
Article

Mutational biases favor complexity increases in
protein interaction networks after gene duplication
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Abstract

Biological systems can gain complexity over time. While some of
these transitions are likely driven by natural selection, the extent to
which they occur without providing an adaptive benefit is unknown.
At the molecular level, one example is heteromeric complexes
replacing homomeric ones following gene duplication. Here, we
build a biophysical model and simulate the evolution of homo-
dimers and heterodimers following gene duplication using dis-
tributions of mutational effects inferred from available protein
structures. We keep the specific activity of each dimer identical, so
their concentrations drift neutrally without new functions. We
show that for more than 60% of tested dimer structures, the
relative concentration of the heteromer increases over time due to
mutational biases that favor the heterodimer. However, allowing
mutational effects on synthesis rates and differences in the specific
activity of homo- and heterodimers can limit or reverse the
observed bias toward heterodimers. Our results show that the
accumulation of more complex protein quaternary structures is
likely under neutral evolution, and that natural selection would be
needed to reverse this tendency.
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Introduction

Gene duplication is a potent mechanism for the generation of novel
molecular and phenotypic traits (Conant and Wolfe, 2008; Kuzmin
et al, 2022). Duplication introduces an additional copy of a gene,
which may allow sister copies to accumulate mutations that would
not have been accessible before. The long-term maintenance of the
duplicates could depend on one or both evolving new functions

(Deng et al, 2010; Bridgham et al, 2008; Kaltenegger et al, 2013;
Prakashrao et al, 2022). Alternatively, the two copies could split the
functions of the ancestral protein (Force et al, 1999; Lynch and
Conery, 2000; He and Zhang, 2005; Baker et al, 2013). Under this
model, the two copies show partial degeneration of their ancestral
function and complement each other in accomplishing it. In this
context, cellular biochemical or genetic networks become more
complex (i.e., they have more parts and interactions) without net
functional or fitness gain.

One context in which this increase in complexity takes place is
the assembly of protein complexes. Following the duplication, two
paralogous genes encode the product of the ancestral gene. In the
case of the duplication of a gene encoding a homomeric protein
complex (self-interacting protein), the paralogous proteins might
assemble in a mixture of states (Pereira-Leal et al, 2007; Kaltenegger
and Ober, 2015): two homodimers and a heterodimer in the case of
dimers, with further combinatorial complexity depending on the
number of subunits in the ancestral homomer. In this work, we will
focus on homodimers because they are the most frequent type of
homomers in proteomes. Indeed, homodimers amount to almost
66% of homomers and no other multimeric assembly exceeds 15%
of homomers, with some variation depending on the species
(Lynch, 2012, 2013; Levy and Teichmann, 2013; Schweke et al,
2024). An important consideration is that heteromers directly
become the state with the highest concentration right after the
duplication, and the energetic barrier needed for selective
homomerization increases with the number of subunits (Hochberg
et al, 2018). For example, the duplication of an ancestral
homodimer would lead to 50% heterodimers and 25% of each
homodimer at binding equilibrium if all their parameters are the
same (synthesis rates, folding energies, binding affinities, etc.). As
such, heteromers are expected to assume a significant proportion of
the functional contributions directly after the duplication.

Given the prevalence of homomers and the significant role of
gene duplications in evolution, it follows that heteromers composed
of paralogous proteins constitute a substantial portion of the
complexes within protein interaction networks. Indeed, these
heteromeric interactions have been shown to be retained in more
than 30% of paralogs in several species and are especially prevalent
for duplicates with higher sequence identity (Marchant et al, 2019;
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Mallik and Tawfik, 2020). Interestingly, in some of these cases, the
heteromer becomes the only active complex (Wang et al, 2006;
Boncoeur et al, 2012) or diverges functionally (Bridgham et al,
2008; Baker et al, 2013; Paul and Hristova, 2019; Li et al, 2022). A
heteromer taking over the function of the ancestral homomer is an
example of degeneration with complementation, whereby a
function encoded by a single gene is now encoded by two genes.
A consequence of such transitions toward heterodimers is that
protein interaction networks do not benefit from the robustness
usually brought about by redundancy introduced by duplication
(Diss et al, 2017; Dandage and Landry, 2019). Therefore, a major
question these observations raise is how and why these transitions
do occur.

In particular, here we are interested in understanding whether
natural selection is required to drive the evolution from homo-
dimers to heterodimers, or whether neutral evolutionary processes
alone can account for this transition. Many arguments are in favor
of adaptive changes. For example, different homomeric and
heteromeric symmetries can facilitate specific properties such as
allostery and transport (Bergendahl and Marsh, 2017). There are
also compelling and potentially adaptive examples of retained
heteromers. For instance, Pillai et al, (2020) thoroughly described
the emergence of allosteric cooperativity in heterotetrameric
hemoglobin, which is limited in homotetramers of the beta (Kurtz
et al, 1981) or gamma subunits (Kidd et al, 2001). Other examples
include the BfER steroid receptor that negatively regulates its
paralog BfSR (Bridgham et al, 2008), the Mcm1 and Arg80
transcription factors whose homomers and heteromers bind
specific targets (Baker et al, 2013), and half-ABC transporters that
are only capable of transporting specific molecules out of the cell
when forming heterodimers (Boncoeur et al, 2012). In these three
examples, heteromerization between paralogs appears to currently
be an important element contributing to the new function or
feature. However, recent research has shown that protein interac-
tion interfaces that do not provide an adaptive benefit can become
entrenched as mutations accumulate (Finnigan et al, 2012;
Hochberg et al, 2020; Schulz et al, 2022). A notable example is
the fungal V-ATPase ring, which after a duplication shifted from a
5:1 stoichiometry to a 4:1:1 stoichiometry, resulting in increased
complexity without clear changes in function (Finnigan et al, 2012).
Thus, natural selection may not be necessary to explain why many
extant heteromers were retained.

The above examples suggest that a fraction of extant heteromers
of paralogs provide some adaptive benefit. At the same time, the
heteromer of paralogs could have been fixed in a non-adaptive
manner before the emergence of the new function. Indeed, different
models have been proposed to explain how complexity could arise
neutrally (Stoltzfus, 1999; Lynch, 2007; Muñoz-Gómez et al, 2021).
In these models, the increase in complexity does not provide a
fitness advantage or a disadvantage, but instead tends to become
prevalent due to drift and mutational biases. Mutational biases refer
to particular types of mutations (or their effects) occurring more
often than others, which influence the supply of available mutations
for drift and natural selection, and thus ultimately adaptation
(Svensson and Berger, 2019; Cano et al, 2022). For instance, in the
case of homomers and heteromers, there could be mutational biases
that favor the assembly of one type of complex over the other.
When everything else is equal, evolution tends to go in the
direction of mutational bias.

Deconvoluting the effects of mutational biases in neutral
evolution and natural selection requires theoretical null models.
Intuitively, if mutations naturally disrupt heteromers or favor
homomerization, heteromers would tend to disappear neutrally. On
the contrary, if mutations tend to favor the maintenance of the
heteromers, then natural selection against these mutations or other
mechanisms like compartmentalization and differential regulation
would be necessary to separate the proteins in space or time and
prevent the assembly of the heteromer (Kaltenegger et al, 2013;
Marchant et al, 2019). The effect of individual mutations is
expected to be amplified in homomers where they are repeated by
symmetry. By contrast, only a subset of the subunits in heteromers
would contain a mutation. Hence, since mutational effects on
binding are more often destabilizing than stabilizing, one could
expect homomers to be more easily disrupted. The inherent
difference in expected effects of mutations could be potentiated by
any mutational biases in terms of which types of mutations happen
more often. Overall, the interplay between the effects of mutations,
along with natural selection, should determine the fate of the
paralogs. As such, we hypothesize that, in a neutral scenario,
heteromers will slowly become more abundant while homomers
wither away due to the accumulation of slightly destabilizing
mutations.

Here, we use evolutionary simulations to examine the fate of
heterodimeric complexes in a context where selection does not
differentiate between homo- and heterodimers. Each step of the
simulations samples the biophysical effects of mutations to evaluate
how they would modify the concentrations at equilibrium of homo-
and heterodimers. Natural selection acts on the total amount of
protein complexes formed so all three molecular complexes are free
to explore a large space of possible binding equilibria neutrally
within the limit set by selection. We characterize the relative impact
of several parameter values that can modify the proportions of
homodimers (HM) and heterodimers (HET), including changes in
the synthesis rates and folding energies of individual subunits, as
well as the binding affinities and specific activities of their homo-
and heterodimers. Finally, we examine the relative advantages that
homo- and heterodimers would need to provide to become the
dominant type of complex after the duplication.

Results

The equilibrium between homomers and heteromers is
highly sensitive to mutational effects on binding energy

We built a model that uses several parameters of paralogous
proteins (synthesis rates, folding free energies, binding affinities,
and decay rates) to estimate the concentrations of monomers and
dimers at equilibrium (Fig. 1A). The folding free energies (ΔGfold)
of the proteins are used to determine the fraction of folded protein
copies (Sailer and Harms, 2017), which can later form homodimers
or heterodimers based on their binding affinity (ΔGbind). The
concentrations of the three dimers at binding equilibrium are our
trait of interest (i.e., [AA], [BB], and [AB]). We can estimate them
using the different parameters because at equilibrium the rates of
assembly and disassembly of dimers are identical, resulting in a
system of equations. The full derivations of the systems of
equations used to estimate concentrations at equilibrium before
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Figure 1. Changes to folding free energy and binding affinity modify the concentration of each dimer and the fitness of the system.

(A) Post-duplication system. Paralogous proteins are produced with synthesis rates sA and sB. Synthesis encompasses both transcription and translation, which are not
considered separately. The probability of correct folding is calculated based on the folding free energy (ΔGfold) (see “Methods”). Misfolded proteins are removed from the
system. Folded proteins can assemble into homo- or heterodimers based on binding free energies (ΔGbind,HM AA, ΔGbind,HET AB, ΔGbind,HM BB). (B) The concentrations of
each molecular species (monomers, homodimers, and heterodimers) are estimated at equilibrium. Total protein activity is calculated by multiplying the equilibrium
concentrations by their specific activity (0.1 for monomers, 1 for both homodimers and the heterodimer). Fitness is estimated based on the total protein activity using a
lognormal function given by parameters alpha and beta. With the parameters for synthesis rates and decay rates shown in (A), the estimated values of total activity for the
system before and after the duplication corresponded to 38.2 h−1 and 76.4 h−1. (C–F) Effect of variation in the ΔGfold for each monomer on the percentage of heterodimer
(HET AB) (C), percentage of one of the homodimers (HM BB) (D), the total activity (E), and fitness (F) of the system. Fitness is estimated using a lognormal distribution
with the optimum (alpha value) set to a total activity of 80 (see (B)). Arrows represent an example of a mutational trajectory. (G–J) Effect of variation in ΔGbind,HET AB and
ΔGbind,HM BB on the percentage of the heterodimer (HET AB) (G), percentage of one of the homodimers (HM BB) (H), and the total activity (I), and fitness (J) of the
system. (G–J) ΔGbind,HM AA was kept constant at −10 kcal /mol, indicated by the red dashed lines. Arrows represent an example of a mutational trajectory.
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and after the duplication are shown in Appendix Notes 1 and 2,
respectively. Later, in the evolutionary modeling, these parameters
are allowed to evolve through mutations.

To examine how changes in these parameters will determine
fitness, we defined a function that links fitness to the concentration
of the total amount of protein complex formed (Fig. 1B). Since we
are interested in examining how neutral forces contribute to the
transition from homomers to heteromers without the need for new
functions, selection only acts on the total amount of complex
formed (which satisfies the function) and does not distinguish
between homo- and heterodimers. These assumptions will be
relaxed later, as we include more parameters that could change the
contribution of one type of dimer over the other to function.

We characterized the sensitivity of the post-duplication
equilibrium concentrations of homo- and heterodimers to changes
in the various parameter values. While preserving identical
parameter values for both genes after the duplication, the relative
concentrations of the three complexes will be 1AA:2AB:1BB. We
then examined the post-duplication equilibrium concentration of
the three complexes by testing different values for some of the
parameters (Fig. 1C–J). Arrows in Fig. 1C–J represent examples of a
mutational trajectory to illustrate how changes in the ΔGfold or
ΔGbind parameters affect the concentrations of complexes at
equilibrium, the total activity, and the fitness. We first studied
the effects of different combinations of folding free energy values
(Fig. 1C–F) around the typical value of −5 kcal/mol (Pace, 1975;
Plaxco et al, 2000). As expected, destabilizing the fold of only one of
the paralogs led to a decrease in the number of available copies of
that protein. As a result, the concentrations of its corresponding
homodimer and the heterodimer decreased as well, with an increase
in the concentration of the other homodimer (Fig. 1C,D). We note
that the percentage of heterodimers never exceeded 50% when only
folding energies changed, and that it was quickly reduced when
either subunit was significantly destabilized. Indeed, destabilizing
either or both of the protein subunits (ΔGfold >0) led to a reduction
in the total concentration of dimers, and thus in their total activity
(Fig. 1E) and fitness (Fig. 1F). Overall, the effect of folding free
energy on the balance between homo- and heterodimers was
moderate as long as ΔGfold < 0 for both subunits.

We then studied the effects of changes to binding affinity in
their typical range of values, centered around −10 kcal/mol (Choi
et al, 2015; Jankauskaitė et al, 2018). Figures 1G–J show how
changes in the binding affinities of the heterodimer (ΔGbind,HET AB)
and one of the homodimers (ΔGbind,HM BB) impact the overall
system. Throughout this analysis, the binding affinity of the second
homodimer (ΔGbind,HM AA) is kept constant at −10 kcal/mol to
allow representing the data in two dimensions. As expected, the
heterodimer was enriched if it became the complex with the
strongest binding affinity and depleted if it had the weakest binding
affinity (Fig. 1G,H; Appendix Fig. S1A–D). Interestingly, there
are regions in the solution space in which most of the
available subunits assembled into homodimers although one of
the homodimers had a slightly weaker binding affinity than the
heterodimer (Appendix Fig. S1E). In this case, equilibrium favors
the strongest homodimer. As a result, heterodimers are depleted in
the system and the second protein forms its respective homodimer.
On the contrary, heterodimers were enriched when their binding
affinity was slightly weaker than that of one of the homodimers but

much stronger than that of the second homodimer (Appendix Fig.
S1F). Here, any exchange of subunits between the heterodimer and
the stronger homodimer would release subunits of the weaker
homodimer, leading to an imbalance of concentrations of free
subunits. Thus, equilibrium would favor strong heterodimers over a
mixture of strong and weak homodimers. Importantly, in the range
of values tested and assuming the specific activities of homo- and
heterodimers are identical, the total activity and fitness of the
system remain unchanged despite shifts in the concentration of
each dimer (Fig. 1I,J). The effects of an extended range of values of
binding energy are shown in Appendix Fig. S2. When one of the
homodimers is completely destabilized, the system is dominated by
the equilibrium between the second homodimer and the hetero-
dimer (Appendix Fig. S2A,B). In this case, if the heterodimer is also
destabilized, the remaining homodimer can approach 100% of the
dimers. Such destabilization would lead to a return of the pre-
duplication state of only one homodimer, with a corresponding loss
in total activity (Appendix Fig. S2C) and fitness (Appendix Fig.
S2D) of the system. Overall, the post-duplication equilibrium is
highly sensitive to changes in binding affinity when all other
parameters remain constant: there is a narrow region where the
concentrations of homo- and heterodimers stay close to the original
1AA:2AB:1BB ratios, but small changes can lead to drastic changes
in the concentration of each dimer.

The solution space of the system of equations shows that directly
after duplication, the equilibrium concentrations of each dimer are
particularly sensitive to mutational effects on binding affinity.
Differences between the binding affinity of homo- and hetero-
dimers in the range of 0.5–1.0 kcal/mol are sufficient to drastically
alter the representation of the heteromer in the system (Fig. 1G).
This is supported by empirical observations. Studies show that
homomeric specificity can be achieved with just 1–3 substitutions
(Ashenberg et al, 2011; Garcia-Seisdedos et al, 2017; Stutz and
Blein, 2020; Emlaw et al, 2021) and marginal differences in binding
affinity (Hochberg et al, 2018). On the other hand, there are regions
of the solution space that are much less sensitive to these
mutational effects, for example, when the difference in ΔGbind

between the homodimers and the heterodimer is already very large.
These results are in agreement with previous models on the
energetic cost of homomerization derived using a different
approach (Hochberg et al, 2018). An important consideration is
that these changes in binding affinity alter the representation of
each dimer in the system, but do not modify the total concentration
of complexes, as seen in Fig. 1I. Thus, there would be many ways
for the cell to provide the same total concentration of complexes, all
of which could have the same fitness if every dimer has the same
specific activity (Fig. 1J). While the landscapes presented on Fig. 1
help visualize the effect of changes to one parameter at a time, the
fate of modern paralogs (Marchant et al, 2019; Mallik and Tawfik,
2020) is a product of the co-evolution and correlation of many
parameters (synthesis, folding, binding, activity, etc.). Simulating
evolution of these landscapes therefore needs to be based on the
actual distributions of effects, which can vary from one protein to
another. Importantly, these observations show that the system
could theoretically deviate strongly from the starting relative
concentrations while keeping the same overall performance and
this, in a directional manner, if mutations have biased effects in one
direction or the other.
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Evolutionary simulations show a general bias toward
heterodimers replacing the ancestral homodimer

We used the above model to simulate the evolution of the post-
duplication equilibrium between homo- and heterodimers as
mutations accumulate (Fig. 2A). Mutations lead to changes in the
protein sequence, which can affect the binding energy and the
folding free energy of proteins. To derive the distributions of
mutational effects, we sampled a set of 104 homodimers with
crystal structures from the Protein Data Bank (Berman et al, 2000)
and simulated the effects of all possible single amino acid
substitutions on folding free energy and binding affinity with
FoldX (Delgado et al, 2019) (see “Methods”). Briefly, entries from
the PDB were chosen if their structures were solved by X-ray

crystallography, annotated as homomers, having identical subunits,
and with sequence lengths between 60 and 450 residues. From the
resulting set of structures, we selected entries from the major
ECOD architecture types (Cheng et al, 2014) to include at least
seven for each of them. Similarly, we clustered these proteins at
40% sequence identity with CD-Hit (Li and Godzik, 2006; Fu et al,
2012), and selected one representative protein from each cluster.

We used our model and the dataset of structures to simulate the
post-duplication evolution of pairs of paralogs. We considered two
different regimes for our simulations: parametric, in which we sampled
mutational effects from multivariate normal distributions with
different parameters based on the pooled structural data; and single
structure, in which mutational effects are sampled directly from the
distribution of effects of the corresponding structure. Since mutations

Figure 2. Biases in the distribution of effects on mutations on binding affinity can drive enrichments of homomers or heteromers.

(A) Overview of the simulation workflow. Homodimers from the PDB were used to infer distributions of mutational effects for two regimes of simulations: those with
distributions based on the pooled data (parametric) and those using data for a single structure. Mutations are sampled from these distributions, after which the
concentrations of dimers and monomers at equilibrium are recalculated. Selection is applied based on the total activity in the system. Simulations continued until 200
mutations were fixed. The structure for 1A72, used as the cartoon for the single structure simulations, was visualized with ChimeraX (Pettersen et al, 2021). (B) Percentage
of heteromers at the end of the simulations with each set of parameters for the homodimers (average of 50 replicates, 200 mutations fixed for each). The white circle
indicates the condition in which ΔΔGbind,HET and ΔΔGbind,HM are equally distributed (N (0.2, 1.2)). The white triangle indicates the condition in which the distribution for
ΔΔGbind,HM uses the same parameters calculated when considering all the sampled structures (N(0.4, 2.4)). (C) Average percentages of heterodimers, homodimers, and
monomers for each of the PDB structures at the end of the simulations. The dashed line indicates the starting point at 50% heterodimers and 50% homodimers (25% of
each homodimer).
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can affect both binding affinity and folding free energy, we derive
multivariate normal distributions for the effects of mutations based on
the pooled data. These distributions have the following parameters, all
in kcal/mol: for ΔΔGbind, HET, mean = 0.2, standard deviation = 1.2
(denoted as N(0.2, 1.2)); for ΔΔGbind, HM, N(0.4, 2.4); and for ΔΔGfold,
N(2.6, 4.6). These FoldX-derived data also revealed the extent of
correlations between mutational effects on folding energy and binding
affinity: r = 0.9 between ΔΔGbind, HET and ΔΔGbind, HM (Fig. EV1A),
r = 0.3 between ΔΔGbind, HM and ΔΔGfold (Fig. EV1B), and r = 0.3
between ΔΔGbind, HET and ΔΔGfold (Fig. EV1C). As such, we imposed
these correlations in our parametric simulations. We annotated figure
panels for results for parametric simulations with a computer cartoon
and results for single structure simulations with a protein dimer
cartoon throughout the rest of the text.

Each step of the simulation represents a mutational event.
Importantly, the underlying distribution from which the effects of
mutations are sampled is kept constant. As discussed later, we
apply this simplifying assumption to keep the simulations scalable
because, while the effects of new individual mutations are
contingent on previous ones, it is unclear whether the shape of
the global distribution changes. Once a mutational effect is
sampled, we update all relevant binding affinities and folding
energies and recalculate the concentrations at equilibrium for
monomers and dimers. Next, we use the equilibrium concentra-
tions to obtain the total activity of the system. Fitness is then
estimated using a lognormal function given by two parameters:
alpha (the value of total activity that maximizes fitness) and beta
(the fitness corresponding to activity values of half and twice the
value of alpha). We tested our simulations with two different values
for alpha to consider two different scenarios: one in which the total
activity after the duplication (76.4 h−1) is very close to the optimal
value (alpha = 80 h−1), and one in which it overshoots the optimal
value (alpha = 60 h−1). Beta was set to 0.5 for all simulations.
Finally, fitness is used to calculate the probability of fixation for that
mutational effect. Once a mutational effect fixes or is rejected, the
simulation continues with the next sampling step. Each simulation
was run with 50 replicates and allowed to continue until 200
mutations were fixed. Some of the tested proteins are shorter than
200 residues (mean = 240, interquartile range = [157.8, 332],
minimum length of 66). Although this implies that 200 mutations
could be enough to mutate every position in the sequence, the
sequences of paralogs maintained about 50% identity with the WT
sequence and more than 30% sequence identity with one another
by the end of the simulations. These measures are consistent with
real-world scenarios where more than half of Saccharomyces
cerevisiae and Escherichia coli paralogous pairs exhibit ≥30%
identity (Mallik and Tawfik, 2020) and suggest our model captures
structural constraints in the relative mutability of different
positions. Since the results for the two scenarios (alpha = 60 h−1,
alpha = 80 h−1) generally agreed, the results with alpha = 80 h−1 are
shown in the main text and those with alpha = 60 h−1 are shown in
the expanded view.

We tested how changes in the parameters of the distribution of
mutational effects of the homodimer affected the simulation
outcome (Fig. 2B; Appendix Fig. S3). We allowed the parameters
for the distribution of effects on ΔΔGbind, HM to change while the
distribution for ΔΔGbind, HET was given by N(0.2, 1.2) and the
distribution for ΔΔGfold was given by N(2.6, 4.6). As expected,
homodimers dominate when the average mutation is more

destabilizing for the heterodimer than for the homodimer.
Homodimers also dominate when the variance in mutational
effects on ΔΔGbind, HM is high, since this allows for extreme
stabilizing effects on the homodimer. High variance also allows
extreme destabilizing effects to be sampled often but they would be
likely eliminated by selection because they also affect the total
concentration of the complexes. Interestingly, simulations with
parameters along the diagonal of Fig. 2B tend to maintain both
homo- and heterodimers, with two conditions of particular interest
indicated with a circle and a triangle. The circle indicates the
simulation in which mutational effects are the same for homo- and
heterodimers, while the triangle represents the simulation in which
mutational effects on the homodimer are double of those on the
heterodimer as in our data derived with FoldX. The preservation of
the mixture of homo- and heterodimers in these two conditions
suggests that the mere doubling of mutational effects on the
homodimer does not lead to an increase in the concentration of
heterodimers, as long as effects are sampled from correlated normal
distributions. Thus, our parametric simulations show that when
none of the dimers offers an advantage over the others, biases in the
distribution of available mutational effects alone can determine
which dimer dominates at the end of the simulation.

We next set out to test our simulation system with the direct
distributions of mutational effects for each of the PDB structures
sampled. Simulations were run with the estimated distributions of
mutational effects for 104 structures of homodimeric proteins.
Replicates of the same simulation followed different trajectories due
to the inherent stochasticity of the process. Nevertheless, we
observed that different protein structures were associated with
different average outcomes, implying that structural features can
encode a homodimer- or heterodimer-dominant fate after duplica-
tion (Fig. 2C; Appendix Fig. S4). Strikingly, for most of the protein
structures tested, the average concentration of heterodimers at the
end of the simulations was higher than the starting 50%. Indeed, for
66 structures (63.4%) the final concentration of heterodimers was
higher than 70%, as opposed to only 1 structure (1%) for which the
final concentration of homodimers was higher than 70%. For the
remaining 37 structures (35.5%), the final concentrations stayed
closer to the initial equilibrium, with neither heterodimers nor
homodimers enriched beyond 70%. The enrichment of heteromers
tended to occur relatively early in the simulations, with some
structures showing high heterodimer concentrations after fewer
than 100 mutations had been fixed (Appendix Fig. S4). This is
consistent with our previous finding that heteromerization also
dominates in recently duplicated yeast paralogous pairs that have
retained high sequence identity (Marchant et al, 2019; Mallik and
Tawfik, 2020). These observations suggest there exists a neutral bias
toward the replacement of ancestral homodimers by heterodimers,
although independent identical events might reach different
outcomes.

In our previous simulations, the optimum value for total activity
(alpha = 80 h−1) was slightly higher than the total activity directly
after the duplication. The results of simulations where the
duplication overshoots the optimum (alpha = 60 h−1) correlated
well (r = 0.85), although simulations with alpha = 60 h−1 consis-
tently yielded slightly lower percentages of heterodimers
(Fig. EV2A,B). Considering that the post-duplication total activity
is 76.4 h−1, simulations with alpha = 60 h−1 required a reduction of
total activity to approach the optimum fitness. Indeed, at least one
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of the subunits was quickly destabilized in these simulations
(Fig. EV2C), which did not happen in the simulations with
alpha = 80 h−1 (Fig. EV2D). The quick destabilization observed in
the simulations with alpha = 60 h−1 occurred at the same time as an
initial decrease in the concentration of heterodimers since the
available concentrations of free subunits would be different
(Fig. EV2E). As the simulations advanced, the concentrations of
heterodimers increased, both when alpha = 60 h−1 and when
alpha = 80 h−1 (Fig. EV2E,F). Thus, our simulations show the
inherent bias toward the increase in the concentration of
heterodimers is robust to the position of the fitness optimum.

These results motivated us to identify structural properties that
may influence the outcome of the simulations. First, we focused on
the interfaces of our set of PDB structures. We looked at the relative
size of the interface core (Appendix Fig. S5A), the overall stickiness
of the interface (Appendix Fig. S5B), the proportion of interface
core residues that are involved in homotypic contacts (Appendix
Fig. S5C), and the overall secondary structure of the interface
(Appendix Fig. S5D). However, none of these interface parameters
showed a clear association with the outcome of the simulations. We
extended our secondary structure analysis to the ECOD architec-
tures (Cheng et al, 2014) of our protein set (Appendix Fig. S5E;
Dataset EV1). Outcomes of simulations with structures with similar
ECOD architectures were highly variable, suggesting that the
general structural parameters we tested are not sufficient to make
an association with the bias toward heterodimers. Similarly, we
observed that modifying the starting parameters of subunit folding
free energy and binding affinity tended to have little effect on the
most frequent outcome of simulations with a given structure
(Appendix Fig. S6). These results suggest that the outcome of the
simulations depends on properties of the distribution of mutational
effects that are not directly derived from these structural features.

Weak but constant mutational biases influence the
outcome of evolution

We reasoned that, although the distributions for all proteins in our
set are very similar, they might differ with respect to the availability
of outliers or pervasive biases with small magnitude in terms of
folding or binding energies, which would then drive evolution in
one particular direction. Considering that changes in ΔGfold never
lead to an increase in the concentration of heterodimers (Fig. 1C),
we focused our analysis on the effects on ΔGbind. For simplicity, we
first compared the distributions of available and fixed mutational
effects on ΔGbind,HET and ΔGbind,HM for the structures with the two
most extreme outcomes (2B18 as heterodimer-dominant and 3ULH
as homodimer-dominant) (Fig. 3A,B). As noted above, mutational
effects on ΔGbind,HET and ΔGbind,HM are highly correlated for both
structures, and fixed mutations were not restricted to any single
part of the distribution. Thus, we hypothesized that proteins that
are enriched for heterodimers in the simulations might have access
to more mutations with slight deviations from the expected
diagonal that favor the heterodimer, which would gradually
accumulate as the simulation progresses. For example, a mutation
that is below the diagonal in Fig. 3A,B would destabilize the
heterodimer less (or stabilize it more) than expected based on the
effect on the homodimer, whereas mutations above the diagonal
would favor the homodimer. We calculated these deviations from

the diagonal as follows:

residual ¼ ΔΔGbind;HETAB � 0:5 � ΔΔGbind;HMAA

The cumulative distributions of residuals of available and fixed
mutations show minor differences overall (Fig. 3C,D). While
comparing 2B18 (the most heterodimer-dominant structure) to
3ULH (the most homodimer-dominant structure) reveals that
3ULH has a slightly higher density of mutations with positive
(homodimer-favoring) residuals, the effect is not as clear for the
rest of the structures. To have a finer resolution, we defined an
enrichment of heterodimer-favoring residuals as the percentage of
residuals with magnitudes below −0.2 kcal/mol (heterodimer-
favoring) minus the percentage of residuals with magnitudes above
0.2 kcal/mol (homodimer-favoring). Structures with a higher
enrichment of heterodimer-favoring mutations are the ones with
the highest concentrations of heterodimers at the end of the
simulations (Fig. 3E,F). We note that the available enrichment of
heterodimer-favoring mutations is amplified in the mutations that
fix throughout the simulations.The results of repeating this
analysis with other thresholds for the residuals are shown in
Table EV1 (0.39 < r < 0.54 for available mutations, 0.67 < r < 0.83
for fixed mutations). Indeed, the cumulative sum of residuals fixed
up to a particular point in the simulations explains very well the
observed percentage of heteromers (Appendix Fig. S7). We
repeated the previous analyses with only the structures evaluated
as very high quality in the QSBio database (37 out of
104 structures) (Dey et al, 2018). Simulations with these structures
also led to an enrichment of heterodimers due to mutational biases
(Fig. EV3), although the increase in heterodimer concentration
was less drastic than in the full dataset. As a result, small but
consistent mutational biases appear to be responsible for the
increase in the concentration of the heterodimer, even without
selection explicitly favoring it.

Differences in synthesis rate and specific activity can
reverse the bias toward heterodimers

Our results so far show that the concentration of heterodimers
relative to the homodimers after duplication is expected to increase
even in the absence of selection favoring this complex over the
homodimers. However, in nature, a large fraction of duplicated
homodimeric proteins do not maintain their heterodimers. Other
forces could thus counterbalance this inherent mutational trend.
These include differences in compartmentalization, expression
profiles, and specific activities. Paralogs that are separated into
different compartments, such as yeast thioredoxin reductases TRR1
(cytosolic) and TRR2 (mitochondrial), do not interact in vivo
despite still being capable of doing so in vitro (Oughtred et al, 2021;
Mallik et al, 2022). For differentially expressed paralogs, such as E.
coli LYSS (constitutive) and LYSU (heat-induced) (Brevet et al,
1995), equilibrium shifts toward the homodimer of the more highly
abundant protein. Differences in the specific activity of homomers
and heteromers would help selection distinguish between the two of
them to maintain a particular total activity in the system.

We therefore examined the impact of differential synthesis rates and
specific activities on the outcome of evolution. We do not model the
case where one of the dimers could evolve a novel function, because it
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Figure 3. Slight deviations from the diagonal (residuals) are associated with the outcome of the simulations.

(A, B) Distributions of available (A) and fixed (B) mutational effects on ΔGbind,HET and ΔGbind,HM for the two proteins with the most extreme outcomes in Fig. 2C: 2B18
(heterodimer-dominant) and 3ULH (homodimer-dominant). The diagonal (ΔΔGbind,HET= 0.5 * ΔΔGbind,HM) is shown to illustrate the expectation of mutations on the
heterodimer having half of the effect of mutations on the homodimer. (C, D) Distributions of available (C) and fixed (D) residuals with respect to the expectation for each
of the 104 structures. Colors indicate mean outcomes for each structure: HET dominant (heterodimer >70% of dimers), HM dominant (homodimer >70% of dimers), both
HM and HET (rest of cases). The thicker blue and orange lines represent 2B18 and 3ULH, respectively. Shaded regions on the left and right indicate mutations whose
residuals have a magnitude of at least 0.2 kcal/mol favoring either the heterodimer (negative values) or the homodimer (positive values). (E, F) Correlation between
enrichment of available (E) and fixed (F) mutations with residuals favoring the heterodimer and the mean percentage of heterodimers at the end of the simulations. The
enrichment of heterodimer-favoring residuals is calculated as the density of mutations with residuals smaller than −0.2 kcal/mol minus the density of mutations with
residuals greater than 0.2 kcal/mol. P values for (E, F) are calculated using the asymptotic t approximation method for Spearman correlation coefficients.
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would require multiple additional considerations. For example, the
system would need to describe and deconvolute mutational effects on
each of the two functions. Also, the two functions could have different
weights in the fitness calculations. Additionally, those considerations
should be specific to each protein, unlike folding and binding which are
common physical properties of all the dimers we consider.

We first used our equations to characterize the effect of changes
in relative synthesis rates between paralogs. We observed that the
concentration of the heterodimer is maximized when synthesis
rates were identical (Fig. 4A). Conversely, the concentration of
either homodimer was maximized as the synthesis rate of its
subunits increased beyond that of its paralog (Fig. 4B). The total
activity of the system increased with the synthesis rate of one of the
paralogs (Fig. 4C), which initially led to higher fitness as total
activity approached the optimum of our fitness function
(alpha = 80 h−1). However, fitness decreased as total activity went
beyond the optimum (Fig. 4D). Since many paralogous proteins are
differentially expressed (Gout et al, 2010; Gout and Lynch, 2015;
Aubé et al, 2023), expression divergence could counteract
mutational biases that favor heterodimers. However, the extent of
this effect would depend on the relative frequencies of mutational
effects on synthesis rates versus the coding sequence, as well as the
fitness effects of changes in the total activity of the system due to
the total amount of protein copies produced.

Mutations can affect synthesis rates in multiple ways. For
example, they could affect binding of transcription factors to a
promoter or translation rates (Hausser et al, 2019; Verma et al,
2019; Kemble et al, 2020; Roos and de Boer, 2021; Aubé et al, 2023).
Here, we did not distinguish between each of these individual
mechanisms but considered synthesis as encompassing all possible
effects. We considered the distribution of the effects of mutations
on gene expression observed by Metzger et al, (2016) for the TDH3
promoter. We added a new parameter representing the probability
of mutations affecting synthesis rates (pexp) in the simulations. In
these cases, we sampled the effect of mutations on synthesis rates
from a separate skew-normal distribution (mean = 0, variance =
0.025, skew =−0.125) following the Metzger et al, (2016) data.
These effects were considered to be multiplicative, i.e., the current
synthesis rate at the corresponding step in the simulations would be
multiplied by the value sampled from the distribution of mutational
effects on synthesis rates.

Since promoter sequences can have widely variable rates of
evolution (Young et al, 2015, 2022), we proceeded to repeat our
simulations with different probabilities of mutational effects
affecting synthesis rates. In these parametric simulations, we
observed that higher probabilities of mutations affecting synthesis
rates generally led to less extreme outcomes in terms of homodimer
or heterodimer dominance (Fig. 4E; Appendix Fig. S8), even when
mutational effects on binding affinity were skewed against either of
them. At higher probabilities of mutations affecting the synthesis
rate, the concentration of the heterodimer remained in the range
between 40 and 60% of the complexes. Similarly, the bias toward
heterodimers observed for the simulations with individual PDB
structures became considerably weaker as the probability of
mutations affecting synthesis rates increased (Fig. 4F). We note
that the synthesis rates of the two paralogs did not diverge
considerably in the simulations (in the most extreme case, with
mutations having pexp = 0.9, median divergence in synthesis rates
for the same replicate = 26.1 h−1, interquartile range = [12.07 h−1,

44.6 h−1]) (Appendix Fig. S9). Such differences in protein
abundance represent a log2 fold change of 0.35, which is within
the range observed for paralogous proteins (Aubé et al, 2023). We
repeated these simulations setting the optimal activity value (alpha)
to 60 h−1 so that the duplication would overshoot the optimum and
obtained similar results, albeit with slightly lower concentrations of
heterodimers (Fig. EV4).

Overall, allowing changes in synthesis rates tended to preserve
both homo- and heterodimers. This effect can be understood as two
components. First, divergence in synthesis rates would naturally
shift equilibrium away from the heterodimer and toward the
homodimer of the more abundant protein (Fig. 4A,B). Since fitness
was sensitive to synthesis rates (Fig. 4D), it was likely that an
increase in the synthesis rate of one protein would be followed by a
decrease in the synthesis rate of its paralog, even if these differences
in synthesis rates were moderate (Appendix Fig. S9). Second,
because mutations in our simulations either affect synthesis rates or
the protein sequence, accelerating the evolution of synthesis rates
implied decelerating the evolution of the coding sequence and
limiting the accumulation of mutational biases that led to the
enrichment of the heterodimer. Our result that allowing changes in
synthesis rates limits the bias toward heterodimers can help explain
why extant paralog pairs often keep both homomers and
heteromers (Marchant et al, 2019; Mallik and Tawfik, 2020),
considering that the abundances of paralogs often diverge (Gout
et al, 2010; Gout and Lynch, 2015; Aubé et al, 2023).

We then characterized the effect of changes in the specific
activity of the homodimers or the heterodimers. In real biological
systems, the expectation would be that these specific activities start
out as being identical and then slowly diverge as mutations
accumulate. However, since the relationship between sequence and
function is complex and specific to each protein, we decided to use
the simplifying assumption that specific activities would differ
directly from the beginning. In these simulations, the more active
dimer always has a specific activity of 1, whereas the less active
dimer has a specific activity between 0.2 and 0.9. We define a HET
activity bias as the difference in specific activities. For example, a
−10% HET activity bias indicates the heterodimer is less active
than the homodimers (specific activities of 0.9 for heterodimers and
1 for homodimers), whereas a 10% HET activity bias indicates the
heterodimer is more active (specific activities of 1 for heterodimers
and 0.9 for homodimers). As expected, changes in the specific
activity did not affect the assembly of complexes (Fig. 5A,B), since
it is determined by binding affinities and the concentrations of
properly folded subunits. However, they did have an impact on the
total activity of the system (Fig. 5C) and fitness (Fig. 5D). Total
activity was maximized when the most active dimer was the most
abundant one (top left and bottom right corners of Fig. 5C). Since
the specific activity of homodimers or heterodimers never exceeded
1 with our definition of HET activity bias, fitness was maximized in
the same regions where activity was maximized (Fig. 5D), although
the landscape would be different if we allowed values higher than 1.
Thus, the solution space of the system of equations shows that
allowing differences in specific activity can promote selection for
either homodimers or heterodimers.

We then tested the effect of allowing different specific activities
for homo- and heterodimers in our simulations of evolution. Our
parametric simulations show that differences in specific activity can
overturn the bias toward heterodimers when the optimum is set to
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Figure 4. Allowing changes in synthesis rates can limit the bias toward heterodimers.

(A–D) Percentage of heterodimers (A), one of the homodimers (B), total activity (C), and fitness (D) as a function of the ratio of synthesis rates and differences between
ΔΔGbind,AB and ΔΔGbind,AA. (A–D) sA, ΔΔGbind,AA, and ΔΔGbind,BB remain constant throughout. Changes in the y-axis indicate changes in ΔΔGbind,AB, with all three values
(ΔΔGbind,AA, ΔΔGbind,AB, ΔΔGbind,BB) being identical at zero. (E) Percentages of heterodimers at the end of parametric simulations allowing changes in synthesis rates and
varying mean effects of mutations on homodimers. (F) Percentages of heterodimers and each of the two homodimers for each of the 104 tested structures when
simulations include different probabilities of mutations affecting synthesis rates. The two homodimers were distinguished based on their abundance, such that high HM
refers to the one with the higher concentration and low HM to the one with a lower concentration.
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Figure 5. Differences in specific activities of homodimers and heterodimers can revert the observed bias towards heterodimers.

(A–D) Percentage of heterodimers (A), one of the homodimers (B), total activity (C), and fitness (D) as a function of differences in specific activity and differences
between between ΔΔGbind,HET AB and ΔΔGbind,HM AA. (A–D) ΔΔGbind,HM AA and ΔΔGbind,HM BB remain constant throughout. Changes in the y axis indicate changes in
ΔΔGbind,AB, with all three values (ΔΔGbind,HM AA, ΔΔGbind,HET AB, ΔΔGbind,HM BB) being identical at zero. (E) Parametric simulations using differences in the specific
activities of homo- and heterodimers and varying mean effects of mutations on homomers. HET activity bias indicates a percentage decrease (negative values) or increase
(positive values) of the heterodimer activity with respect to the homodimer activity. (F) Percentages of heterodimers and each of the two homodimers for each of the 104
tested structures when simulations consider differences in specific activity between homo- and heterodimers. The two homodimers were distinguished based on their
abundance, such that high HM referred to the one with the higher concentration and low HM to the one with a lower concentration.
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80 h−1 (Fig. 5E; Appendix Fig. S10). We observed a similar pattern
in our simulations with structures (Fig. 5F). Large differences in
specific activity lead to 100% homodimers or 100% heterodimers,
depending on the complex with higher specific activity. However,
when these differences became very small, the system seemed
slightly less efficient at eliminating the heterodimers. When the
heterodimer was 10% less active than the homodimer, many
structures still maintained a small fraction of heterodimers,
whereas homodimers were essentially eliminated when the hetero-
dimer was 10% more active. Interestingly, moving the optimal total
activity from 80 h−1 to 60 h−1 led to important changes in the fitness
landscape (Fig. EV5A) that altered drastically the results of the
parametric simulations (Fig. EV5B). Whereas extreme biases in
specific activity predictably led to the corresponding enrichment of
homodimers or heterodimers depending on the more active dimer,
HET activity values between −20% and 20% yielded more complex
patterns. In this range of HET activity bias values, the simulations
can approach the optimum activity value of 60 h−1 either by
keeping a low total concentration of highly active complexes or by
keeping a high total concentration of less active complexes, with the
likelihood of each scenario depending on the distribution of
mutational effects. Indeed, we saw both scenarios in our
simulations with single structures (Fig. EV5C). However, when
looking at the global trends for our simulations with structures the
heteromer was still enriched even when it was around 20% less
active than the homodimers (Fig. EV5D) since their distributions
have more destabilizing effects on the homomers (see white triangle
in Fig. 2B) and slight mutational biases favoring the heterodimer
(Fig. 3). Thus, differences in specific activity can easily revert the
bias toward heterodimers, but the most likely outcome would still
be affected by the underlying distribution of mutational effects and
the fitness function.

Discussion

There are many potential fates for duplicate genes. These often
involve divergence of the paralogs in terms of function, regulation,
and interactions with other proteins (Conant and Wolfe, 2008).
Much work has been dedicated to describing the different outcomes
(Hochberg et al, 2018; Marchant et al, 2019; Mallik and Tawfik,
2020) and developing models of the fate of duplicate genes (Force
et al, 1999; Lynch and Conery, 2000; Gout and Lynch, 2015; Johri
et al, 2022). However, we lack a thorough understanding of the
underlying molecular determinants and evolutionary forces. The
way mutations themselves can drive evolution through their biases
towards specific phenotypic outcomes could play a role. For
instance, subfunctionalization is more likely to occur than
neofunctionalization because loss-of-function mutations are more
likely than beneficial gains of function (Lynch and Force, 2000;
Gibson and Goldberg, 2009). This alone could naturally bias the
maintenance of gene duplicates in one direction, even in the
absence of natural selection favoring one outcome or the other.
Here, we examine a special case of subfunctionalization which is
the potential replacement of a homodimer by a heterodimer
following gene duplication.

We characterized the equilibrium between homo- and hetero-
dimers after duplication. Small effects on binding affinity in the

range of 0.5–1 kcal/mol can drastically alter the proportions of
homo- and heterodimers. Since our estimations of the distributions
of mutational effects are centered close to that range (averages of
0.2 kcal/mol for heterodimers and 0.4 for homodimers), mutations
that could shift the equilibrium are likely to be sampled often by
evolution. Furthermore, mutational effects on binding for homo-
dimers and heterodimers are highly correlated. As a result, an
avenue for removing one of the dimers could be the initial transient
destabilization of both followed by the subsequent restabilization of
the favored interaction, as observed for duplicated proteins forming
heteromers with a common partner (Teufel et al, 2019). However,
our FoldX predictions suggest that there is a small percentage of
mutations that could directly stabilize one complex while
destabilizing the other (Fig. 3A; Fig. EV1A). Our model shows
that changes in the proportion of the three complexes could
therefore arise through a few mutations, matching previous reports
of homomer evolution (Ashenberg et al, 2011; Garcia-Seisdedos
et al, 2017; Hochberg et al, 2018) as well as heteromer evolution
(Stutz and Blein, 2020; Emlaw et al, 2021).

In our simulated evolutionary trajectories, we observe that the
most common outcome is for the proportion of heterodimers to
increase. This result extends our previous observation that hetero-
dimers of paralogs are often retained when only the homodimers are
selected for (Marchant et al, 2019). However, a key difference is that
in our previous study we considered selection acting on the ΔGbind of
one of the complexes, whereas here we consider selection acting on
the total activity of the system. As such, the relative concentrations of
homo- and heterodimers are allowed to drift as long as the total
activity is maintained. The main implication of our results is that
heterodimers of paralogs are likely to become the major functional
unit over the ancestral homodimeric protein unless there is selection
for the homodimer or against the heterodimer. Our conclusions are
striking, especially when considering that interactions between
identical chains (i.e., homodimers) are more likely to sample highly
favorable binding energies when compared to interactions between
different chains (i.e., heterodimers) (Lukatsky et al, 2007; André et al,
2008). However, the same authors also identified that real structures
of superfamily heterodimers tend to have more favorable contacts
between charged residues than homodimers (Lukatsky et al, 2007).
The mutational biases we observe would have a similar effect in our
simulations to such increases in favorable interactions, even though
the increase in the concentration of heterodimers was not explicitly
selected for. Interestingly, others have reported that symmetric
assemblies tend to dominate over asymmetric ones (André et al,
2008). In the case of heteromers of paralogs, they inherit the global
structural symmetry of their ancestral homomers because they come
from a gene duplication. However, because the subunits of the
heterodimer of paralogs are encoded by different genes, they allow for
local differences in sequence that can provide more favorable
contacts. Overall, the dominance of heteromers in our simulations
is in agreement with previous analyses of the homo and heteromeric
fates of paralogs in high-throughput PPI data (Mallik and Tawfik,
2020). However, high-throughput PPI data are typically derived
without considering barriers against heteromerization (such as
differential compartmentalization and expression) and the relative
abundance of each interaction. As such, further experimental
characterization of the fates of paralogs would require methods that
address these issues.
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The case for selection against heteromers might differ among
protein families. For example, selection against heteromers of
paralogs has been pointed out as a way to reduce cross-talk and
promote specialization of transcription factors (Amoutzias et al,
2008), kinases (Ashenberg et al, 2011), and chaperones (Pareek
et al, 2011). However, differences in specificity in transcription
factors can also be achieved if one of the homomers and the
heteromer are retained (Mamnun et al, 2002; Baker et al, 2013).
Others have reported positive selection for heteromerization of
transcription factors (Hernández-Hernández et al, 2007), as well as
allosteric (Kafková et al, 2017) and cooperative (Pillai et al, 2020)
contributions of heteromerization, which would act to preserve the
heteromer. The efficiency of selection for or against heterodimers
might also change over time, for example, once the two paralogs
diverge in function or in expression patterns (Kaltenegger et al,
2013). Interestingly, Pils and Schultz, 2004 have suggested that
catalytically inactive protein domains are common (between 10%
and 15%) in eukaryotic proteomes. These catalytically inactive
proteins are often conserved and seem to have evolved regulatory
functions mediated by binding to their paralogs (Pils and Schultz,
2004; Adrain and Freeman, 2012), providing a niche to preserve
these heteromers. A final consideration about the difficulty of
removing heteromers is that the starting concentrations immedi-
ately after duplication become more skewed towards heteromers as
the number of subunits in the oligomer increases. Because of this
skew, higher-order complexes require a greater difference in the
binding affinities of homomers and heteromers to promote
specificity for homomerization (Hochberg et al, 2018). Thus, it is
unclear whether there would be selection against most heteromers
of paralogs and if it could be efficient enough to eliminate them.

Our results add to a growing body of work suggesting that
complexity can increase neutrally (Stoltzfus, 1999; Lynch, 2007;
Hochberg et al, 2020; Muñoz-Gómez et al, 2021; Schulz et al, 2022;
Abrusán and Foguet, 2023). In the case of heteromers of paralogs,
two proteins would become necessary to provide the function of an
ancestral homomeric protein. Such transitions increase the
complexity of protein interaction networks, and they do not
necessarily provide an immediate adaptive benefit. A feature that
can only be introduced by heteromers is mutational asymmetry,
which allows distinct sequences for the different subunits. Mutants
that would otherwise eliminate catalytic activity in a homomeric
assembly can participate in heteromers with native-like activity
(Ebert et al, 2015). Indeed, the distributions we obtained when
simulating mutational effects in silico had smaller effects on
heterodimers than on homodimers and often had small enrich-
ments in heterodimer-favoring mutations (Fig. 3E,F). As a result,
their fixation could be a case of “survival of the flattest” due to the
smaller effects of point mutations (Wilke et al, 2001). However, this
comes with increases in network complexity that do not contribute
to robustness (Diss et al, 2017; Dandage and Landry, 2019). Overall,
non-adaptive processes play a significant role in the abundance of
heteromers of paralogs in extant protein interaction networks,
although there are known examples of heteromers that provide an
adaptive benefit (Bridgham et al, 2008; Pillai et al, 2020). Future
work should focus on experimental characterizations of the
distribution of mutational effects of protein structures. While our
analyses point to the existence and effects of mutational biases, we
could not fully establish their structural determinants. Comparing

larger-scale datasets might allow isolating the effects of individual
structural features on the distribution of mutational effects.

Importantly, our model makes multiple simplifying assump-
tions. In order to keep the simulations scalable, the distribution of
mutational effects on folding free energy and binding affinity is
kept constant throughout, instead of being recalculated at every
step. We make this assumption also because while it is well-known
that the effects of each new mutation are contingent on previous
mutations, whether the overall shape of the distribution stays the
same is unclear. Similarly, any systematic errors in our FoldX
predictions would propagate as we simulate more mutations,
making the estimations progressively less accurate. However, given
that we consider the heterogeneity of the effects of mutations
among the starting complexes, it is likely correct to assume that the
distribution of effects of mutations through time is captured in this
initial heterogeneity. Finally, our main conclusion about the
likelihood of heterodimers to become more abundant than
homodimers depends on the shapes of the FoldX-derived distribu-
tions of mutational effects. As shown in Fig. 2B, modifying these
distributions would lead to different results. Thus, generating
experimental data about how mutations affect the binding affinities
of homodimers and heterodimers of paralogs could help address
this limitation.

We do not consider the potential effects of other covariates that
would prevent interactions between paralogs, such as compart-
mentalization (Marchant et al, 2019) and cotranslational assembly
(Shiber et al, 2018; Badonyi and Marsh, 2023). In these cases, the
interaction between the two paralogs would not be possible, and the
system would be expected to preserve the homomers. Our model
also does not consider that tight binding could provide cross-
stabilizing contributions to protein folding, such as the ones
modeled in Rotem et al, (2018), although the fraction of properly
folded subunits in our simulations consistently stays above 90% in
most of our simulations. Finally, as mutations accumulate, one
might expect the specific activity of homomers and heteromers to
evolve. A special case of this evolution could be the emergence of
dominant negative mutations, which would inactivate the homo-
dimer of the mutated paralog and the heterodimer (Veitia, 2007).
Depending on the optimal activity, this reduction in activity could
either lead to selection against the heterodimer to restore activity or
lead to the emergence of new regulatory roles for the heterodimer
(Bridgham et al, 2008). A second special case is that of loss-of-
function mutations that inactivate the homomers but yield active
heteromers (Després et al, 2024). This scenario would be similar to
the ones explored here, in which the specific activity of the
homodimers is greatly decreased with respect to that of the
heterodimer. However, the distribution of mutational effects on
specific activity would be unique for each protein and without more
knowledge on the distribution of mutational effects on specific
functions, we could make arbitrary choices that could bring the
balance in one direction or another. Relaxing our assumptions and
including more cases would allow our model to more accurately
represent the fate of the paralogs, but our model already shows the
complex interplay between synthesis rates, folding energies,
binding affinity, and specific activities.

Our results highlight the importance of exploring neutral
hypotheses for the evolution of molecular systems. While clearly
natural selection plays a role in shaping them, there appears to be
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an important role of neutral evolution and mutational biases as
well. Our result that heteromers of paralogs are likely to replace
ancestral homomers after duplication agrees with recent observa-
tions that heteromers are more abundant in eukaryotic proteomes
than in prokaryotes (Mallik and Tawfik, 2020; Schweke et al, 2024).
This is consistent with the higher population sizes of prokaryotes
(Lynch, 2006; Charlesworth, 2009), since any kind of selection
against heteromers would be more efficient in these species than in
eukaryotes. Future work should continue to investigate the factors
leading to the fate of paralogs, focusing on how both natural
selection and neutral evolution have contributed to the modern
levels of complexity of protein interaction networks.

Methods

Reagents and tools table

Software

FoldX 5.0 https://
foldxsuite.crg.eu/

Delgado et al, 2019.
Bioinformatics

MutateX 1.0 https://github.com/
ELELAB/mutatex

Tiberti et al, 2022. Brief
Bioinform.

DSSP 2.2.1 https://
swift.cmbi.umcn.nl/
gv/dssp/

Kabsch and Sander, 1983.
Biopolymers

CD-Hit 4.8.1 https://
sites.google.com/
view/cd-hit

Li and Godzik, 2006.
Bioinformatics; Fu, et al, 2012.
Bioinformatics.

Python 3.8 https://
www.python.org/
downloads/

van Rossum and Drake,
2009.

Databases

Evolutionary
Classification of Protein
Domains (ECOD)

http://
prodata.swmed.edu/
ecod/

Cheng et al, 2014. PLoS
Comput. Biol.

Protein Data Bank
(PDB)

https://
www.rcsb.org/

Berman et al, 2000. Nuc. Ac.
Res.

Methods and protocols

Protein structures
Selection of protein structures

The complete set of structures deposited on the Protein Data
Bank (PDB) (Berman et al, 2000) were downloaded on March 29th,
2021. Structures were then filtered based on the following criteria:

- Experimental data: X-ray crystallography
- Author-assigned biological assembly: Dimeric
- Structures must have two identical subunits (no missing residues
or both subunits miss the same residues)

- Sequence length was restricted to 60–450 residues.

We mapped the remaining set of structures to their ECOD
architecture annotations (Cheng et al, 2014). We selected structures
from the major architecture types such that we had at least seven of
each one. Our final set comprised 104 PDB structures. These
structures were clustered with CD-Hit version 4.8.1 (Li and Godzik,

2006; Fu et al, 2012) with the following parameters: -n 2 (word
size), -c 0.4 (sequence identity threshold), -G 1 (global alignment),
and -s 0.8 (length difference cutoff). All of our selected structures
were identified in different clusters, confirming low sequence
identity between them.

Structural analyses
We studied different structural parameters for each protein

structure (Appendix Fig. S5). Secondary structures were annotated
with DSSP version 2.2.1 (Kabsch and Sander, 1983). Interfaces
were identified following Tsai et al, (1996). Residues were
considered to be at the interface core if the distance between one
of their non-hydrogen atoms and a non-hydrogen atom from any
residue of the other subunit was smaller than the sum of their van
der Waals radii plus 0.5 Å. Residues within 6 Å of the interface
core but not in contact with the other subunit were classified as the
interface rim. We analyzed the proportion of residues in contact
with their counterparts from the other subunit as a proxy for
symmetry at the interface. For this analysis, we used a cutoff
distance of 4 Å between any non-hydrogen atoms of the two
residues on the two chains.

Estimation of the distribution of mutational
effects with FoldX

The biological assemblies of selected PDB structures were generated
using custom scripts (Marchant et al, 2019). Energy minimization
was performed on the biological assemblies using the FoldX Repair
function (Delgado et al, 2019) ten times to ensure convergence
(Usmanova et al, 2018). Repaired structures were then used to
perform in silico mutagenesis using the FoldX BuildModel and
AnalyseComplex functions (Delgado et al, 2019) with the MutateX
workflow (Tiberti et al, 2022) to estimate mutational effects on
binding affinity and folding free energy. Mutations were simulated
in two runs for each complex: one run in which mutations were
applied on both subunits (simulating mutational effects for
homomers) and one run in which mutations were applied on only
one subunit (simulating mutational effects for heteromers).
Mutational effects on binding affinity were taken from the
corresponding distributions, while mutational effects on folding
free energy were taken from the distribution of effects on the
heteromer since our model uses changes on folding free energy to
calculate the fraction of properly folded subunits available for
complex assembly.

Framework for simulations
Pre-duplication model

Our simulations consider a system of a gene encoding a protein
(A) that forms a homodimer (AA). Protein copies are synthesized
with synthesis rate sA and typical values for starting parameters of
folding free energy (ΔGfold =−5 kcal/mol) (Pace, 1975; Plaxco et al,
2000) and binding affinity (ΔGbind =−10 kcal/mol) (Choi et al,
2015; Jankauskaitė et al, 2018). The proportion of properly folded
subunits is calculated based on Eq. (1) (Sailer and Harms, 2017):

w ¼ 1
1þ eΔGfold

(1)

where w is the fraction of folded proteins and ΔGfold is the free
energy of the native fold.
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Properly folded subunits are considered for the formation of
complexes while the remaining misfolded subunits are removed
(assumed to be degraded/not to participate in the formation of
complexes). Decay rates for properly folded monomers (dA) and
homodimers (dAA) are set to 1.3 h−1, following the derivation by
Hausser et al, (2019) based on median protein half-life and cell
division rate for yeast. The assembly of homodimers is driven by
the association constant kAA. Thus, using sA, w, dA, dAA, and kAA we
can calculate the expected concentrations at the equilibrium of A
and AA (see full derivation in Appendix Note 1). The equilibrium
concentrations of monomers and homodimers are multiplied by
their specific activity (0.1 for monomers, 1 for the homodimer) to
calculate the total activity of the system. Fitness is determined from
a lognormal function (defined by alpha and beta parameters) from
the total activity of the system. Since the total activity before
duplication was calculated at 38.2 h−1, the optimum fitness was set
at 60 h−1 or 80 h−1 (alpha parameter) to favor duplication events.
The beta parameter was set to 0.5 so that fitness would be reduced
by half when the total activity was either half or twice the alpha
parameter. All simulations were written in custom Python 3.8 (Van
Rossum and Drake, 2009) scripts.

At the start of the simulation, each mutation has a probability of
being a mutation on the coding sequence, a duplication, or a
mutation causing a change in the synthesis rate. The effects of
coding mutations on folding free energy (ΔΔGfold) and binding
affinity (ΔΔGbind) are sampled from distributions of mutational
effects (see section “Parametric distributions of mutational effects”
below) and are used to calculate the fraction of properly folded
subunits and the equilibrium constants, respectively. Equation (2)
shows how the association constants for each dimer are calculated
once ΔGbind is updated with the effect of the sampled mutations
(ΔΔGbind):

KAA ¼ e
� ΔGbind;AAþΔΔGbind;AAð Þ

RT (2)

where R is the gas constant (1.987 × 10−3 cal K−1 mol−1) and T is the
temperature at 298 K.

Once a mutation has been sampled, the equilibrium concentrations
of all molecular species and the total activity of the system are
recalculated using Eqs. (3) and (4) (full derivation in Appendix Note 1):

cA ¼
�dA þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d2A þ 8dAAkAAsA
q

4dAAkAA
(3)

cAA ¼ kAAc
2
A (4)

where cA and the cAA are the concentrations of each molecular
species, dA and dAA are the decay rates of each molecular species, sA
is the rate of synthesis of properly folded subunits of A, and kAA is
the association constant for AA.

Using the new equilibrium concentrations, the fitness of the new
state is compared to that of the previous state. Simulations continue
until 200 mutations have been fixed, with the first one being the
duplication. Duplications introduce new molecular species: mono-
mer B, homodimer BB, and heterodimer AB. As a result, the

calculations for the equilibrium concentration of each complex
change (see the next section).

Post-duplication model
Once a duplication has been fixed, the system will have two

genes encoding two proteins (A and B) that will assemble into
complexes AA, AB, and BB. Mutations continue to be sampled
from the underlying distribution of mutational effects, and the
system no longer samples for further duplication events. Once a
mutational effect is selected, the affected protein (A or B) is
selected at random. Afterwards, the new ΔGfold is calculated to
estimate the fraction of properly folded subunits and the ΔGbind

for both the homodimeric and heterodimeric interactions are used
to estimate the new equilibrium constants. Following Hochberg
et al, (2018), a factor of 2 is used to correct for the mixing entropy
difference that inherently favors heteromers in the mixture of
heterodimers and homodimers. Once all the values are calculated,
the 4th-degree polynomial in Eq. (5) is used to estimate the
concentration at the equilibrium of A (full derivation in Appendix
Note 2):

0

¼
2dAAkAA 4 dAAkAAdBBkBB

dABkAB
� dABkAB

� �

c4A
þ

dA 8 dAAkAAdBBkBB
dABkAB

� dABkAB
� �

� 2dBdAAkAA
� �

c3A
þ

2dBBkBBd
2
A

dABkAB
þ sA dABkAB � 8 dAAkAAdBBkBB

dABkAB

� �

� dAdB � dABkABsB
� �

c2A
þ

sA dB � 4dA
dBBkBB
dABkAB

� �

cA

þ
2s2A

dBBkBB
dABkAB

(5)

where dA, dB, dAA, dAB, and dBB are decay rates for each molecular
species; sA and sB are the synthesis rates of properly folded subunits
of A and B; kAA, kAB, and kBB are the association constants for each
of the dimers.

Once the four potential solutions to the concentration of A are
known, the concentrations of the rest of the molecular species are
calculated using Eqs. (6–9):

cB ¼ sA=cA � 2dAAkAAcA � dA
dABkAB

(6)

cAA ¼ kAAc
2
A ¼ r2

dAA þ r1
c2A (7)

cBB ¼ kBBc
2
B ¼ r4

dBB þ r3
c2B (8)

cAB ¼ kABcAcB ¼ r6
dAB þ r5

cAcB (9)
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where r1, r3, and r5 are dissociation rates of AA, BB, and AB, respectively;
r2, r4, and r6 are association rates of AA, BB, and AB, respectively.

Among the four possible solutions to the complete system of
equations, the physically correct solution is the one that results in
positive values for the concentrations of all five molecular species.

Parametric distributions of mutational effects
We performed simulations by sampling from multivariate

normal distributions of mutational effects. Each multivariate
normal distribution was used to sample effects on ΔGfold for each
monomer, ΔGbind, AA for the homodimer, and ΔGbind, AB for the
heteromer. We set the means of the multivariate normal
distributions and the correlations between variables to values
similar to those observed in the distributions simulated with FoldX:

- Effects on ΔGfold: N(2.6, 4.6)
- Effects on ΔGbind, AB: N(0.2, 1.2)
- Effects on ΔGbind, AA: The mean was allowed to vary between 0.06 and
0.6, while the standard deviation varied between 0.6 and 3 (Fig. 2B).
For all other figures showing results of simulations with parametric
distributions, the standard deviation was kept constant at 2.4.

- Correlation between effects on ΔGfold and ΔGbind, AB: 0.3
- Correlation between effects on ΔGfold and ΔGbind, AA: 0.3
- Correlation between effects on ΔGbind, AA and ΔGbind, AB: 0.9.

Simulations allowing changes in gene expression
A subset of the simulations were run, allowing mutations to

have an effect on gene expression. For each sampled mutation, a
given probability (ranging from 0.1 to 0.9) was given that a
mutation would have an effect on synthesis rates instead of the
coding sequence. The underlying distribution of mutational effects
on gene expression was based on a fit to previously published work
on the TDH3 promoter (Metzger et al, 2016). The data were fit to a
skew-normal distribution, which gave the following parameters:
mean = 0, standard deviation = 0.025, skew =−0.125. Since the
mutational effects reported by Metzger et al, (2016) were normal-
ized with respect to the WT, they were applied by multiplying the
sampled values times the current synthesis rate.

Simulations with biases in specific activity
A subset of the simulations were run to explore the outcomes

when the homo- and heterodimers had different specific activities.
To bias a simulation towards homodimers, the specific activity for
homodimers was kept at 1 while the specific activity of hetero-
dimers was given a value ranging from 0.1 to 0.9, and vice versa to
bias simulations toward heterodimers.

Data analysis

For each structure, we analyzed the results of 50 replicate
simulations. Each replicate continued until 200 mutations were
fixed. We tracked the equilibrium concentrations of all molecular
species (monomers A and B; homodimers AA and AB; and
heterodimer BB) through time. We defined terms for the relative
concentration of each molecular species at the end of the
simulation according to Eq. (10):

pX ¼ 100 � cX
cA þ cB þ cAA þ cAB þ cBB

(10)

where pX indicates the relative concentration of X (X being any of A,
B, AA, AB, or BB) and cX indicates the concentration of X.

We analyzed enrichments in homomers or heteromers by
looking for deviations from the initial conditions post duplication
(25% AA, 50% AB, 25% BB). As such, replicates were classified
based on the relative concentrations of each species at the end of
the simulation:

- HET dominant: 70 <= pAB
- HM dominant: 70 <= (pAA + pBB)
- Both HM and HET: 70 <= (pAB + pAA + pBB) AND 70 >= pAB
AND 70 >= (pAA + pBB)

- Monomers: 70 <= (pA + pB)
- Ambiguous: 70 >= (pAB + pAA + pBB) AND 70 >= (pA + pB).

Our measure for the results of the simulation was the
concentration of each molecular species at the end, averaged over
all replicates.

Data availability

The datasets and computer code produced in this study
are available in the following databases: Scripts: Github (https://
github.com/Landrylab/Homomer_duplication_2024) [https://
doi.org/10.5281/zenodo.10659566]. Supporting datasets: Zenodo
(https://zenodo.org/records/10048861) [https://doi.org/10.5281/
zenodo.10048861].

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00030-z.
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Expanded View Figures

Figure EV1. Bidimensional distributions of mutational effects on ΔGbind,HET, ΔGbind,HM, and ΔGfold.

(A–C) Hexagonal bins indicate the density of mutational effects for the pool of mutations for all structures. Two variables and their correlations are shown in each panel:
ΔGbind,HET and ΔGbind,HM (A), ΔGbind,HM and ΔGfold (B), ΔGbind,HET and ΔGfold (C). P values are calculated using an asymptotic confidence interval based on Fisher’s Z
transform for Pearson correlation coefficients.
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Figure EV2. The general bias observed for heterodimers is also observed when the optimal activity is set to a slightly lower value (alpha= 60).

(A) Percentage of heterodimers, homomers, and monomers at the end of simulations with distributions of mutational effects structures when the optimal activity (alpha)
is set to 60. Structures are listed in the same order as in Fig. 2C. (B) Correlation between the percentages of heterodimers observed at the end of simulations with alpha =
60 (data from Fig. S6A) and simulations with alpha = 80 (data from Fig. 2C). The P value for the Spearman correlation coefficient in panel B is calculated using the
asymptotic t approximation method. The P value for the Pearson correlation coefficient is calculated using an asymptotic confidence interval based on Fisher’s Z transform.
(C, D) Evolution of ΔGfold values in simulations with alpha = 60 (C) and alpha = 80 (D). For simplicity, only the data for PDB: 1GPR are shown. (E, F) Evolution of the
percentage of heteromers in simulations with alpha = 60 (E) and alpha = 80 (F). Replicates for all simulations with all structures are shown. Boxplots in (E, F) indicate the
median (center lines) and interquartile range (hinges). Whiskers extend from the hinges of each box to the most extreme values that are at most 1.5 times the interquartile
range away from the hinges.
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Figure EV3. Mutational biases promote the enrichment of heterodimers in very high quality PDB structures.

(A) Average percentages of heterodimers, homodimers, and monomers for each of the very high quality PDB structures at the end of the simulations. The dashed line
indicates the starting point at 50% heterodimers and 50% homodimers (25% of each homodimer). (B, C) Distributions of available (B) and fixed (C) residuals with
respect to the expectation for each of the 37 very high quality structures. Colors indicate mean outcomes for each structure: HET dominant (heterodimer >70% of dimers),
HM dominant (homodimer >70% of dimers), both HM and HET (rest of cases). The thicker blue line represents 2B18. Shaded regions on the left and right indicate
mutations whose residuals have a magnitude of at least 0.2 favoring either the heterodimer (negative values) or the homodimer (positive values). (D, E) Correlation
between enrichment of available (D) and fixed (E) mutations with residuals favoring the heterodimer and the mean percentage of heterodimers at the end of the
simulations. The enrichment of heterodimer-favoring residuals is calculated as the density of mutations with residuals smaller than −0.2 minus the density of mutations
with residuals greater than 0.2. P values for (D, E) are calculated using the asymptotic t approximation method for Spearman correlation coefficients.
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Figure EV4. Simulations allowing changes in synthesis rates with lower optimal activity (alpha= 60).

(A) Fitness landscape when the optimal activity is set to 60. Note that sA, ΔΔGbind,AA, and ΔΔGbind,BB remain constant throughout. (B) Percentages of heterodimers at the
end of parametric simulations allowing changes in synthesis rates and varying mean effects of mutations on homodimers. (C) Percentages of heterodimers and each of the
two homodimers for each of the 104 tested structures when simulations consider different probabilities of mutations affecting synthesis rates. The two homodimers were
distinguished based on their abundance.
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Figure EV5. Simulations with differences in specific activity and lower optimal total activity (alpha= 60).

(A) Fitness landscape when the optimal activity is set to 60. ΔΔGbind,AA, and ΔΔGbind,BB remain constant throughout at −10 kcal/mol. (B) Percentages of heterodimers at
the end of parametric simulations with different values of specific activity and varying mean effects of mutations on homodimers. (C) ΔGfold values at the end of
simulations with alpha = 60 and different specific activities for homo- and heterodimers. Disfavored outcomes, such as HET dominant when the heterodimer is less active,
can still be reached if the subunits remain stable. Boxplots in (C) indicate the median (center lines) and interquartile range (hinges). Whiskers extend from the hinges of
each box to the most extreme values that are at most 1.5 times the interquartile range away from the hinges. (D) Percentages of heterodimers and each of the two
homodimers for each of the 104 tested structures when simulations consider different specific activities of homo- and heterodimers. The two homodimers were
distinguished based on their abundance.
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