841 males and 1151 females) analyzed the association between the multi-trajectories and onset
dyslipidemia in 2018. (3) When analyzing the relationship between multi-trajectories and gut microbiome,
we included participants with stool samples collected in the trajectory population in 2015, and excluded
those who had taken antibiotics within 3 months, used probiotics within the last 4 weeks, or had
gastrointestinal disorders, diarrhea, and intestinal resection. 3,039 individuals (1434 males and 1605
females) were included in the discovery cohort, and 1,400 individuals (650 males and 750 females) were
included in the validation cohort. (4) A total of 772 participants (334 males and 438 females) with both
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multi-trajectories and metabolic data in 2015 were used to analyze the differences in metabolites
between multi-trajectories. (5) We selected 946 individuals (393 males and 553 females) as a subset of
the validation cohort who had gut microbiome and metabolic data in 2015 to map the connection
between metabolites and gut bacteria.

Data collection

Questionnaire survey
Sociodemographic characteristics, including location (urban or rural), geographical area (province), age,
sex, education and household income, lifestyle factors (smoking status and alcohol consumption),
dietary intake, physical activity, physiological and disease status (pregnancy, lactation, disability, stroke,
cancer, gastrointestinal disorders, diarrhea, and intestinal resection), and medication data (the use of
antibiotics and probiotics) were collected by face-to-face questionnaire interviews. Dietary energy intake
was calculated by combining food intake data with the China food composition table, and the amount of
physical activity was calculated by multiplying the amount of exercise time by activity intensity of
various intensities.

Physical measurement
Anthropometric data, including height, weight and waist circumference, were measured on-site by trained
staff. Adhering to consistent measurement standards and utilizing specialized instruments, in each
survey, our trained physicians and nurses measured height and weight without shoes to the nearest 0.1
cm and 0.1 kg. We then calculated BMI as weight in kg divided by height in meters (m) squared (kg/m2).
We measured waist circumference using an inelastic soft ruler with a division value of 0.1 cm.

Biological sample collection
Fasting blood samples were collected, and stored in dry ice, and sent to the laboratory for storage at
-80°C within 3 hours. The plasma was centrifuged within 48 hours and stored at -80℃ for later use. Fecal
samples were collected following standard procedures[15] and temporarily stored in a -20°C freezer within
20 minutes and then stored in a laboratory − 80°C freezer.

Assessment of dyslipidemia
Total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density
lipoprotein cholesterol (LDL-C) were measured using an automatic biochemical analyzer. The de�nition
of dyslipidemia can be found in the Guidelines for the Prevention and Treatment of Dyslipidemia in
Chinese Adults (2016 revised edition), including the �owing thresholds: TC ≥ 6.2 mmol/L, TG ≥ 2.3
mmol/L, LDL-C ≥ 4.1 mmol/L, or non-HDL-C ≥ 4.9 mmol/L.

Bioinformatics analysis of gut microbiome
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Methods of DNA extraction, ampli�cation, and sequencing have been described previously[16]. Taxonomic
and functional pro�les were generated using the Quantitative Insights Into Microbial Ecology 2 platform
(QIIME2)[17]. Pair-end reads were assembled using the QIIME tools import command. Low-quality regions
of the sequences, marker gene Illumina sequences, and chimeric sequences (“consensus”) were �ltered
using the DADA2 pipeline[18]. Reads were then summarized to amplicon sequence variants (ASV) in a
feature table and annotated based on the naive Bayes classi�er using the classify-sklearn package
against the Silva-132-99 reference sequences[19].

Serum metabolome analysis
For metabolic analysis, 50 µL of the sample and 300 µL of the extraction solution (ACN: Methanol = 1:4,
V/V) containing internal standards were added to a 2 mL microcentrifuge tube. The sample was vortexed
for 3 minutes and then centrifuged at 12,000 rpm for 10 minutes at 4°C. Subsequently, 200 µL of the
supernatant was collected and placed at -20°C for 30 minutes, followed by another centrifugation at
12,000 rpm for 3 minutes at 4°C. An aliquot of 180 µL of the supernatant was transferred for LC-ESI-
MS/MS analysis. The sample extracts were analyzed using an LC-ESI-MS/MS system (UPLC, ExionLC AD,
https://sciex.com.cn/; MS, QTRAP® System, https://sciex.com/) following standard protocols. The triple
quadrupole-linear ion trap mass spectrometer (QTRAP) was used to perform LIT and triple quadrupole
(QQQ) scans, operated and controlled by Analyst 1.6.3 software (Sciex) with standard parameters. The
source temperature was 500°C; the ion spray voltage (IS) was 5500 V (positive) and 4500 V (negative);
the ion source gas I (GSI), gas II (GSII), and curtain gas (CUR) were set at 55, 60, and 25.0 psi, respectively;
the collision gas (CAD) was set to high. Instrument tuning and mass calibration were performed with 10
and 100 µmol/L polypropylene glycol solutions in QQQ and LIT modes, respectively. A speci�c set of
MRM transitions was monitored for each period according to the metabolites eluted within this period.

Statistical analysis

Multi-trajectories of BMI and WC
Group-based multi-trajectory modeling (GBTM)[20] was used to determine the multi-trajectories of BMI
and WC. As the WC assessment criteria are different for different sex, we performed multi-trajectory
modeling with a STATA plug-in using continuous norming (cNORM) distribution for different sex[21]. We
tested linear, quadratic, and cubic speci�cations for trajectory shape for participants in two, three, four,
�ve, and six trajectory groups until we established the best-�tting model. We used statistically rigorous
criteria to determine the best �t. (1) With the lowest Bayesian information criterion (BIC), we used the
difference size (percentage change) of the BIC to choose between a more complex (with one additional
speci�ed trajectory group) and a simpler model; (2) we included at least 2% of the sample population in
each trajectory class; and (3) we ascertained the average posterior probability value of membership
within each group, where values greater than 0.7 indicate adequate internal reliability[22].

Association between multi-trajectories and dyslipidemia
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We performed logistic regression models to explore the relationship between the sex-speci�c multi-
trajectories (1991–2015) and onset dyslipidemia (2018). We built models for males and females, and
adjusted for baseline age, location (urban/rural) and geographical area (province), smoking, alcohol use,
education, household income, dietary energy intake and physical activity. Then, we used the“forestplot”
and “ggplot2” functions in R to plot the forest plot and display the results of the model. We considered a
two-sided p value < 0.05 to be statistically signi�cant.

Gut microbiome analysis
We performed all gut microbiome analyses separately for different sex. Four alpha-diversity indices were
calculated at a sampling depth of 6000: Shannon’s diversity index, Observed features, Pielou’s species
evenness measure, and Faith’s phylogenetic diversity. In order to display the results of the four indicators
on the same axis, we used the scale function in R to standardize them, then used the Wilcoxon test to
compare these indicators between the dyslipidemia risk trajectory group and the normal group, and �nally
displayed the results in the form of box graphs. At the genus level, using the “vegdist” function from the R
package “vegan”, we calculated Bray-Curtis distances between samples using genera abundance and
visualized using PCoA. We then performed a permutational multivariate analysis of variance
(PERMANOVA) based on the Bray-Curtis distance to determine whether there were differences between
groups.

Before identifying the characteristic genera, we �rst preprocessed the raw genera abundance data. Genus
with a presence lower than 10% were excluded, and a centered log-ratio (CLR) transformation was
applied. Two cohorts were used, including the discovery cohort (3039 samples, 1434 males and 1605
females) and the validation cohort (1400 samples, 650 males and 750 females). The selection of
characteristic genera for those multi-trajectories with a higher risk of dyslipidemia was based on a
discovery cohort derived from Least Absolute Selection and Shrinkage Operator (LASSO) regression.
LASSO regression can simplify the model by adding a penalty function and continuously compressing
the coe�cient to avoid collinearity and over�tting. Important variables can be e�ciently screened with a
smaller sample size[23]. Validations of these characteristic genera were based on both the discovery
cohort and the validation cohort by logistic regression. To correct for multiple testing issue, p value was
adjusted by the false discovery rate (FDR) method.

Serum metabolites analysis
Sex-speci�c metabolomics analyses were also performed. Wilcoxon test was used to identify differential
metabolites between different multi-trajectory groups. The ratio of the median of the comparison group to
the control group was used as the Fold Change (FC) value. The selection of differential metabolites was
based on the following criteria: p value < 0.05 and |log2FC| > 0.5. Raw target metabolite data were log-
transformed and standardized before analysis. Relationships between these differential metabolites and
the characteristic microbiota of multi-trajectories were analyzed using Spearman correlation. All
differential metabolites and correlation results were visualized as volcano maps and heat maps by the
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ggplot2 package in the R language, respectively. When the FDR adjusted p value was < 0.05, a statistical
difference was considered.

Results

Sample characteristics
Table 1 presents baseline characteristics of the 10,678 enrolled participants (51.1% females). The mean
(±SD) age of males and females was 39.6±14.1 years and 41.0±13.4 years, respectively. The mean
follow-up time was 15.9±6.1 years for males and 15.8±6.3 years for females.

Table 1
Baseline characteristics of the population in the multi-trajectories analysis

  Male

5222(48.9%)

Female

5456(51.1%)

Follow-up time(years)a 15.9±6.1 15.8±6.3

Age(years)a 39.6±14.1 41.0±13.4

Urban(%) 29.7 31.8

Education(%)    

Primary and below 39.7 56.3

Junior high 35.7 26.6

Senior high and above 24.6 17.1

Household income(RMB)b 1356.5(629.7,3220.6) 1378.1(636.7,3393.6)

Smoker(%) 64.4 4.7

Alcohol drinker (%) 63.9 11.5

Energy intake(kcal/d)a 2594.1±749.2 2259.4±670.3

Physical activity(METs/week)b 292.0(126.0,528.0) 336.2(144.1,589.9)

Body mass index(kg/m2)a 22.1±2.9 22.4±3.2

Waist circumference(cm)a 78.7±9.4 76.5±9.2

aMean (SD) was reported, bMedian(Q1,Q3) was reported.

Multi-trajectories of BMI and WC
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Four multi-trajectories of BMI and WC among males and females were identi�ed by GBTM (Figs. 1B and
C). We named trajectories based on baseline levels (compared to adult weight criteria WS/T 428–2013)
and trends. At baseline and during follow-up, 23.5% of males and 27.2% of females had BMI and WC
within the normal range (BMI 18.5–23.9 kg/m2, WC <85 cm in males and <80 cm in females), were
grouped into the normal trajectory (Group 1). 37.1% of males and 37.8% of females had normal BMI and
WC at baseline and an upward trend during follow-up, were grouped into BMI&WC normal increasing
trajectory (Group 2). 29.2% of males and 26.2% of females had a BMI in the overweight range (24-27.9
kg/m2) and WC in the precentral obesity range (males 85-89.9 cm, females 80-84.9 cm) at baseline and
an upward trend during follow-up, were grouped into BMI&WC overweight increasing trajectory (Group 3).
10.2% of males and 8.8% of females had a BMI that was obese (≥28 kg/m2) and a WC that was central
obese (male ≥ 90 cm, female ≥ 85 cm) at baseline and an upward trend during follow-up, were grouped
into obesity increasing trajectory (Group 4).

Multi-trajectories and dyslipidemia
Figure 1D shows the results of logistic regression analyses exploring associations between multi-
trajectories and risk of dyslipidemia. Among male participants, compared with Group 1, Group 2 (OR:2.10,
95% CI:1.28–3.46), Group 3 (OR:2.69, 95% CI:1.56–4.63) and Group 4 (OR:3.56, 95% CI:1.85–6.83) were
signi�cantly associated with a higher risk of dyslipidemia after adjusting for potential confounders.
However, among females, only Group 2 (OR:1.54, 95% CI:1.03–2.30) was associated with a higher risk of
dyslipidemia.

High-risk multi-trajectories and gut microbiota
First, we evaluated overall indicators of gut microbiota composition. Among males, we found that the
values of these four alpha-diversity indexes in Group 3 were lower than those in Group 1 (Fig. 2A). Among
females, only the shannon’s index value was lower in Group 2 than in Group 1 (Fig. 2B). We also identi�ed
links between multi-trajectories and overall microbial structure (beta diversity). Among male participants,
permutation multivariate ANOVA based on Bray-Curtis distance showed signi�cant differences between
Groups 3, 4 and 1, explaining 0.5% and 1.4% of the dissimilarities in the gut microbiota structure
(P=0.001) (Figs. 2D & 2F).

We then explored those multi-trajectories characteristic genera with a higher risk of dyslipidemia. Among
males, 30, 66 and 54 microbiol genera were obtained for groups 2, 3 and 4 by LASSO regression using
minimum cross-validation error as parameter in the validation dataset (Figs. 3A, 3B, and 3C). Among
females, the model retained only 6 bacterial genera as characteristic genera for Group 2 (Fig. 3D). These
selected bacterial genera were further validated by logistic regression. After dual veri�cation, 3, 8, 4 and 2
characteristic bacteria genera were retained for different sex (Fig. 3E-G). Among males, both Group 3 (r = 
−0.10 and −0.24 in discovery and validation cohort) and Group 4 (r=−0.13 and −0.28 in discovery and
validation cohort) were negatively associated with genus Clostridium_sensu_stricto_1, validation cohort
with a higher absolute coe�cient value. The same is true for Genus Turicibacter. Meanwhile, the genus
CHKCI002 should also be mentioned, as all Groups 2, 3, and 4 were negatively correlated with it, and
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correlations were growing (Additional �le 1: Table S1 -3). Among females, Group 2 was negatively
associated with genus Parabacteroides and [Eubacterium]_brachy_group (Additional �le 1: Table S4). The
correlation was considered statistically signi�cant when the FDR p value was less than 0.05. Detailed
results are shown in Additional �le 1: table S1-4.

Key serum metabolites associated with high-risk multi-
trajectories and related gut microbiota
We �rst identi�ed some differential metabolites of multi-trajectories with higher risk compared with the
normal group. In males, no difference was found in Group 2 metabolites (Additional �le 1: Table S5).
Thirty-six differential metabolites were found in Group 3, of which 30 were upregulated metabolites. For
Group 4, 52 out of 57 differential metabolites were upregulated (Fig. 4A&B, Additional �le 1: Table S6-7).
In females, 10 differential metabolites were identi�ed in Group 2 (Fig. 4C, Additional �le 1: Table S8).

We then examined the associations between characteristic microbiota (n = 8 in Group 3, = 4 in Group 4 in
males, and = 2 in Group 2 in females) and differential metabolites (n = 36 in Group 3, = 57 in Group 4 in
males, and = 10 in Group 2 in females) (Fig. 5). The results showed that, in males, 23 metabolites were
signi�cantly associated with the characteristic genera of Group 3. Among them, FAHFA (8:0/10:0) was
negatively associated with the genera Clostridium_sensu_stricto_1 (r=−0.17) and Turicibacter (r �−0.18).
N-lactoyl-phenylalanine was negatively correlated not only with the genera
Clostridium_sensu_stricto_1(r�−0.15), but also with two other characteristic bacteria
(Lachnospiraceae_NK4A136_group and Terrisporobacter). Negative associations were also found among
Trimethylamine-N-Oxide, 1-Aminopropan-2-ol and genera Turicibacter, Terrisporobacter (Fig. 5A,
Additional �le 1: Table S9). Twenty-�ve metabolites were signi�cantly associated with characteristic
genera of male Group 4. Among them, the result of FAHFA (8:0/10:0) were similar to those of Group 3. In
addition, negative associations were also found among FFA (18:3), pinolenic acid and genera
Turicibacter, CHKCI002 (Fig. 5B, Additional �le 1: Table S10). In females, all 10 differential metabolites
were signi�cantly associated with characteristic genera in Group 2. Among them, negative associations
were found among EPA, (±)5-HEPE and genera Parabacteroides, [Eubacterium]_brachy_group (Fig. 5C,
Additional �le 1: Table S11).

Discussion
The main results of our cohort study, based on anthropometric measurements, blood and fecal samples
and 27 years of data, are as follows. First, four multi-trajectories of BMI and WC among males and
females were identi�ed, with the same increasing trend from 1991 to 2015. Most of the population was in
the BMI&WC normal growth group (Group 2). In addition, male participants with increasing trends in BMI
and WC had a higher risk of dyslipidemia in 2018, with OR value increasing as baseline BMI and WC
shifted from normal to obese. However, in female participants, we only found an increased risk of
dyslipidemia in Group 2. And second, we found several important characteristic genera negatively
associated with groups that remained overweight/obesity or developed overweight/obesity, including
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Clostridium_sensu_stricto_1, Turicibacter, and CHKCI002 among males and Parabacteroides,
[Eubacterium]_brachy_group among females. These important characteristic genera are also related to
some differential metabolites, such as FAHFA(8:0/10:0), N-lactoyl-phenylalanine, Trimethylamine-N-Oxide,
1-Aminopropan-2-ol, FFA (18:3), Pinolenic acid, EPA and (±)5-HEPE; most of them belong to free fatty
acids (FFAs) and oxidized lipids.

Using 24-years of BMI and WC measurements and the GBTM method, we successfully established four
distinct multi-trajectories of BMI and WC in the study sample. This grouping can not only re�ect the
status of obesity and central obesity, but also show the baseline obesity level and long-term change
trends simultaneously. To the best of our knowledge, only one study[24] reported multi-trajectory of BMI
and WC, and its results were similar to our study. In addition, the BMI trajectories[25, 26] and WC
trajectories[27] derived from large samples of adults only also showed four increasing trend groups. This
reminds us that the BMI and WC of Chinese adults seem to be on the rise simultaneously and need to be
controlled urgently.

In our study, male groups 2, 3, and 4 were associated with a higher risk of dyslipidemia. This is different
with females. A cross-sectional study among Chinese primary school children also found sex differences
in anthropometric indicators predicting dyslipidemia, which may be more true for boys than for girls[28].
Another study of Chinese adults showed that obese males also had a higher risk of dyslipidemia than
females[29]. This sex disparity may be due to differences in lifestyle between males and females, which
are risk factors of dyslipidemia[30]. A possible explanation may also be related to sexual dimorphism in
fat distribution and hormone levels. A study by Nedungadi and Clegg[31] showed that females have more
subcutaneous fat and males have more visceral fat, suggesting a greater risk of dyslipidemia.
Additionally, studies have showed that females have higher leptin and adiponectin levels (considered
cardiovascular-protective factors[32, 33]) than males[34, 35]. Therefore, the association between BMI and
WC and the risk of dyslipidemia is weaker in females than in males. To date, we are not aware of any
longitudinal study evaluating the relationship between multi-trajectories of BMI and WC and dyslipidemia.
Limited evidence from cohort studies suggests that the odds of developing dyslipidemia are associated
with increased BMI[4] and WC[6], respectively. More effective attention and interventions should be taken
to manage BMI and WC to reduce the prevalence of dyslipidemia, especially in males.

Little is known about the contribution of Clostridium sensu stricto 1 to human gut health. Two mouse
experiments in 2021 and 2022 suggest it may be a novel biomarker of obesity/obesity resistance [36, 37].
Our longitudinal study in adult males also con�rmed this new �nding, suggesting that Clostridium sensu
stricto 1 might help prevent obesity. Clostridium are known producers of butyrate[38], which contributes to
the integrity of the intestinal barrier, attenuates chronic in�ammation by promoting regulatory T cells, and
prevent pathogen proliferation [39]. Therefore, loss of butyrate-producing bacteria, such as Clostridium,
induces chronic low-grade in�ammation. However, there are also con�icting results for Clostridium sensu
stricto 1 existed. Evidence from the animal feeding experiment[40] and intervention trails in obese patients
[41] both indicate that Clostridium sensu stricto 1 is reduced after weight loss interventions. Similar to
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Clostridium sensu stricto 1, CHKCI002 also showed a positive correlation with butyrate in ducks[42].
Farkas V �rst reported the negative correlation between CHKCI002 genus and chicken body weight in
2022[43]. In this study, CHKCI002 was also negatively associated with all risk groups in males, suggesting
a bene�cial effect of CHKCI002 on obesity indicators. Many studies have linked Turicibacter to host lipid
metabolism pro�le, but the results are inconsistent[44–46]. This may be a result of phenotypic diversity
among Turicibacter, where hosts may experience different lipid outcomes depending on their own speci�c
Turicibacter strains. A recent study by Lynch JB[47] further identi�ed genes capable of altering host bile
acids and lipid metabolism in Turicibacter strains, and positioned Turicibacter bacteria as modulators of
host lipid biology. Our data showing that Turicibacter a negatively associated with BMI&WC in the
overweight or obesity increasing trajectory groups (two groups with higher risk of dyslipidemia) support
these previous studies. This also highlights the advantage of long-term trajectory characteristic
microbiota of obesity indicators in predicting dyslipidemia.

In addition to the above-mentioned bene�cial bacteria found in males, we also found two dominant
bene�cial bacteria in females: genus Parabacteroides and Eubacterium brachy group. Members of the
genus Parabacteroides are saccharolytic bacteria that produce major end products of fermentation, such
as acetic acid and succinic acid[48]. According to numerous studies, the relative abundance of
Parabacteroides is negatively associated with BMI [49–51], which is consistent with our study. There are
limited studies on the association of the Eubacterium brachy group with obesity or blood lipids. We found
only one study on adult mice showing that a high-fat diet reduced the abundance of the Eubacterium
brachy group at 18 weeks [52]. Members of the genus Eubacterium can undergo bile acid and cholesterol
transformations in the gut, thereby contributing to its homeostasis[53]. Gut microbiologists agree that
speci�c butyrate-producing microbial strains belonging to the genera Eubacterium may ultimately be
considered as bene�cial to human health as Lactobacillus and Bi�dobacterium strains[54].

N-lactoyl-phenylalanine (Lac-Phe) was proposed as an “exercise hormone” that suppresses appetite and
adiposity in diet-induced obese mice, however, Li et al. demonstrated complete inactivity of Lac-Phe when
administered orally[55]. In this study, the amount of Lac-Phe in the overweight/obesity increasing group
was higher than that in the normal group, which is inconsistent with previous animal studies. Future work
will help elucidate whether Lac-Phe can help outrun obesity. As a bioactive metabolite of the gut
microbiota, trimethylamine-N-oxide (TMAO) plays a critical role in the progression of many diseases,
including diabetes[56], obesity[57], atherosclerosis and cardiovascular risks[58]. In these disease states,
elevated circulating TMAO concentrations are commonly observed. Meta-analyses also revealed a
positive dose-dependent association between circulating TMAO concentrations and obesity[59].
Mechanisms that may contribute to obesity include the role of FMO 3 (TMAO producing enzyme) in
obesity regulation and adipose tissue formation[57], as well as increased hepatic insulin resistance and
consequent obesity through increased TMAO concentrations[60].

γ-linolenic acid (GLA, 18:3n-6), Pinolenic acid and EPA(the �rst two belong to omega-6 polyunsaturated
fatty acids (PUFA), and the last one belongs to omega-3 PUFA) were signi�cantly higher in groups 3 and
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4, and were negatively correlated with the bene�cial bacteria Turicibacter, CHKCI002, Parabacteroides,
[Eubacterium]_brachy_group in this study. A review study showed that n-6 PUFA derived eicosanoids have
pro-in�ammatory effects, whereas n-3 PUFA derived eicosanoids have anti-in�ammatory activities[61].
Research by Sunhye Shin[62] further found that the high n-6:n-3 ratio of linoleic acid-rich oil increased
lipogenesis and reduced lipid oxidation and thermogenesis. More importantly, adequate intake of n-3
PUFA can signi�cantly in�uence the effects of n-6 PUFA on lipoprotein pro�les[63]. Therefore, the ratio of
n-6 PUFA to n-3 PUFA is more important than the amount of a single n-6 PUFA or n-3 PUFA. This study
found that overweight and obese groups have higher concentrations of n-3 and n-6 fatty acids and a
higher risk of dyslipidemia, which may be related to the ratio of the two.

This study has several strengths. First, we used 24-year multi-trajectories of BMI and WC to predict the
risk of dyslipidemia, and long-term follow-up is a unique strength of this study. In addition, for the �rst
time, the characteristic gut microbiota and serum metabolites of multi-trajectories of BMI and WC with
higher dyslipidemia risk were analyzed. This study also has limitations. First, the characteristic bacteria
or differential metabolites in the multi-trajectories were derived from observational data and the causality
cannot be established at this stage. However, we conducted validation across different datasets and
compared differential metabolites by p-value and screened based on FC value. Second, although we
adjusted for numerous covariates, we cannot completely rule out the possibility of residual confounding.
Third, the associations of obesity with functional pro�les of the gut microbiome is unclear due to the use
of 16S rRNA data.

Conclusions
In conclusion, our results suggest that obesity indicators in�uence dyslipidemia in males more than in
females. We also identi�ed some potentially gut bacteria and differential metabolites associated with
long-term BMI and WC trajectories, some of which were closely related to lipid levels, revealing the role of
gut bacteria and related metabolites in obesity and lipid metabolism.
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Figures

Figure 1
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Multi-trajectories of BMI and WC and their associations with dyslipidemia. (A) Summary of the study
population.(B&C) Multi-trajectories of BMI and WC in CHNS cohort (1991-2015) among males (B) and
females (C). The solid lines represent average estimated BMI and WC over time. The dots represent the
actual data, where we weighted each individual’s responses based on posterior probabilities of group
membership. (D) Associations between multi-trajectories and dyslipidemia based on binomial logistic
regression model. Both models were adjusted for age, location (urban/rural), geographical area
(province), education level, smoking, drinking, household income, physical activity, and dietary energy
intake.

Figure 2

Comparison of the diversity of gut microbiota in multi-trajectories of different sex. (A&B) alpha -diversity
analysis between males (A) and females (B). Four alpha-diversity indices were scaled: Shannon’s
diversity index, observed-features, Pielou’s measure of species evenness and faith’s phylogenetic
diversity. Comparison between each risk trajectory group and the normal group using Kruskal Wallis test.
(C-F) β-diversity analysis between males (C, D, F) and females (E). Pairwise comparisons were determined
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by PERMANOVA analyses based on Bray-Curtis distance. R2 and p value were determined from 999
permutations.

Figure 3

Characteristic genera for those multi-trajectories with higher risk of dyslipidemia. (A-D) Cross-validation
curves of 169 bacteria genera for screening of characteristic genera by LASSO regression (discovery
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cohort). Characteristic genera selection for BMI&WC normal increasing trajectory (group 2) in male (A),
BMI&WC overweight increasing trajectory (group 3) in male (B), BMI&WC obesity increasing trajectory
(group 4) in male (C) and BMI&WC normal increasing trajectory (group 2) in female (D). (E-H)
Characteristic genera with statistical signi�cance after validation in both discovery cohort and validation
cohort by logistic regression. Association of selected characteristic genera with BMI&WC normal
increasing trajectory (group 2) in male (E), BMI&WC overweight increasing trajectory (group 3) in male (F),
BMI&WC obesity increasing trajectory (group 4) in male (G), and BMI&WC normal increasing trajectory
(group 2) in female (H).

Figure 4

Volcanic map of differential metabolites (P<0.05, |log2(FC)>0.5 considered to be differential). Differential
metabolites were found between the normal group (group 1) and BMI&WC overweight increasing
trajectory (group 3) in male (A), BMI&WC obesity increasing trajectory (group 4) in male (B) and BMI&WC
normal increasing trajectory (group 2) in female (C). Blue was the down-regulated differential metabolite,
red was the up-regulated differential metabolite, and metabolites with no difference were marked as grey.
The P value was further adjusted for multiple testing of pairwise comparison using the Benjamini-
Hochberg method. Figure A and Figure B showed only the top 10 metabolites with signi�cant differences
respectively, and the top 10 metabolites were sorted according to the absolute value of log2FC.
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Figure 5

Spearman's rank correlation between validated characteristic genera and differential metabolites. (A)
Association of validated 8 characteristic genera for BMI&WC overweight increasing trajectory (group 3)
with 36 differential metabolites (between group 3 and group 1) in male. (B) Association of validated 4
characteristic genera for BMI&WC obesity increasing trajectory (group 4) with 57 differential metabolites
(between group 4 and group 1) in male. (C) Association of validated 2 characteristic genera for BMI&WC
normal increasing trajectory (group 2) with 10 differential metabolites (between group 2 and group 1) in
female.

Supplementary Files

This is a list of supplementary �les associated with this preprint. Click to download.

Additional�les.zip

https://assets.researchsquare.com/files/rs-4251069/v1/93a3a8f548f200ed2734e26e.zip

