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Abstract

Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy characterized by an 

immunosuppressive tumor microenvironment enriched with cancer associated fibroblasts (CAFs). 

This study utilized a convergence approach to identify tumor cell and CAF interactions 

through the integration of single-cell data from human tumors with human organoid co-culture 

experiments. Analysis of a comprehensive atlas of PDAC single-cell RNA sequencing (scRNA-

seq) data indicated that CAF density is associated with increased inflammation and epithelial-

mesenchymal transition (EMT) in epithelial cells. Transfer learning using transcriptional data 

from patient-derived organoid and CAF co-cultures provided in silico validation of CAF induction 

of inflammatory and EMT epithelial cell states. Further experimental validation in co-cultures 

demonstrated integrin beta 1 (ITGB1) and vascular endothelial factor A (VEGF-A) interactions 

with neuropilin-1 (NRP1) mediating CAF-epithelial cell crosstalk. Together, this study introduces 

transfer learning from human single-cell data to organoid co-culture analyses for experimental 

validation of discoveries of cell-cell crosstalk and identifies fibroblast-mediated regulation of EMT 

and inflammation.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is challenging to treat and the mortality rate 

remains high largely due to its detection at advanced stages and heterogeneous tumor 

microenvironment (TME)(1). Molecular changes in the epithelial cell population during 

carcinogenesis promote changes in the surrounding non-epithelial cell populations, resulting 

in a dense and immunosuppressive TME(1). The TME is characterized by its heterogeneity 

and includes a variety of cell types, including mesenchymal cells, such as cancer associated 

fibroblasts (CAFs), and populations of myeloid and lymphoid lineages(1). Identifying 
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phenotypic heterogeneity across cell types and understanding their functional diversity have 

historically been limited by available genomic technologies, representing a major barrier to 

our understanding of PDAC biology.

Single-cell RNA sequencing (scRNA-seq) has recently enabled a more nuanced study of 

the PDAC TME. Prior work with PDAC single-cell datasets has provided a roadmap 

to help identify individual cell populations and associated transcriptional regulation of 

the TME(2–5). These data identified previously underappreciated cellular heterogeneity 

in human and mouse models of PDAC and are complemented by studies exploring the 

signaling pathways driving tumor phenotype(6,7). Single-cell technologies have furthered 

our capacity to identify discrete subpopulations in both tumor and stromal cells. While 

the identification and characterization of CAF subpopulations have opened new avenues of 

research (8,9), the mechanisms of intercellular interaction and the role of CAF heterogeneity 

on tumor cell phenotypes remain poorly understood.

In this study, we developed a multidisciplinary approach to integrate computational methods 

for single-cell analysis with new experimental approaches for human organoid co-culture 

that together can untangle the complexities of intercellular interactions in the PDAC TME. 

To discover the molecular changes resulting from interactions between tumor cells and 

CAFs, we collated a comprehensive atlas of six published scRNA-seq datasets generated 

from small cohorts of PDAC patients(8,10–14). Computational analyses of epithelial cell 

heterogeneity reveal a transcriptional program associated with malignant epithelial cell 

phenotypic transitions that includes co-occurrence of inflammatory signaling and epithelial 

to mesenchymal transition (EMT). While this cell state transition correlates with CAF 

density in the single-cell cohort, additional cell types in the TME may also contribute 

to these phenotypes. To isolate the impact of CAFs on epithelial cells, we complement 

computational analyses of the atlas dataset with a three-dimensional co-culture of human 

patient-derived organoids (PDOs) and patient-derived CAFs. Our experimental system 

uniquely enables culturing of patient-matched fibroblasts and tumor cells, isolating CAF-

tumor cell interactions from resected human tumors in a manner not feasible in patient 

biospecimens(15,16). Integration of the reference atlas of scRNA-seq data of PDAC with 

our organoid co-culture through transfer learning enables comprehensive, in silico and 

experimental investigation of the inflammatory and EMT program from human tumor 

cell-CAF crosstalk. This convergence approach associates integrin beta 1 (ITGB1) and 

vascular endothelial factor A (VEGF-A) interaction with Neuropilin-1 (NRP1) with CAF 

and epithelial crosstalk that can regulate the malignant epithelial cell state transitions defined 

from single-cell analysis of human tumors.

Materials and Methods

scRNA-seq dataset integration for the PDAC atlas

The six different datasets provided gene expression data with different versions (GRCh37 

or GRCh38) and nomenclatures (Ensembl identifiers vs. HUGO gene nomenclature) of 

the human reference genome. Available patient metadata are summarized in Table 1. All 

analyses were performed in R (V 3.6–4.1) or Python (version 3.8). Unified integration of 

the measured features revealed 15,219 genes that could be matched between all datasets 
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with assured certainty. Next, cells with unfavorable quality, defined as mitochondrial counts 

>15% and unique features of <50 or >5,000, were removed. Computational pre-processing 

was performed with the Monocle3(17) R package. Dimensionality reduction into a unified 

manifold approximation and projection (UMAP) was based on the first 100 principal 

components and batch correction was applied per manuscript to account for potential 

dataset-intrinsic biases (technical or biological) using Batchelor as utilized by the Monocle3 

pipeline(18). Annotation of cell types is described in detail in the Supplemental Methods 

and in Supplemental Table 1. Plotting was performed with the ggplot2 R package and 

Excel (Microsoft, Redmond, WA). For high-performance computing tasks, we leveraged 

the MARCC (Maryland Advanced Research Computing Center, Baltimore, MD) and AWS 

(Amazon Web Services, Seattle, WA) servers.

CoGAPS analysis of expression patterns

Non-negative matrix factorization (NMF) of transcript counts was conducted using CoGAPS 

(V 3.5.8)(19,20). Given a matrix of single-cell data with normalized expression values, 

CoGAPS factorizes this matrix into two related matrices of gene weights (amplitude matrix) 

and sample weights (pattern matrix) for random subsets of the data based on the nsets 

parameter followed by relearning of the amplitude matrix on the full dataset. CoGAPS was 

run on log2 transformed counts of 15,176 genes from 25,442 cells in Peng et al and Steele et 

al annotated as epithelial_normal, epithelial_cancer, or epithelial_unspecified(10,11).

Standard parameters were set to 8 Patterns, 50,000 iterations, seed 367, sparse optimized, 

and distributed: “Single-Cell”. Sparsity parameters were alpha = 0.01, max Gibb mass 100. 

Distributed CoGAPS parameters were 15 nSets, cut 10, minNS 8, maxNS 23.

Marker genes for each pattern were identified using the patternMarkers function in CoGAPS 

(V3.9.5) with the “cut” threshold to provide subsets of the top-ranking genes associated with 

each pattern(21). Overrepresentation analysis was then conducted using the fora function 

in the fgsea R package (V1.18.0) to find enrichment of any hallmark gene sets from the 

Molecular Signatures Database(22,23) among the pattern markers for each CoGAPS pattern. 

The universe used in the overrepresentation analysis was all human genes with HGNC 

symbols in the GRCh38.p13 genome assembly (n = 39,535)(24,25).

In vitro assays

Organoid and CAF co-culture and single-cell analysis: Patients with PDAC undergoing 

endoscopic biopsy or surgical resection were enrolled in IRB-approved tissue acquisition 

protocols at Johns Hopkins Hospital (NA_00001584). All samples were acquired following 

written informed consent in accordance with Declaration of Helsinki guidelines. PDOs 

were generated from patient surgical specimens following a combination of mechanical 

and enzymatic dissociation as previously described(15,16). CAFs were extracted from 

surgical resection specimens after straining remnant tissue through a 70μm cell strainer 

and washed twice with human organoid wash media (Advanced DMEM/F12, 10mM 

HEPES, 1x GlutaMAX, 100μg/mL Primocin, 0.1% BSA) with centrifugation between 

washes. Following establishment, cell lines were tested for mycoplasma routinely using 

a combination of MycoStrips (InvivoGen) carried out in the lab and the EZ-PCR assay 
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run through by the Johns Hopkins Genetic Resources Core Facility (GRCF). Cell line 

authentication is done by matching established primary lines to source tissue using short 

tandem repeat profiling at the GRCF. For co-culture, organoids were combined with 

patient-matched CAFs in Matrigel (Corning, 356234) at a 1:10 ratio of organoids to 

CAFs. In parallel, CAFs and PDOs were plated separately in Matrigel. Co-cultures and 

monocultures were plated in 24-well tissue culture dishes and extracted after 12 hours using 

Cell Recovery Solution (Corning, 354253) and incubated on ice at 4°C for 45 minutes 

for Matrigel depolymerization. Cells were then pelleted and washed in human organoid 

wash media prior to pelleting again. Organoids were dissociated to single cells using 

TrypLE Express (ThermoFisher Scientific, 12604013) following manufacturer instructions. 

Single-cells were barcoded using the MULTI-seq protocol as previously described(26). 

Single-cell transcriptomics library prep was completed using the 10x Genomics Chromium 

Single Cell 3’ Gene Expression Dual Index Library (V3.1) according to manufacturer 

specifications. Library preparations quality were analyzed using the 2100 Bioanalyzer 

(Agilent). Sequencing was completed at the Johns Hopkins Genetic Resources Core 

Facility (GCRF). Cellranger (V6.0.0) was used to generate the feature-barcode matrices, 

aligned to the hg38 genome. Multiseq10x (V1.0) was used as the preprocessing pipeline 

companion to split the MULTI-seq FASTQs into cell barcode, unique molecular identifiers 

(UMI), and sample barcode sequences. Reads that did not align with >1 mismatch to any 

reference sequence and reads representing duplicated UMIs on a cell-by-cell basis were 

removed. Demultiplex (V1.0.2) was used for demultiplexing the data. The 3DGE data 

were log normalized, linear dimension was reduced using principle component analysis, 

and differentially expressed genes were identified in Seurat by Wilcoxon Rank Sum 

Test (V4.0.1). Additional annotations of Moffitt classifiers, denoting classical and basal 

epithelial subtypes, and CAF subtypes were added to the Seurat object metadata based on 

the clustering and module scores(27). Co-culture cell types were parsed based on these 

annotations and the barcode distinctions. Projection of the discovered CoGAPS Pattern 7 

onto the 12HR MULTI-seq expression data was completed using ProjectR (V1.8.0). The 

MULTI-seq expression data and CoGAPs feature loadings were run through the projectR 

function of the package(28). The projection results were combined with the MULTI-seq 

metadata and plotted using ggplot2 (V3.3.5) and Wilcoxon results added using ggpubr 

(V0.4.0)(28).

Flow Cytometry and Cell Sorting: Organoids were extracted using Cell Recovery 

Solution (Corning, 354253) and incubated on ice at 4°C for 45 minutes for Matrigel 

depolymerization. Cells were pelleted and washed in human organoid wash media. 

Organoids were dissociated to single cells using TrypLE Express and washed in MACS 

buffer (PBS + 5 mM EDTA + 1% Fetal bovine serum). Cells were resuspended in PBS 

+ Zombie NIR catalog no. 423106 (dilution 1:1000) + Human TruStain FcX catalog 

no. 422302 (dilution 1:100) for 10 minutes at room temperature in the dark. Cells were 

quenched with MACS buffer, spun down, and then resuspended in surface stain for 20 

minutes on ice at 4°C in the dark; antibodies purchased from Biolegend: APC EpCAM 

catalog no. 324208 (dilution 1:200), EpCAM PE/Cy7 catalog no. 324221 (dilution 1:200), 

PE/Cy7 HLA-A, B, C catalog no. 311429 (dilution 1:200), AF700 HLA-DR catalog no. 

307626 (dilution 1:200), PerCP/Cy5.5 PD-L1 catalog no. 329738 (dilution 1:100), APC 
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Neuropilin-1 catalog no. 354506 (dilution 1:100), R&D PE VEGFR1 VEGFR2 catalog 

no. FABSP3P (dilution 1:100). Cells were washed twice in MACS buffer. Flow cytometry 

analyses were performed on the Beckman Coulter Cytoflex.

For co-culture cell sorting, 1mL of 1mg/mL Dispase II (Thermofisher, 17105041) in 

organoid wash media was added to each co-culture and monoculture dome to depolymerize 

Matrigel for 1 hr at 37°C. Digest was quenched with 1mL of wash media and cells 

were spun down. Cells resuspended in PBS + Zombie NIR catalog no. 423106 (dilution 

1:1000) + Human TruStain FcX catalog no. 422302 (dilution 1:100) for 10 minutes at room 

temperature in the dark. Cells were quenched with MACS buffer, spun down, and then 

resuspended in surface stain APC EpCAM catalog no. 324208 (dilution 1:200) and FAP 

R&D Systems, catalog no FAB3715P-100 (dilution 1:75) on ice at 4°C for 20 minutes in the 

dark. Cells were washed twice in MACS buffer and filtered through 70um filter. Cell sorting 

was performed on BD Fusion Sorter.

Stimulation of PDOs with IFNγ: 1X105 organoids were plated and treated with 200ng/mL 

of human recombinant IFNγ (PeproTech, 300–02) for 0hr – 96hr for stimulation. Cells were 

then harvested to be analyzed by mixed methods. Cells were first extracted, stained, and 

analyzed by flow cytometry. Flow cytometric analyses were performed on the Beckman 

Coulter Cytoflex. Intact Matrigel domes with PDO that had been stimulated and left 

untreated were harvested and formalin fixed and paraffin embedded for downstream 

analysis. Lastly, cells were harvested from treated and untreated Matrigel domes and lysed 

for total cellular RNA.

VEGF supplementation: 1X105 CAF were plated per well of a 24 well plate and allowed 

to adhere overnight. Recombinant VEGF (PeproTech, 100–20) was added to cultures at 

increasing concentrations from 10ng/mL to 50ng/mL for either 4 or 24 hours to identify 

correct timing and concentration of treatment. Changes in surface proteins were seen at 

50ng/mL after 4hr by flow cytometric analysis that was acquired on Beckman Coulter 

Cytoflex. PDO were treated with 50ng/mL of rVEGF for 4 hr to assess cellular surface 

marker changes and analyzed by flow cytometry on Beckman Coulter Cytoflex.

Quantitative PCR (qPCR): To evaluate gene expression of MHC-II genes in patient-

derived organoids, total RNA extraction using the RNeasy Mini Kit (Qiagen, Catalog 

Number: 74104) was completed for each patient-derived organoid line according to 

manufacturer specifications. cDNA synthesis was performed using Invitrogen TaqMan 

Reverse Transcription Reagents (Catalog Number: N8080234), following manufacturer’s 

instructions. Real-time quantitative PCR was completed using the ThermoFisher Taqman 

Gene Expression Assays according to manufacturer’s protocol in the QuantStudio 6 Flex 

System (Applied Biosystems) mRNA targets included: ITGB1 (Hs01127536_m1), VEGFA 

(Hs00900055_m1), NRP-1 (Hs00826128_m1) HLA-DRA (Hs00219575_m1), HLA-DRB1 

(Hs04192464), HLA-DQB1 (Hs03054971_m1), and HLA-DPB1 (Hs03045105_m1). 

Relative gene expression was quantified using the 2−ΔΔCt method as previously 

described(29), and GAPDH (Hs02786624_g1) was used as the endogenous control. Data 

were analyzed using Applied Biosystems QuantStudio™ Real Time PCR System Software 

(V1.7.1).
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Inference of transitions in cellular phenotypes and intercellular interactions: Within 

each cell group, additional analyses were performed to compute heterogeneity of cellular 

phenotypes, state transitions, and inter-cellular signaling across the atlas datasets. First, cell 

cycle scores and phases were computed with tricycle (V1.2.0)(30). Further unsupervised 

exploratory analysis of transitions in epithelial cell states was performed with CoGAPS 

(V3.5.8)(19) analysis across epithelial populations in tumor and normal samples from Peng 

et al(10) and Steele et al(11). Single cell CoGAPs was run for 8, 10, and 12 patterns. 

Eight patterns were selected as the final analysis because 12 patterns returned 10 patterns 

suggesting an overfitting of the data. Further the 8-pattern run resulted in all 8 patterns 

that were analogous with the other patterns found in the higher dimensional runs. Finally, 

the impact of fibroblast cells on epithelial cells was computed by estimating intercellular 

signaling with Domino (V0.1.1)(31) independently for each of the datasets in the atlas.

For Domino analysis, pyScenic (V0.11.0) for Python was first used to generate the gene 

regulatory network and co-expression modules, the regulon predictions, and the area under 

the curve (AUC) matrix of cellular enrichment(32). This was completed by providing the 

extracted counts matrix, a list of transcription factors, motif annotations, and cisTarget 

motifs for the hg38 genome(32). With the use of the AUC and regulon predictions, a 

domino object is created and the signaling network built. This allowed for the visualization 

of global signaling network, gene networks and incoming signaling heatmaps for each 

narrow subtype annotation, a heatmap of the correlation between transcription factors and 

receptors, and lastly, the global transcription factor-ligand-receptor network between all 

subtype annotations(31).

Availability of data and materials:  The scRNA-seq data analyzed in this study 

were obtained from the NIH gene Expression Omnibus (GEO Database), the Genome 

Sequence Archive (GSA), and dbGaP at GSE155698 (https://www.ncbi.nlm.nih.gov/geo/

query/acc.cgi?acc=GSE155698), GSE111672 (https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE111672), GSE154778 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE154778), CRA001160 (https://ngdc.cncb.ac.cn/gsa/browse/CRA001160), 

and phs001840.v1.p1 (https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?

study_id=phs001840.v1.p1). The Bernard et al dataset was kindly provided by the 

corresponding author. PDAC atlas is available for free use at www.sciserver.com after 

the creation of an account. Once created, please join the “Genomics” Science Domain 

[https://apps.sciserver.org/dashboard/science/94704] to be granted access. Next, navigate to 

the data volumes section of the files tab, where you will see a “STAC” directory [https://

apps.sciserver.org/dashboard/files/datavolumes/53]. Here, you will see all of our public 

datasets. Just select the cellxgene link next to the “PDAC” title for access to our cellxgene 

host of the PDAC Atlas dataset.

Submission of the MULTIseq and Bulk RNA-seq data to dbGaP is in process. All analysis 

scripts are available from: https://github.com/fertiglab/PDAC_Atlas

All other raw data generated in this study are available upon request from the corresponding 

author.
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Results

A transcriptional reference of CAF and PDAC tumor cells is generated from an integrative 
analysis of 6 scRNA-seq datasets

To explore signaling between CAFs and tumor cells in PDAC, we integrated six published 

human scRNA-seq datasets into a comprehensive atlas. In total, the atlas contains 174,394 

total cells from 61 PDAC (142,807 cells) and 16 non-malignant pancreatic tissue samples 

(31,587 cells) (Figure 1A-B, Supplemental Figure 1A)(8,10–14). All samples were of 

pancreatic origin and from treatment-naïve patients (Table 1). Of the 61 PDAC samples, 

52 samples originated from patients with early-stage localized disease, 6 samples originated 

from patients with metastatic disease, and 3 samples were from patients whose stage was 

unknown. Of the 16 non-malignant control samples, 5 were specified by the authors as 

normal-adjacent to a known adenocarcinoma and 11 were derived from samples described 

as normal-adjacent to non-malignant pathologies. All control samples and the majority 

of PDAC samples were obtained from resected surgical specimens. Ten PDAC samples 

originated from fine-needle biopsies, four of which were from patients presenting with 

metastatic disease.

After filtering cells based on biological and technical quality metrics, the resulting atlas 

included 140,250 cells (19.6% dropout). The median and mean cell counts per patient were 

1,455 and 1,821, respectively (interquartile range: 828 – 2,200). Following computational 

pre-processing, we performed a clustering analysis for cell type annotation (supplemental 

methods). To make inferences on biology from an integrated atlas, an assessment of inter-

dataset variation was undertaken to minimize technical artifacts. Most of the contributing 

patient samples and cells (35 and 54,813, respectively) originated from Peng et al(10) 

(Figure 1C-E) with a mean of 1,566 cells per tissue. The mean number of cells per sample 

was highest (4,754 cells) in the dataset by Moncada et al(13), a set that contributed PDAC 

samples from three patients (Figure 1C-E). However, mapping each dataset on the atlas’ 

UMAP demonstrated contribution from all six datasets across clusters, visually verifying our 

integration approach (Figure 1E).

Within PDAC samples, the predominant cell populations were malignant epithelial cells 

(32,515 or 29.3%), cells of myeloid origin (28,971 cells or 26.1%), and T cells (17,284 

cells or 15.6%) (Supplemental Figure 1B). Cell cycle analyses of the PDAC samples 

revealed high cell cycle activity primarily in the malignant epithelial, acinar, myeloid and 

CAF populations (Supplemental Figure 1C-D). The mesenchymal cell populations were 

composed of 8,953 CAFs (8.1%) and 6,049 stellate cells (5.4%). Altogether, the components 

of the TME (immune and mesenchymal cell populations combined) contributed 67,690 cells 

or 60% of the total cell count. In the myeloid and lymphoid cell clusters, we annotated 

subpopulations to include macrophages, mast cells, neutrophils, regulatory T cells and 

natural killer/cytotoxic T cells (Supplemental Figure 2). Epithelial cell classification as 

benign or malignant was completed using copy number variation (CNV, Supplemental 

Figure 3) and differential gene expression as markers of malignant etiology. Malignant 

epithelial cells were classified using the classical and basal gene markers first reported by 

Moffitt et al(27) (Supplemental Figure 4). In the CAF cluster, cells were subtyped according 
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to inflammatory CAF (iCAF) and myofibroblastic CAF (myCAF) gene markers, as the 

antigen-presenting CAF (apCAF) population is rare (Supplemental Figure 5)(8).

CoGAPS identifies phenotypic states of EMT and inflammatory signaling co-occurrence in 
cancer-associated epithelial cells correlates with CAF density

Determining the intercellular regulatory programs in tumor cells first requires delineating 

the distinct phenotypic states in epithelial cells during tumor progression. Previously, we 

have demonstrated that our single-cell Bayesian non-negative matrix factorization algorithm 

CoGAPS can concurrently define cellular states and dynamics from scRNA-seq data(19). 

Therefore, we applied CoGAPS to investigate patterns of gene expression within the tumor 

and normal epithelial clusters in the atlas. Batch effects were mitigated by identifying gene 

expression patterns maintained across the two largest sample cohorts that contain both 

PDAC and non-malignant samples: Peng et al(10) (18,261 epithelial cells) and Steele et 

al(11) (7,181 epithelial cells). These two datasets account for 61.0% of all epithelial cells 

in the atlas and represent 49.3% of all malignant cells, and 97.1% of all benign cells. The 

populations of benign cells also have a mixture of those obtained from normal controls 

and those obtained from tumor-adjacent normal cells, providing the opportunity to fully 

characterize epithelial cell state transitions associated with malignancy.

We applied CoGAPS to interrogate patterns of gene expression across these epithelial 

populations, identifying 8 distinct patterns of transcriptional phenotypes (Supplemental 

Figure 6). The molecular function of the cellular phenotype for each pattern was annotated 

by an overrepresentation test across genes identified by the CoGAPS pattern marker 

statistic(33) and Hallmark gene sets from the Molecular Signatures Database(23). The 

highest ranked pathways associated with Pattern 1 were UV response and TGFβ signaling 

that did not reach statistical significance (Supplemental Table 2). Pattern 2 identified 

pathways of estrogen response and KRAS signaling that are relevant to the growth factor 

receptor signaling that occurs during PDAC development. Metabolic pathways including 

cell cycle, oxidative phosphorylation, and glycolysis were significant in Patterns 3–5. 

Pattern 6 identified pathways of apoptosis activity and Pattern 8 was dominated by genes 

inherent to the response to hypoxia. Notably, genes associated with Pattern 7 were classified 

by CoGAPS to include increased pathway activities in inflammatory, fibrogenic, and 

malignant progression-associated gene sets, including interferon gamma (IFNγ) response 

and epithelial-mesenchymal transition (EMT) (Figure 2A-C, Supplemental Table 3). Plotting 

these patterns along the tumor cells in the UMAP demonstrates that the cells associated 

with the Pattern of cellular proliferation (Pattern 2) are distinct from those demonstrating the 

co-occurrence of inflammatory signaling and EMT in Pattern 7.

Tumor-associated epithelial cells enriched for Pattern 7 are predominantly classified as 

unspecified as opposed to more clearly-defined tumor cells. We also observe that Pattern 

7 weights were significantly higher in the benign epithelial cells derived from PDAC 

samples relative to the epithelial cells in the non-malignant control samples (Figure 2B). 

The enrichment of Pattern 7 within the epithelial cells from PDAC samples suggests a 

potentially transformative process that drives a phenotype of inflammation and EMT in the 

epithelial compartment similar to previous data from non-epithelial cell types in PDAC(34). 
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We hypothesize the pathways included in Pattern 7 contribute to epithelial cell plasticity 

during tumorigenesis as well as in established PDAC. This hypothesis is further supported in 

an independent study from our group by Bell et al(35) in which they apply atlas Pattern 7 to 

spatial transcriptomics data from pancreatic intraepithelial neoplasia and identify a tradeoff 

of Pattern 7 with patterns associated with cellular proliferation through ProjectR transfer 

learning(28).

We also hypothesized that factors in the microenvironment regulate the inflammatory and 

EMT signaling in Pattern 7. To investigate intercellular interactions as drivers for Pattern 

7, we first reviewed cell type composition in tumor and adjacent normal samples to 

identify subpopulations in the TME. Notably, the non-epithelial populations in the atlas 

largely originated from tumor samples (Figure 2D). When comparing the average cell type 

composition between the control and tumor samples within the Peng et al(10) dataset, the 

fractions of fibroblast, myeloid and lymphoid populations were greater in tumor samples, 

with a proportional decrease in cells of endothelial origin, acinar cells and total epithelial 

cells (Figure 2E). Within the Steele et al(11) dataset, differences between the fibroblast/CAF, 

myeloid and lymphoid populations, while present, were less pronounced (Figure 2E). To 

understand the impact of CAF signaling on epithelial gene expression, we correlated the 

mean CoGAPS weights from pattern 7 in the epithelial compartment with the presence of 

CAFs using the datasets from Peng et al(10) and Steele et al(11). We identified a direct 

association between an increasing fibroblast proportion in the TME and the mean weight of 

CoGAPS Pattern 7 in the epithelial cells (Supplemental Figure 7). This association was lost 

when fibroblast populations were further divided into iCAFs and myCAFs (Supplemental 

Figure 7). This correlation leads to the hypothesis that CAFs promote expression of 

Pattern 7 in malignant epithelial cells. Yet, while CAF presence enriches the expression 

of Pattern 7, uncovering the mechanisms that drive CAF-mediated signaling in the epithelial 

compartment requires further validation using approaches beyond correlative associations in 

human single-cell data.

Transfer of Pattern 7 from the PDAC atlas to PDAC PDO-CAF co-culture demonstrates that 
CAFs induce EMT and inflammatory signaling in epithelial cells

To establish an association between PDO-CAF interactions and the inflammatory and EMT 

signaling observed through the correlative analysis of Pattern 7, we established PDAC 

PDOs co-cultured with patient-derived, patient-matched CAFs. Each PDO-CAF co-culture 

leverages our previous experience generating PDOs(15,16) while in parallel extracting CAFs 

from surgical resection specimens (Figure 3A, Supplemental Figure 8). As a result, our 

PDO co-culture uniquely enables us to isolate the effects of CAFs on human PDAC 

tumor cells without the confounding of additional cell types as occurs in human tissue. 

To compare the signaling processes in our co-culture to Pattern 7 identified in the atlas, 

we performed scRNA-seq profiling of a 12-hour PDO-CAF co-culture with PDO and 

CAF monoculture from the same patient as controls. We used multiplex analysis, with an 

established MULTI-seq protocol(26), to assess transcriptional heterogeneity in the epithelial 

and CAF compartments. Clustering analysis and UMAP visualization of the scRNA-seq data 

separated the fibroblasts from epithelial cells. This clustering analysis demonstrated that 

cells from the co-culture and monoculture conditions retained the gene expression patterns 
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of their cellular identity, without apparent sub-clustering of co-culture from monoculture 

conditions (Figure 3B-C).

Though clustering analysis identified few gene expression changes, we hypothesized that the 

co-culture causes the increase in inflammatory signaling and EMT gene signature observed 

in Pattern 7 and associates with CAFs through correlation analysis in the atlas dataset. 

Therefore, we evaluated the occurrence of Pattern 7 in PDO-CAF co-culture compared 

to PDO monoculture through transfer learning with our ProjectR method(28) between the 

scRNA-seq data from the PDAC atlas and the scRNA-seq data from our PDAC PDO 

cultures. We identified increased expression in the Pattern 7 signature in PDAC organoids 

co-cultured with CAFs, relative to those from monoculture (Figure 3D). We also found 

that enrichment of Pattern 7 is associated with a shift in epithelial cell subtype, so that 

fewer cells distinctly classify as exclusively basal or classical after co-culture (Figure 

3E). Similarly, the CAF population also displays plasticity with increased proportions 

of CAFs expressing gene markers for both iCAFs and myCAFs (Figure 3F). Further 

application of this projectR(28) analysis for transfer learning to bulk RNA-seq data from 

a broader panel of 3 co-cultured lines also demonstrate an enrichment of Pattern 7 in 

the co-culture condition with CAFs relative to monoculture (Figure 3G). Technically, this 

analysis approach extends our previous studies leveraging transfer learning to performing 

in silico validation of phenotypic states within a cell type to the validation of intercellular 

regulatory programs. The robustness of the inferred signaling patterns between human tissue 

and organoid co-culture demonstrate that this dynamic, reductionist in vitro system can 

provide an experimental model to validate intercellular signaling. In this case, based on the 

biological findings from our analyses, we sought to further leverage the organoid co-culture 

to experimentally examine the CAF-induction of inflammatory signaling and EMT in PDAC 

epithelial cells.

PDOs demonstrate that CAFs in co-culture enrich IFNγ response and induces major 
histocompatibility complex type II (MHC-II) expression in epithelial cells

We used our PDO culture system to further validate the expression of Pattern 7 as identified 

in the atlas’ epithelial populations. Multiple MHC-II genes and IFNγ response were 

included in Pattern 7, which we then examined more deliberately in the epithelial cells 

from the control and tumor samples (Supplemental Figure 9). To validate that pattern 7 is 

a true epithelial cell signature and not a result of unidentified doublets, we demonstrated 

that this CoGAPS pattern also occurred in a restricted set of epithelial cells from the PDAC 

atlas that do not express canonical immune genes (Supplemental Figure 10). Based on these 

findings, we hypothesize that there exists a signaling cascade in which CAFs induce IFNγ 
signaling in malignant epithelial cells and induce MHC-II gene expression.

We then first sought to validate that IFNγ can induce MHC-II expression in PDAC epithelial 

cells using our PDO model. Prior work has shown that 24 hours of 200ng/mL of IFNγ 
added into cell media induces MHC-I and PD-L1 upregulation in organoids in colorectal 

cancer and NSCLC(36). To extend these findings to our PDOs, we screened eleven PDO 

lines by flow cytometry (gating strategy Supplemental Figure 11) for both constitutive and 

IFNγ-induced cell surface protein expression of MHC-I and II and PD-L1 (Supplemental 
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Figure 12A). At 24 hours, both MHC-I and PD-L1 demonstrated a robust increase in 

expression in response to IFNγ stimulation.

We then examined MHC-II surface expression over a longer duration given the 

representation of MHC-II genes in the Pattern 7 gene set. HLA-DR was used as a 

representative marker for MHC-II expression. As expected, HLA-DR expression was limited 

at baseline and following 24 hours of IFNγ stimulation. Longer-term exposure to IFNγ 
for 96 hours resulted in upregulation of HLA-DR expression, consistent with induced 

gene expression changes (Supplemental Figure 12B-D). To further evaluate IFNγ-induced 

changes in MHC-II alleles which lack specific antibodies, we validated HLA-DRB1, HLA-

DRA, HLA-DPB1, HLA-DQB1 by qPCR and observed a variable IFNγ-induced response 

in gene expression (Supplemental Figure 12E). These data were then confirmed in formalin 

fixed and paraffin-embedded (FFPE) PDAC PDOs using IHC with antibodies against HLA-

DR and HLA-DR/DP/DQ (Supplemental Figure 12F-G).

While the PDO experiments rely on direct induction of IFNγ stimulation to induce MHC-II 

expression, the correlation of CAF density with Pattern 7 and its enrichment in co-culture 

led us to hypothesize that CAFs can mediate upregulation of MHC-II in malignant epithelial 

cells. To test this hypothesis in co-culture, we identified the presence of MHC-II expression 

from the co-culture scRNA-seq data (Supplemental Figure 13A-C). We then expanded 

beyond 12 hours to examine temporal changes in protein-level gene expression in the 

epithelial compartment by co-culturing PDOs and CAFs for 24 and 96 hours. At each 

timepoint, we used Fluorescence Activated Cell Sorting (FACS) of the co-culture to have 

a pure population of cells to query MHC-II gene expression changes by qPCR. Similar to 

our findings with IFNγ treatment, HLA-DRA and HLA-DRB expression increased with 

increasing time in co-culture up to 96 hours (Supplemental Figure 13D-E). This further 

implicates CAFs as critical mediators of epithelial cell plasticity, which we hypothesize 

plays a role in antigen presentation in PDAC. Our observation of MHC-II expression in 

human PDAC tumor cells is further supported recent study of tissue microarrays of patient 

PDAC samples(37).

Ligand-receptor analysis of the PDAC atlas identifies ITGB1 as a ligand signaling from 
fibroblasts to epithelial cells and VEGF-A as a ligand signaling from epithelial cells to 
fibroblasts

Our combined computational and experimental analyses suggest CAF-epithelial cell 

signaling impacts PDAC behavior but does not provide direct signaling mechanisms 

responsible for these interactions. Therefore, we examined the signaling networks between 

CAFs and epithelial cells in silico from the PDAC atlas and validated them experimentally 

in our co-culture. To infer these pathways, we selected the epithelial tumor and CAF 

populations originating from PDAC samples in the atlas derived from the Peng et al(10) 

(12,120 epithelial cells, 63.8%; 5,823 CAFs, 84.0%) and Steele et al(11) (6,883 epithelial 

cells, 36.2%; 1,110 CAFs, 16%) datasets. We then analyzed these data with Domino, a 

computational method that infers intercellular interactions in scRNA-seq data by quantifying 

coordinated gene expression changes between ligands of one cell type and receptors of 

another and subsequent transcription factor activation(31). The resulting analysis generated 
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a putative global signaling network in PDAC based on population-specific gene expression 

of ligands and receptors with established signaling relationships, identifying ITGB1 and 

VEGF-A as important contributors to communication between epithelial tumor cells and 

CAFs (Figure 4A).

In the atlas, across epithelial subtypes, ITGB1 was identified in both the Peng et al(10) 

and Steele et al(11) datasets as a ligand from both iCAFs and myCAFs directed at the 

epithelial subpopulations (Figure 4B, Supplemental Figure 14A). To validate signaling 

through ITGB1, we first used IHC to confirm ITGB1 is expressed in patient PDAC tumor 

tissue by examining expression in two patients with PDAC included in our rapid autopsy 

cohort (Figure 4C). Taking this into our PDO-CAF co-culture, ITGB1 expression was 

identified both in PDOs and CAFs using qPCR. Supporting our hypothesis, when PDOs and 

CAFs are co-cultured, ITGB1 gene expression is upregulated in CAFs (Figure 4D-E). This 

demonstrates that epithelial presence contributes to the CAF-specific expression of ITGB1. 
Although ITGB1 expression is not canonically thought to be tissue- or cell-type specific, 

integrins are known to play a key role in the structure and function of the extracellular 

matrix(38). High levels of expression of ITGB1 are associated with poor outcomes in 

PDAC, as well as progression and metastasis(39). Further, ITGB1 has been implicated in 

EMT in PDAC through ERK/MAPK signaling(40).

Across both datasets, VEGF-A was expressed by epithelial populations and predicted to 

serve as a key mediator of crosstalk with fibroblasts (Figure 5A, Supplemental Figure 

14B). To examine the relevance of this inference in human tissue, we first validated VEGF 

expression in human PDAC tissue by IHC in two patients from our rapid autopsy cohort 

and then set out to examine this relationship in PDO-CAF co-culture (Figure 5B). Cells 

were FACS sorted after 24 or 96 hours of co-culture and qPCR was performed to assess 

VEGF-A expression in the co-culture as compared to the monoculture. At both timepoints, 

VEGF-A expression increased in cells derived from the co-culture relative to those extracted 

from monoculture, consistent with the Domino inference (Figure 5C). To assess levels 

of secreted VEGF-A, we next used an ELISA assay to confirm an increase in secretion 

following co-culture, further implying enhanced signaling when both cell types are spatially 

permitted to interact (Figure 5D). VEGF is a key factor driving angiogenesis; therefore, we 

wanted to verify that the increase in VEGF-A secretion correlated with this core function. 

To test the effect of CAF and PDO-secreted factors on angiogenesis, we cultured human 

umbilical vein endothelial (HUVEC) cells in PDO conditioned media, CAF conditioned 

media, or co-culture conditioned media, to identify the presence and initiation of new 

vasculature. Compared to PDO conditioned media alone, segment length of the HUVEC 

cell network was greater when cultured with co-culture conditioned media, suggesting 

propagation of endothelial cells in co-culture conditioned media and enhanced angiogenesis 

(Figure 5E). Interestingly, segment length was also enhanced in CAF conditioned media 

alone. Evaluating nodes in our HUVEC assay, both co-culture conditioned media and CAF 

conditioned media increased the number of nodes in comparison to PDO conditioned media 

alone (Figure 5E). This supports the notion of increased angiogenesis signaling, likely 

mediated by VEGF-A, produced through epithelial and CAF crosstalk. While VEGF-A 

is most classically associated with angiogenesis, it has also been implicated in EMT and 

inflammation in nasopharyngeal cancers and inflammatory bowel disease, respectively, 
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reinforcing the complexity of VEGF-A signaling and the utility of both a computational 

and in vitro approach(41,42).

PDO-CAF co-culture validates neuropilin-1 (NRP1) as a dynamically expressed binding 
partner for VEGF-A

We next explored the relationship between VEGF-A and its known receptor binding 

partners to better understand the mechanism of VEGF signaling in co-culture. We first 

used flow cytometry to screen receptor expression in five patient co-cultures with matched 

monoculture, demonstrating no appreciable difference in the expression of VEGFR1 or 

VEGFR2 between co-culture and monoculture (Figure 5F-G). Even following recombinant 

VEGF treatment, receptor modulation was modest, leading us to consider other binding 

partners that may play a role in VEGF-A crosstalk between PDOs and CAFs (Supplemental 

Figure 15).

To identify other binding partners, we returned to the individual network diagrams generated 

from Domino. In both the iCAF and myCAF gene networks, neuropilin-1 (NRP1) was 

identified as a binding partner for VEGF-A (Figure 6A). NRP1 is an essential co-receptor 

for VEGF-A, most notably in endothelial cells, but is less often studied than VEGFR1 or 

VEGFR2(43). Evaluating the expression of NRP1 by qPCR, we found no significant change 

in NRP1 gene expression in co-culture when compared to monoculture (Supplemental 

Figure 16A). However, upon evaluation of surface expression by flow cytometry, we 

identified decreased expression of NRP1 on PDOs in three of four co-cultures examined 

compared to monoculture alone (Figure 6B-C, Supplemental Figure 16B). Additionally, 

three of the four PDOs were treated with recombinant VEGF in monoculture, driving a 

decrease in NRP1 protein expression in two of the three PDOs (Supplemental Figure 16C). 

Downregulation of NRP1 was not identified in CAF lines, suggesting this signaling pathway 

is more active in the epithelial compartment than the CAF compartment (Figure 6B-C). 

These data support the notion of an inverse relationship between NRP1 surface receptor 

availability and secreted VEGF-A that is driven by endocytosis and receptor recycling(44). 

We then confirmed with IHC in three patients with PDAC that NRP1 and VEGF-A are 

co-expressed, reinforcing NRP1 is a relevant VEGF-A binding partner in PDAC (Figure 

6D). Together, these data demonstrate a role for NRP1 in VEGF-A signaling in PDAC 

independent of changes in surface expression of VEGFR1/2.

Discussion

PDACs are composed of a complex TME that actively restricts therapeutic access and 

limits cancer cell killing. In addition, studies suggest that cancer cells alter normal stromal 

cell behavior, inducing fibroblasts to become CAFs that support PDAC development and 

progression(45). However, the molecular and phenotypic impacts of CAF and PDAC tumor 

cell interactions remain poorly characterized. In this study, we demonstrate that CAFs 

are associated with inflammatory signaling and EMT in cancer-associated epithelial cells. 

This pattern is enriched in epithelial cells from tumor samples, irrespective of whether 

the epithelial cells are directly in the tumor. This further supports the idea of co-opted 

epithelial cells surrounding the tumor that contribute to the complex TME. A study from 
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Bell et al(35) suggests that this Pattern 7 may also be enriched during tumorigenesis, with 

an inverse relationship between inflammation and EMT and proliferation as tumorigenesis 

progresses. This leads us to hypothesize in future studies that CAFs not only play a role in 

dictating epithelial cell behavior in PDAC, but they may play a similarly crucial role during 

tumorigenesis.

Transfer learning between the human atlas scRNA-seq data and PDO-CAF co-culture 

data allows more direct experimental association of CAFs as contributors to inflammatory 

and EMT related pathways than exclusively relying on correlations in the human atlas 

data. Whereas previous studies applying transfer learning to relate phenotypic states in 

human tumors to biological models have been applied for single cell types(28,46,47), 

this is the first study, to our knowledge, that extends transfer learning to relate cell-cell 

interactions between human tumors and an in vitro system. This analysis occurs at a 

transcriptome-wide level, providing a means for in silico validation of cellular phenotypes in 

culture. Still, understanding the specific molecular components requires gene-level analysis. 

Multiple MHC-II genes were included in Pattern 7, and MHC-II expression was induced 

following treatment with IFN-γ as well as in the presence of CAFs in our PDO-CAF 

co-culture. Classically expressed on the surface of professional antigen presenting cells, 

MHC-II is recognized by CD4+ T cells, which are increasingly appreciated for their 

role in clinical response to immune checkpoint inhibitors(48). Recent work demonstrates 

MHC-II expression in PDAC tissue using IHC in a cohort of 63 patients, and posit this 

expression could support neo-antigen-based immunotherapy by leveraging the MHC-II and 

CD4+ T cell interaction(37). Fully examining these phenomena requires expanding our 

computational and experimental approaches to also include immune cells of both myeloid 

and lymphoid lineage, which is an ongoing challenge in co-culture systems. These data 

further demonstrate the need for immune cell inclusion in future studies, particularly when 

asking questions related to the tumor immune microenvironment or mechanisms of response 

or resistance to immunotherapy.

Gaining an understanding of specific signaling mechanisms that drive epithelial-CAF 

interactions is important to furthering our understanding of PDAC biology and disrupting 

its progression. Evaluating signaling interactions between epithelial cells and CAFs using 

Domino identified crosstalk from CAFs to epithelial cells through ITGB1 and from 

epithelial cells to CAFs through VEGF-A. ITGB1 is part of a larger family of integrins, 

and high expression is associated with decreased survival in PDAC as well as EMT, 

inflammation, and angiogenesis(49). ITGB1 is important in epithelium-CAF crosstalk 

and is historically a contributor to disease progression and an enhanced mesenchymal 

phenotype(50). Integrins are crucial components of the tumor extracellular matrix, and our 

recent work suggests the cell crosstalk they mediate may also play a role in clinical response 

to immune checkpoint inhibitors(51).

The role of VEGF-A in epithelial-CAF crosstalk is of particular interest given the complex 

role of VEGF-A across malignancies. In addition to its association with angiogenesis, 

VEGF-A plays a broader role in tumor behavior and has established autocrine and 

paracrine signaling across diverse cell populations in the TME, contributing to cell 

phenotypes extending well beyond angiogenesis(52,53). We further identified dynamic 
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surface expression of NRP1 on the surface of PDOs in response to recombinant VEGF-A 

treatment or co-culture with CAFs that was independent of changes in surface expression 

of VEGFR1 or VEGFR2. NRP1 is an established binding partner for VEGF-A, but this 

interaction has not previously been evaluated in PDAC epithelial cells and CAFs(54,55). 

Moreover, the VEGF-A/NRP1 axis is increasingly appreciated for contributing to EMT in 

breast cancer and gastric cancer and is a potential target for therapeutic intervention(56,57). 

We hypothesize that NRP1 overexpression in PDAC is dynamic in response to enhanced 

VEGF-A presence, and that this interaction not only contributes to angiogenesis but also 

EMT. NRP1 is also a binding partner for TGFβ, and VEGF-A can promote inflammation 

through macrophage recruitment, suggesting this relationship may also contribute to 

inflammatory signaling in epithelial tumors (Figure 6E)(52,58). While VEGF inhibition has 

demonstrated limited efficacy in PDAC(59–61), we hypothesize that modulation of VEGF-A 

has the potential to reprogram other cell types in the TME when modulation of this pathway 

is combined with other TME modulating agents as is an area of active investigation across 

tumor types (53,62,63).

While our study robustly demonstrates that computationally inferred intercellular 

interactions in the TME are preserved between human scRNA-seq datasets and PDO co-

culture models, there are also shortcomings to this study. Our collated scRNA-seq atlas of 

PDAC tumors is restricted to treatment naïve biospecimens from 61 patients, with limited 

representation of some cell types and limited clinical annotations of the samples. This 

presents a challenge when trying to relate intercellular dynamics and signaling to patient 

outcomes for target discovery. Nonetheless, adapting our validated suite of computational 

tools to this atlas and the organoid co-culture provides novel insight into the role of 

cellular crosstalk. Domino is one method for prioritizing ligand-receptor interactions 

and was used in this study to highlight the strong association between VEGF-A and 

NRP1(64). While ligand-receptor network inference tools cannot be used to exhaustively 

infer mechanisms of cell-cell communication, they can still provide mechanistic insights 

into mechanisms of cell-cell communication. While additional computational tools will 

enable more direct inference of molecular changes from cellular interactions(65), the unique 

application of transfer learning between scRNA-seq data and organoid co-culture enables 

investigation of intercellular signaling using both computational discovery and experimental 

validation. Currently, this analysis relies on inferences resulting from a pipeline combining 

NMF-based pattern detection with CoGAPS(28), transfer learning with ProjectR(31), and 

additional ligand-receptor networks from Domino(10). While CoGAPS and ProjectR allow 

for unsupervised discovery and query of novel cell states, Domino is limited to investigation 

of pre-specified pairs of cell types and catalogued ligand-receptor interactions. Additional 

methods that enable discovery of multicellular interactions and their impacts on cellular 

phenotypes are needed to model the complex processes that underlie the PDAC TME. We 

also recognize that in this study we are not emphasizing the role of specific CAF (i.e. iCAF, 

myCAF) and epithelial (i.e. basal, classical) populations in inflammation and EMT; these 

populations should be deliberately interrogated in the future as we aim to better understand 

the complexities of these cell type interactions.

Considering the totality of these data, we propose that CAF presence enhances epithelial 

tumor cell inflammation and EMT with concurrent increase in MHC-II expression. Our 
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interrogation of direct interactions provides insight into the role of epithelial and CAF 

crosstalk in EMT and the immunosuppressive TME. Future work will further delineate these 

interactions while also examining the impact of the immune compartment in driving cell 

phenotypes and plasticity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Statement of Significance:

Adaptation of transfer learning to relate human scRNA-seq data to organoid-CAF co-

cultures facilitates discovery of human pancreatic cancer intercellular interactions and 

uncovers crosstalk between CAFs and tumor cells through VEGF-A and ITGB1.
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Figure 1. 
Summary of atlas composition. (A) Complete atlas with assigned cell types. (B) Heatmap of 

differentially expressed genes used for cell type annotations. (C) Relative contribution of the 

77 different samples with 140,250 cells, separated by tumor (below line) and control tissue 

(above line). (D) Mean number of cells per tissue by dataset origin. (E) Cell mapping by 

dataset origin from the six manuscripts in the complete atlas.
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Figure 2. 
Identification of Pattern 7 and cell type distribution in the atlas. (A) Complete atlas subset of 

the epithelial cell populations from the Peng et al(11) and Steele et al(10) data with assigned 

weights of Pattern 7 as resulting from CoGAPS analyses. (B) Boxplot of Pattern 7 weights 

within the Epithelial, benign cell population demonstrating differences between control and 

tumor pancreas tissues. p < 2.22 e-16, generated by Wilcoxon test. (C) Overrepresented 

MSigDB hallmark gene sets in cells expressing Pattern 7 genes. (D) Cell mapping by tumor 

vs. control pancreas tissue in the complete atlas. (E) Differences in cell type composition 

Guinn et al. Page 24

Cancer Res. Author manuscript; available in PMC 2024 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



for selected tumor vs. control pancreas tissues originating from Peng et al(11) and Steele et 

al(10).
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Figure 3. 
Patient-derived organoids co-cultured with CAFs recapitulate the Pattern 7 identified in 

tumor epithelial cells and demonstrate dynamic cellular phenotypes. (A) Representative 

brightfield image of co-culture. Representative IHC of co-culture demonstrating 

proliferation by Ki-67 after co-culture (top right), vimentin positive CAFs (bottom left), and 

EpCAM positive organoids (bottom right). Images obtained at 20x magnification; scale bars 

represent 250μm. (B) UMAP demonstrating culture conditions: organoid monoculture (Org), 

CAF monoculture (CAF), co-culture (CC). (C) UMAP demonstrating cell-type calls after 
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co-culture: Organoid monoculture (Org), CAF monoculture (CAF), CAFs from co-culture 

(CC CAF), organoids from co-culture (CC Org). (D) Pattern 7 was enhanced in organoid 

cells from co-culture relative to organoid cells from monoculture, p=1.3e-6 by Wilcoxon. 

(E) Co-culture demonstrates plasticity in epithelial representation in the co-culture condition 

with a greater percentage of cells representing both basal and classical markers (dual 

positive) present in co-culture. (F) Co-culture demonstrates plasticity in CAF representation 

in the co-culture condition with a greater percentage of cells representing both iCAF and 

myCAF markers (dual positive) present in co-culture. (G) Pattern 7 is enhanced in bulk 

RNA-seq after co-culture, p=0.0068 by paired T-test.
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Figure 4. 
Domino evaluation of intercellular interactions in the atlas with PDO-CAF co-culture. 

(A) Signaling network between epithelial and CAF subpopulations from tumor pancreas 

tissues in the Peng et al(10) dataset as derived from the Domino R package. Nodes of 

the subpopulations are sized according to the amounts of expressed targeting ligands. The 

thicknesses of the intercellular connections are scaled based on the strength of signaling 

with their color indicating the signals’ origin (directionality). (B) Heatmap plotting mean 

normalized expression of each ligand for each group, demonstrating ITGB1 as a ligand 
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originating in the CAF populations with the epithelial cells receiving this signal from the 

Peng et al(10) dataset. (C) ITGB1 expression in human PDAC tissue shown first as H&E 

stain at 5X magnification with focused section at 40X magnification from H&E and ITGB1 

IHC with hematoxylin nuclear stain. H&E and IHC completed on sequentially cut slides. 

(D) Schema demonstrating the workflow for co-culture setup and disassembly with flow sort 

prior to qPCR. (E) ITGB1 expression in monoculture and co-culture CAFs and epithelial 

cells after 24 or 96 hours of co-culture. Plotted are the Fold Change values comparing 

our PDO co-culture to monoculture using GAPDH as an endogenous control. Comparisons 

of monoculture and co-culture conditions are statistically supported using the two-tailed 

students t-test with equal variance in PRISM (V9.2.0 [283]). Significance is measured as: 

****, p<0.0001; ***, p<0.001; **, p<0.01; *, p<0.05; ns, not significant. Panel D created 

with BioRender.com
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Figure 5. 
Domino evaluation of intercellular interactions through VEGF-A with PDO-CAF co-culture 

validation. (A) Heatmap plotting mean normalized expression of each ligand for each 

group, demonstrating VEGF-A as a ligand originating in the epithelial populations with 

the CAFs receiving this signal from the Peng(10) dataset. (B) VEGF-A expression in human 

PDAC tissue shown first as H&E stain at 5X magnification with focused section at 40X 

magnification from H&E and VEGF-A IHC with hematoxylin nuclear stain. H&E and IHC 

completed on sequentially cut slides. (C) Differential expression by qPCR of VEGF-A in 

Guinn et al. Page 30

Cancer Res. Author manuscript; available in PMC 2024 November 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



monoculture and co-culture CAFs and epithelial cells after 24 or 96 hours of co-culture. 

Plotted are the Fold Change values comparing our PDO co-culture to monoculture using 

GAPDH as an endogenous control. (D) VEGF concentration on ELISA of monoculture 

and co-culture. N=7 PDO-CAF cultures from 7 distinct patients. (E) Angiogenesis assay 

in HUVEC cells cultured in organoid, CAF, or co-culture conditioned media (CM). Top: 

transillumination at 4X magnification after 8 hours in culture. Bottom Left: Quantification 

of segment length of HUVEC networks following culture for 8 hours with increased 

segment length after culture in CAF CM with trend towards increased segment length 

in co-culture CM. Bottom Right: Quantification of Nodes in angiogenesis assay after 8 

hours in culture. (F) Representative flow cytometry contour plots examining VEGFR1 and 

VEGFR2 surface expression in CAF (top) and PDO (bottom) monoculture or co-culture. 

(G) Quantification of CAF (top) VEGFR1 and VEGF2 percent positive, PDO (middle) 

percent positive VEGFR1 and VEGFR2 and PDO (bottom) Median Fluorescence Intensity 

expression in monoculture and co-culture across 5 patients. Colored circles on bar graphs 

correspond to distinct PDOs across experimental conditions. Comparisons of monoculture 

and co-culture conditions are statistically supported using the two-tailed students t-test with 

equal variance in PRISM (V9.2.0 [283]). Significance is measured as: ****, p<0.0001; ***, 

p<0.001; **, p<0.01; *, p<0.05; ns, not significant.
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Figure 6. 
NRP1 is an inferred binding partner for VEGF-A and overexpression has survival 

implications (A) Ligand-receptor interaction network between epithelial and CAF 

subpopulations from tumor pancreas tissues in the Peng et al(10) dataset as derived from 

the Domino R package. (B) Representative flow cytometry contour plots evaluation of NRP1 

expression in CAF (top) and PDO (bottom) from co-culture and monoculture. Associated 

quantification in bar graphs on the right. (C) Left: Quantification of NRP1 expression 

on CAFs in monoculture and in co-culture with PDO, Right: Quantification of NRP1 

expression on PDOs in monoculture and co-culture resulting in significant decrease of NRP1 
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after co-culture with CAFs (D) Representative H&E of human PDAC tumor at 5X and 

40X with IHC with hematoxylin nuclear stain on sequential slides examining VEGF-A and 

NRP1 expression (N=3 patients). Quantification of NRP1 and VEGFA expression from 11 

Regions of Interest (ROI) from JHH394 as determined by pathologist. Correlation statistics 

by simple linear regression. Comparisons of monoculture and co-culture conditions are 

statistically supported using the two-tailed students t-test with equal variance in PRISM 

(V9.2.0 [283]). Significance is measured as: ****, p<0.0001; ***, p<0.001; **, p<0.01; 

*, p<0.05; ns, not significant. (E) Proposed interaction of tumor epithelial cells and CAFs 

through VEGF-A and ITGB1 enriching epithelial cell inflammatory signaling and EMT. 

Panel E created with BioRender.com
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Table 1.

Clinical patient data extracted from the six harmonized published datasets integrated in the PDAC atlas.

Peng et al Steele et al Lin et al Elyada et al Moncada et al Bernard et al

Year of publication 2019 2020 2020 2019 2020 2019

Country of enrollment China USA South Korea, USA USA USA USA

PDAC pancreas tissue samples

Treatment-naïve, % 100% 100% 100% 100% 100% 100%

Patients, N 24 16 10 6 3 2

Sex, N

 Female 13 6 4 2 Unknown 0

 Male 11 10 6 4 Unknown 2

Age, years median (range) 59 (36–72) 66 (42–80) 66 (41–80) 73 (64–87) Unknown 61 (59–62)

Diabetes, N 10 6 Unknown Unknown Unknown Unknown

Staging, N

 Localized 24 12 10 5 Unknown 1

 Metastatic 0 4 0 1 Unknown 1

Grading, N

 Well differentiated 3 Unknown 0 0 Unknown 0

 Moderately differentiated 8 ≥6 6 3 Unknown 0

 Poorly differentiated 13 Unknown 2 3 Unknown 2

 Anaplastic 0 Unknown 2 0 Unknown 0

Tumor location, N

 Head or uncinate 15 Unknown Unknown Unknown Unknown 1

 Neck, body or tail 9 Unknown Unknown Unknown Unknown 1

Specimen, N

 Surgery (resected) 24 6 10 6 3 2

 Biopsy (FNA) 0 10 0 0 0 0

Survival Unknown Unknown Unknown Unknown Unknown Unknown

Non-malignant pancreas tissue samples

Patients, N 11 3 0 2 0 0

Sex, N

 Female 6 2 --- 1 --- ---

 Male 5 1 --- 1 --- ---

Histology, N

 Normal 10 1 --- 0 --- ---

 Normal-adjacent to adenocarcinoma 1 2 --- 2 --- ---

Specimen, N

 Surgery (resected) 11 3 --- 2 --- ---

 Biopsy (EUS-FNA) 0 0 --- 0 --- ---

PDAC, pancreatic ductal adenocarcinoma

EUS-FNA, endoscopic ultrasound guided-fine needle aspiration
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