Skip to main content
. 2023 Nov 28;113(5):2655–2674. doi: 10.1007/s10994-023-06481-z

Table 2.

Performance metrics for multi-class diagnosis prediction

Model G Sensitivity
Reinforcement learning (Q-imb) 0.834 (0.082) 0.748 (0.126)
Reinforcement learning (DDQN) 0.776 (0.096) 0.671 (0.153)
Reinforcement learning (DQN) Lin et al. (2020) 0.777 (0.107) 0.672 (0.172)
Neural network 0.806 (0.105) 0.715 (0.183)
Neural network + SMOTE 0.804 (0.109) 0.714 (0.193)
Neural network + Cost-Sensitive 0.801 (0.103) 0.712 (0.190)
XGBoost 0.819 (0.106) 0.733 (0.181)
XGBoost + SMOTE 0.819 (0.107) 0.733 (0.184)
XGBoost + Cost-sensitive 0.830 (0.092) 0.744 (0.142)

Results reported as mean sensitivities and G values across all classes, shown alongside standard deviation

Bold and italics values denote best and second best scores, respectively, for G-mean