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Abstract

A great deal of work has revealed, in structural detail, the com-
ponents of the preinitiation complex (PIC) machinery required for
initiation of mRNA gene transcription by RNA polymerase II (Pol
II). However, less-well understood are the in vivo PIC assembly
pathways and their kinetics, an understanding of which is vital for
determining how rates of in vivo RNA synthesis are established.
We used competition ChIP in budding yeast to obtain genome-scale
estimates of the residence times for five general transcription
factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many
GTF-chromatin interactions were short-lived ( < 1 min), there were
numerous interactions with residence times in the range of several
minutes. Sets of genes with a shared function also shared similar
patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC
late in the assembly process, had residence times correlated with
RNA synthesis rates. The datasets and results reported here pro-
vide kinetic information for most of the Pol II-driven genes in this
organism, offering a rich resource for exploring the mechanistic
relationships between PIC assembly, gene regulation, and
transcription.
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Introduction

Transcription is a highly complex biochemical process whose exquisite
regulation is of fundamental importance in determining cell function
and fate. A tremendous amount of information is available on the
structure, biochemical functions, and relationships of various tran-
scription factors (TFs), cofactors, and subunits of the general
transcription machinery (He et al, 2016; Plaschka et al, 2016; Sainsbury
et al, 2015; Hahn and Young, 2011; Hahn, 2004). This includes
structures of the transcription preinitiation complex (PIC), which

assembles at promoters and consists of the general transcription factors
(GTFs) TFIIA, TFIIB, TFIID, TFIIE, TFIIF, and TFIIH, as well as RNA
polymerase II (Pol II) (Patel et al, 2018; Plaschka et al, 2016; He et al,
2016; Ehara et al, 2017; Sainsbury et al, 2015; Hahn and Buratowski,
2016; Nogales et al, 2017). As these factors participate in all Pol II-
mediated transcription in yeast, we use the term “PIC” in this paper to
refer to complexes that catalyze the initiation of transcription,
including during the first round of synthesis upon promoter activation
as well as reinitiation or ongoing initiation at unregulated promoters.
In addition, genome-wide analyses have provided global snapshots of
many factors along the eukaryotic DNA template (Venters et al, 2011;
Harbison et al, 2004; Yen et al, 2012; Rossi et al, 2021). These combined
studies have led to a conceptual framework in which PICs are
assembled stepwise at promoters. This process begins with nucleation
by TFIID, a multisubunit complex that contains the DNA-binding
subunit TATA-binding protein (TBP) (Patel et al, 2020; Louder et al,
2016), and can be further facilitated by the binding of TFs and
coactivators that physically contact GTFs (Chen & Pugh, 2021). In
vitro, following the binding of TBP/TFIID to a TATA-containing
promoter, TFIIA and TFIIB can then associate with the complex,
followed by Pol II in association with TFIIF, and then TFIIE (Farnung
and Vos, 2022). This multisubunit complex provides the substrate for
the recruitment of TFIIH (Tsutakawa et al, 2020), whose activities are
required in vivo but may be dispensable in vitro using naked DNA
substrates (Rimel and Taatjes, 2018). A key factor contributing to PIC
assembly in vivo is the Mediator, which physically contacts multiple
GTFs and modulates the activities of TFIIH (Rimel and Taatjes, 2018;
Schilbach et al, 2017; Malik et al, 2017). Live-cell imaging has
documented the dynamic behavior of these factors and is generally
consistent with such an assembly pathway, albeit occurring via highly
dynamic and short-lived complexes (Nguyen et al, 2021). Importantly,
the understanding of PIC assembly has emerged mainly from studies
that have focused on the analysis of stable complexes formed in vitro or
identified in vivo, lacking information about the locus-specific
dynamics of the process. Furthermore, some evidence suggests that
the canonical in vitro assembly pathway may not apply to PICs at all
promoters in vivo (Guglielmi et al, 2013; Luse, 2014; Sikorski and
Buratowski, 2009; Baek et al, 2021; Nguyen et al, 2021). In addition to
unexplored assembly pathway complexity, it has become apparent that
in vivo transcription is a highly dynamic and stochastic process, with
RNA synthesis often occurring from individual genes in bursts, and
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with variability occurring among genetically identical cells (Sanchez
and Golding, 2013; Raser and O’Shea, 2004). Most models of RNA
expression based on these types of observations do not posit particular
features of protein–DNA complex behavior as the explanation, and
relatively few genes have been analyzed in depth (Boeger et al, 2008;
Brown and Boeger, 2014; Lenstra et al, 2016; Boettiger et al, 2011;
Ravarani et al, 2016). Indeed, live cell imaging approaches have
revealed that while TFs, in general, display very dynamic interactions
with chromatin, the functional consequences of their interaction
kinetics are only beginning to be explored on a mechanistic level
(Hager et al, 2009; Voss and Hager, 2014; Nguyen et al, 2021).

The premise of this study is that PIC assembly dynamics are
variable across the genome and that the identification of kinetic
pathways in PIC assembly will shed light on mechanisms of
regulation that operate at the level of transcription initiation. To
better understand PIC assembly in vivo, we have used an approach
called competition-chromatin immunoprecipitation (competition
ChIP, ref. (Lickwar et al, 2013)) to measure the site-specific,
genome-scale chromatin binding dynamics of five GTFs (TBP,
TFIIA, TFIIB, TFIIE, and TFIIF) in the budding yeast S. cerevisiae.
In addition, we compared promoter binding dynamics of these
factors with RNA synthesis rates to determine how chromatin
binding of key PIC components relates to the production of RNA.
To our knowledge, this represents the first comprehensive analysis
of PIC dynamics, provides a global picture of PIC assembly, and
highlights promoter-specific variation.

Results

Competition ChIP (CC) is an approach in which cells harbor two
isoforms of a transcription factor of interest with distinguishable
epitope tags (Fig. 1A). We engineered diploid yeast cells to
constitutively express one isoform with a Myc tag under control of
the endogenous promoter and with the second isoform tagged with
HA and under inducible GAL promoter control. In the CC
experiments, cells were shifted to galactose at time zero to induce
expression of the HA-tagged competitor isoform, followed by cell
culture sample collection at various time points (Fig. 1B). We then
measured the relative occupancies of the Myc- and HA-tagged
species genome-wide at each time point (Fig. 1C) and used the
relative occupancies as input to a model that describes the
competition for chromatin binding to each site, yielding the site-
specific residence time (Fig. 1D). The principle of the assay is
outlined in Fig. 1E,F, which illustrate how the occupancy ratios of
the two isoforms of a particular factor would change if the factor

has a short or long residence time at a particular site. Notably,
TFIIA, TFIIE, and TFIIF are biochemically composed of more than
one subunit, and thus, for these factors, we epitope-tagged one
subunit and placed one copy of each subunit under GAL control in
order to induce balanced expression when cells were grown in
galactose (see Materials and Methods).

For each factor, we first measured the levels of both isoforms by
Western blotting (Figs. 2A–C and EV1; Appendix Table S1). The
time-dependent accumulation of competitor isoforms displayed
cooperative induction consistent with a Hill equation (Estrada et al,
2016) with induction half-times of ~43min and Hill coefficients of
~4.5 on average (Fig. 2B,C). We estimated residence times by fitting
the normalized time-dependent turnover ratios to a turnover model
(Zaidi et al, 2017a) (see Materials and Methods), and compared the
fits to the HA-tagged competitor’s synthesis rate. In this way, we were
able to assign residence times for binding interactions with
significantly longer (>1min) rates of turnover compared to the rate
of competitor synthesis, and for reliable fits that were not significantly
different from the rate of competitor induction, we were able to
classify the chromatin binding residence times as <1min (see
Materials and Methods). Overall, we were able to estimate residence
times for each GTF binding to ~3000 or more promoters (Fig. 2D;
Dataset EV1). This represents roughly half of the Pol II promoters in
the S. cerevisiae genome. Representative fits are shown in Fig. 2E;
Appendix Fig. S1. Note that the HA/Myc ratios at sites with rapid
turnover closely mimic the time course of competitor induction,
whereas more long-lived complexes have turnover ratios that are
notably displaced to the right of the competitor induction curves. The
distributions of turnover times are shown in Fig. 2F. We identified
different numbers of sites for each TF for which we were able to
assign residence times; this is indicative of differences in the number
of sites for which we were able to obtain reliable fits of the kinetic
data, as well as likely differences in the efficiency of formaldehyde
capture of short-lived complexes. It is notable that the majority of
TBP, TFIIA, TFIIB, and TFIIF chromatin interactions were short-
lived (i.e., <1–2min), whereas the majority of TFIIE complexes
displayed residence times in the several-minute range. It was also
notable that TFIIF residence times were bimodal, with most estimates
being short-lived (~2min or less) and the rest in the 5–10min range
(Fig. 2F; discussed below).

To determine the relationship between GTF promoter residence
time and the rate of RNA synthesis from the corresponding genes,
we measured newly synthesized RNA under these same conditions
(Fig. EV2A; Dataset EV2). Replicate samples (n = 2) were acquired
at 20 and 60 min post galactose-induction. There was excellent
agreement between the replicates and between the two time points

Glossary

CC Competition ChIP
DBF DNA binding factor
DTA dynamic transcriptome analysis
FDR false discovery rate
GTF general transcription factor
GO:BP gene ontology biological process
GO:MF gene ontology molecular function
GTF general transcription factor
padj adjusted p-value
PC1 first principal component

PC2 second principal component
PCA principal component analysis
PIC preinitiation complex
Pol II RNA polymerase II
TBP TATA-binding protein
TE transcription efficiency
TF transcription factor
TSS transcription start site
WP WikiPathways
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(Figs. 3A and EV2B–D). Dynamic transcriptome analysis (DTA,
ref. (Miller et al, 2011)) was applied to estimate RNA synthesis rates
(Fig. EV2E), which were in reasonable concordance with earlier
data from cells grown in galactose (Fig. EV2F, ref. (García-Martínez
et al, 2004)). We divided the mRNA synthesis rates into quartiles
and compared them to GTF residence times (Fig. 3B,C). Residence
times for TFIIA and TFIIB were, on average, modestly shorter for
highly expressed genes compared to genes with lower expression
levels, which may suggest a kinetic bottleneck in PIC assembly for
poorly expressed genes that occurs after the binding of these two
factors (see Discussion). Strikingly, the average TFIIE residence
time increased with gene expression level across these four groups
of genes (Fig. 3C), suggesting that the TFIIE residence time is an
indicator of gene expression level. To relate residence time to RNA
synthesis more directly, we calculated the ratio of mRNA molecules
made per GTF binding event, which we previously defined as
transcription efficiency (TE, ref. (Zaidi et al, 2017a)). TE was, on
average, <1 mRNA synthesized per binding event for TBP, TFIIA,
TFIIB, and TFIIF (Fig. 3D), suggesting that binding events by these
factors do not efficiently give rise to the synthesis of mRNA. In
addition, the TE values increased gradually and progressively for
these factors, with TBP having the lowest TEs and TFIIE the
highest, in line with the in vitro assembly pathway in which TBP
binds to promoters first, followed by TFIIA and TFIIB, which

provide a platform for binding of TFIIF in association with Pol II
(Farnung and Vos, 2022). Notably, the median TE for TFIIE was
close to one, suggesting that the binding of TFIIE to promoters was
associated with the production of one mRNA molecule on average.
The results suggest that PIC formation is an increasingly efficient
process along a pathway from TBP to TFIIE, and that the assembly
of a TFIIE-containing PIC is associated with the production of a
single molecule of mRNA. Using all of the GTF residence time data
for Principal Component Analysis (PCA) revealed a correlation
between GTF binding dynamics and RNA synthesis along the first
principal component, PC1 (Fig. 3E; Appendix Fig. S2, where sites
with <1 min residence times, which were randomly generated
between 0–1 min, were excluded). This correlation can be
appreciated quantitatively via the proportion of variance explained
and visually by the distribution of color across the plot. To
investigate the nature of this relationship in more detail, Pearson’s
correlation coefficients were computed between each GTF and
PC1/PC2 (Fig. 3F) and between transcription rates and PC1/PC2
(Fig. 3G). The results show that the overall pattern was driven
mainly by the positive correlations between TFIIE/TFIIF and RNA
synthesis rate (Fig. 3F,G). This conclusion was further supported by
linear modeling of the GTF residence time contributions to
transcription rates (Fig. EV3A,B).

Figure 1. Competition ChIP overview.

(A) A Myc-tagged isoform of a TF is expressed constitutively using the endogenous promoter, while an HA-isoform is expressed under the control of a galactose-inducible
promoter. (B) Illustration showing protein induction upon adding galactose. The HA/Myc ratio increases over time until it reaches saturation. (C) Once a given TF unbinds
DNA, the two isoforms compete for binding to the available site. (D–F) D shows a simplified illustration of residence time estimation based on the lag of the normalized
HA/Myc ChIP signal ratio relative to the competitor protein induction curve, as further illustrated in (E) for sites with fast turnover and (F) for sites with slow turnover. In
(E,F), the icons in the top row indicate relative levels of constitutive (red) and competitor (green) isoforms.
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Figure 2. GTF residence times.

(A) TFIIE Western blots showing the isoform levels of the TFIIE subunit over the indicated time course. Galactose was added at t= 0min. (B) Quantified Western blots
from (A). Shown are normalized HA/Myc ratios (n= 2 biological replicates). The induction curve was fitted with a Hill coefficient (n) and induction half-time (t1/2ind) as
indicated. (C) Induction curves as in (B) for all targeted TFs with fit parameters indicated on the right. TFIIA (Toa1 subunit), TFIIE (Tfa1 subunit), and TFIIF (Tfg2 subunit).
(D) Bar plot showing the number of sites (y-axis) categorized based on estimated residence time for each TF (x-axis). (E) Examples of sites with fast (<1 min), moderate
(1–10 min) and slow (>10min) turnover for TFIIF and TFIIE. Black dashed curves represent protein induction curves from (C), in color are shown the normalized HA/Myc
ChIP signals (mapped reads) along with the fitted model. Gene target names, along with the estimated residence times in minutes, are included. (F) Distribution of
estimated residence times for all GTFs. Values for reliably fast sites (<1 min) were randomly generated for plotting purposes and are separated by dashed lines. Density on
the y-axis denotes the kernel density estimates used to approximate the frequency of a given residence time. Source data are available online for this figure.
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We next looked for pairwise relationships between the
chromatin binding residence times of each GTF, and highlighted
each gene by transcription rate (Fig. EV4). This allowed us to
identify a cluster of highly transcribed genes (dark cluster)
associated with the presence of long-lived TFIIE and TFIIF, as
well as TFIIB residence times that were in a similar range of several

minutes. This was in contrast to TBP and TFIIA, whose residence
times did not show any significant pattern. TBP was overall less
informative as most TBP binding events measured were short-lived
and not well correlated with transcription rate (Fig. EV3C). In fact,
the residence times of TFIIA, TFIIB, and TFIIF were individually
not correlated with transcription rate either. This was in contrast to
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Figure 3. Relationship between residence GTF residence times and synthesis rates.

(A) PCA plot showing a low-dimensional representation of dynamic transcriptome analysis (DTA) samples without negative control. (B) Distribution of mRNA synthesis
rate values measured by DTA separated into synthesis quartiles. (C) Box plots showing residence time distributions (y-axis) for all GTFs (x-axis) within the indicated
synthesis quartile. Values for reliably fast sites (<1 min) were randomly generated for plotting purposes and are highlighted by the gray area. The middle line represents the
median, the lower and upper edges of the boxes represent the first and third quartiles, and the whiskers represent the 1.5 * interquartile range. P values represent the
results of Kruskal–Wallis tests for a given GTF. P value symbols (Wilcoxon test): n.s. p ≥ 0.05, *p ≤ 0.05, **p ≤ 0.01, ***p < 0.001, ****p ≤ 0.0001. Number of observations
(n): TBP- Q1: 216, Q2: 324, Q3: 427, Q4: 605; TFIIA- Q1: 239, Q2: 320, Q3: 397, Q4: 426; TFIIB Q1: 302, Q2: 486, Q3: 581, Q4: 606; TFIIF- Q1: 253, Q2: 358, Q3: 432, Q4:
517; TFIIE- Q1: 416, Q2: 584, Q3: 610, Q4: 553. (D) Violin plots showing the distributions of log2 transformed transcription efficiency (TE, y-axis) for each GTF (x-axis). TE
indicates the number of mRNA molecules synthesized during one binding event. The points show the medians of the log2 transformed TE values. Mean and median TE
values are shown above the plots. Number of observations (n): TBP= 1572, TFIIA= 1382, TFIIB= 1975, TFIIF= 1560, TFIIE= 2163. (E) PCA plot showing a low-
dimensional representation of gene targets based on GTF residence times. Each gray point is a gene, color map shows the mean synthesis rate of genes under a given area.
The percentage within the axis labels indicates the percentage of variance explained by a given PC. (F) Pearson’s correlation coefficients (y-axis) between the indicated
PCs (panel title) and GTF (x-axis) residence times. (G) Pearson’s correlation coefficients (y-axis) between PCs (x-axis) and synthesis rates. Source data are available
online for this figure.
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the positive correlation that was observed between TFIIE residence
time and transcription rate (Fig. EV3).

Next, we clustered all the genes for which we obtained residence
time measurements for four factors (TFIIA, TFIIB, TFIIE, and
TFIIF (n = 1417)). We omitted TBP from this analysis due to the
reduced number of sites with reliably estimated residence times
>1 min. We identified ten clusters spanning the full range of
transcription rates (Fig. 4A,B; Dataset EV3). Consistent with the
results presented above, the most highly expressed genes had
longer-lived TFIIE and/or TFIIF, whereas poorly expressed genes
had promoters with longer-lived TFIIA. Longer residence times of
TFIIB were associated with genes in several clusters, including
particular genes that were poorly expressed (cluster 8; Fig. 4A,B).
Notably, the relatively long residence times of both TFIIE and
TFIIF at cluster 1 promoters were associated with the production of
multiple mRNAs, suggesting the formation of stable (sub)
complexes that promote transcriptional bursting.

In support of the biological significance of the observed
residence time differences, genes within clusters 1–7 were
functionally related (Fig. 4C). Cluster 1 genes include ribosomal
protein genes and genes involved in RNA binding and translation.
Additionally, cluster 2 genes are involved in biosynthetic processes;
cluster 3 genes include those involved in Golgi organization; cluster
4 genes are involved in localization, transport, and the proteasome;
cluster 5 genes are involved in proteasome degradation; cluster 6
genes have roles in nucleocytoplasmic transport; and cluster 7
genes are involved in proteasome and protein–lipid complex
organization. The longer GTF residence times (as well as higher
gene expression rates) at ribosomal protein genes in cluster 1
compared to the GTF residence times at other genes are statistically
highly significant (Fig. EV5A–C, cluster 1 gene CC signal tracks
shown in Appendix Fig. S3). Moreover, the expression of genes in
most of these clusters is controlled by particular TFs (or sets of TFs;
Fig. 4D,E; Appendix Fig. S4), suggesting a mechanistic relationship
between particular TFs and PIC assembly dynamics. Modest but
significant increases in TFIIA and TFIIE residence times were
observed at promoters with strong TATA elements versus those
without such an element (Basehoar et al, 2004); these changes were
consistent with a significant increase in RNA synthesis rate driven
by TATA-containing promoters versus those without strong TATA
elements (Appendix Fig. S5A–C). In contrast, we did not observe
any significant differences between the residence times of galactose-
induced genes and all other genes, even though the synthesis rates
of the GAL genes were significantly higher than the genes that were
not induced by galactose (Appendix Fig. S6A, B).

An unexpected observation was the abovementioned bimodal
distribution of TFIIF residence times (Figs. 2F and EV4). We
observed functional enrichment of the genes in each of these two
classes, with promoters in both classes associated with different
subsets of genes involved in translation/ribosome. Genes with
short-lived TFIIF were further associated with other biosynthetic
processes (Appendix Fig. S7A,B). Consistent with this, the genes in
the long-lived and short-lived TFIIF classes were associated with
particular enriched TFs, some of which were shared (Appendix
Fig. S7C–F). Among the TFs associated with genes in the long- and
short-lived TFIIF classes, Rap1 was of particular interest as
competition ChIP data were available for Rap1 from a prior study
(Lickwar et al, 2012). Although Rap1 residence times were not
correlated with residence times for TBP or TFIIB, there was a

moderate correlation between Rap1 residence times and the
residence times for TFIIA and TFIIE (Pearson’s correlation
coefficients ~0.37 and 0.3, respectively), and Rap1 residence times
were significantly longer at genes with long-lived TFIIF compared
to genes with short-lived TFIIF (Appendix Fig. S8A,B).

Discussion

The computational approach employed here for the extraction of
kinetic parameters from CC data is well supported by comparison
with previous work. The TBP residence times obtained by analysis
of CC data in this study were correlated with the residence times
obtained from an older study using microarray data (Appendix
Fig. S8C; (van Werven et al, 2009)) and are also broadly consistent
with kinetic results for TBP in human cells (Hasegawa and Struhl,
2019). This includes the rank order in which tRNA genes had much
longer residence times than mRNA genes. Previously, we used a
formaldehyde crosslinking kinetic approach, called CLK, to
measure chromatin binding dynamics (Poorey et al, 2013). While
the CLK method is technically challenging as well as locus-specific
(Zaidi et al, 2017b), we observed a rough agreement between the
kinetic parameters obtained by the two methods for the handful of
loci for which complementary measurements are available
(Appendix Fig. S8D).

Live cell imaging has revealed that the majority of TF-chromatin
interactions studied are short-lived, with residence times on the
order of seconds (van Royen et al, 2011; Paakinaho et al, 2017;
Normanno et al, 2012; Swinstead et al, 2016; Liu and Tjian, 2018;
Lionnet and Wu, 2021; Brouwer and Lenstra, 2019; Nguyen et al,
2021). This includes TFIIB (Zhang et al, 2016; Nguyen et al, 2021;
Sprouse et al, 2008), for which CC results are reported here. The
observation of highly dynamic binding by TFs has led to the view
that such dynamics enable temporally responsive regulation of gene
expression, and that TF residence times are associated with the
duration of bursts in which more than one RNA molecule is
synthesized during the TF period of occupancy on the promoter
(Donovan et al, 2019; Coulon et al, 2013; Nicolas et al, 2017;
Lenstra et al, 2016). Consistent with the observation of frequent
short-lived chromatin interactions for TFs, we observed that the
majority of the interactions between TBP, TFIIA, TFIIB, or TFIIF
and chromatin had residence times of less than 1 min (Fig. 2F). It
was not possible to reliably estimate the residence times of these
short-lived interactions using CC, but they must last long enough
to be captured by crosslinking. It is likely that other very short-lived
interactions were not detectable by our method because of their
inability to be crosslinked. Conversely, it is possible that long-lived
chromatin interactions such as those we report here would be
difficult to detect with live cell imaging, particularly if they occur
infrequently, although evidence is emerging for TF-chromatin
binding residence times on the minutes time scale using live cell
imaging (Hipp et al, 2019). Since the formation of a PIC is mutually
dependent on all of the GTFs (Petrenko et al, 2019) and structural
data are consistent with the requirement for, e.g., TBP and TFIIB
binding to establish a platform for the binding of Pol II, TFIIF and
TFIIE (Osman and Cramer, 2020; Nogales et al, 2017), it may
appear counterintuitive that such “early” binding GTFs have
shorter residence times than the “late” binding GTFs at many
promoters. It is important to recognize that the residence times that
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Figure 4. Gene classes based on GTF residence times combinations.

(A) Heatmap showing z-score normalized residence times of the indicated GTFs (columns) across gene targets (rows) with the available residence time estimations from
all four GTFs (n= 1417). Colored panels on the right side show the mean synthesis rates of genes belonging to the ten clusters. (B) Bar plots showing median TE (x-axis)
within clusters (y-axis) from (A) and color-coded based on mean TE. (C–E) Functional annotation of genes from clusters in (A). The cluster number is indicated in the
panel titles. (C) Pathway enrichment. Padj < 0.05. (D) Yeast Epigenome database DBF enrichment excluding subunits of GTFs and Pol II. Fisher’s P < 0.05. (E) TRANSFAC
enrichment. Fisher’s Padj < 0.05. Colored bars were identified as significantly enriched (FDR <0.05) in the Yeast Epigenome database.
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we report here reflect the global average of the residence times for
all complexes formed in vivo that contain the GTF of interest
(Fig. 5A,B). Thus, core promoter-bound complexes that contain
TFIIE or TFIIF are highly likely to contain TBP and TFIIB. We
infer that the reason there is shorter-lived TBP and TFIIB at many
promoters with longer-lived TFIIF and TFIIE is that most TBP-
and TFIIB-containing complexes do not lead to the formation of a
complex of a productive PIC that contains TFIIF or TFIIE (Fig. 5C).
These considerations, in addition to the focus in the present study
on promoter regions, could explain, at least in part, why TFIIE was
observed by single-molecule tracking to be engaged primarily in
short-lived binding events whereas long-lived TBP binding events
were observed (Nguyen et al, 2021). In this regard, it is worth
noting that the highly dynamic behavior of TBP reported here is
consistent with highly mobile TBP in the nucleoplasm overall,
which was dependent on the TBP-DNA dissociating enzyme Mot1

and observed in live cells by fluorescence recovery after photo-
bleaching (FRAP, ref. (Sprouse et al, 2008)).

The biological significance of the residence times reported here
is supported by the functional enrichment of genes in each of the
clusters (Fig. 4C). This argues strongly that GTF residence time
dynamics are tuned to facilitate expression levels that ensure that
cells function and respond in physiologically appropriate ways.
Since these gene sets are controlled by specific sets of TFs
(Fig. 4D,E), it is reasonable to suggest that GTF dynamics are
influenced in predictable ways by the TFs that control the
expression of the associated genes. It is understood that TFs exert
context-specific effects on gene expression, and such effects have
been generally described in terms of effects mediated by co-
regulatory interactions with other TFs as well as epigenetic control,
including DNA methylation (Stone et al, 2019; Mony et al, 2021;
Fertig et al, 2013). In future work, it could be interesting to explore

Figure 5. Model.

(A,B) Interpretation of residence times. (A) A GTF can undergo multiple rounds of transient binding (indicated by x and shown in light blue) before it binds stably (dark
blue), possibly assisted by the other factors (gray). (B) The final residence time estimates at a given site (t1/2, shaded blue) represent the average of transient and stable
binding over the course of the experiment across all cells. Multiple transient binding events over time are shown in light blue; stable binding events block sites from
exchange and are shown in dark blue. (C) The results suggest that for the majority of genes, PICs are unstable until TFIIE binding, which leads to functional PIC assembly,
the initiation of RNA synthesis, and the release of Pol II and PIC disassembly. At a relatively small subset of genes e.g., genes coding for ribosomal subunits, relatively
stable PICs are formed upon TFIIF binding (note lighter color for disassociation) and further stabilized by TFIIE binding, followed by the initiation of RNA synthesis. Upon
Pol II release, stable PICs may be disassembled or at certain promoters may be stable and lead to transcriptional bursting. The formation of more stable PICs is likely
associated with promoter-specific features and cofactors. The figure is meant to be illustrative and does not represent accurate sizes or molecular shapes of the factors of
interest.
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how GTF residence times are impacted by the manipulation of such
regulators. We suggest that RNA output resulting from the
interplay of these variables is at least partly a consequence of the
capacity to catalyze the formation of functional PICs by over-
coming kinetic bottlenecks in PIC assembly that are also related to
the underlying DNA sequence and chromatin environment.

A striking observation from the results of this study is that the
residence time of TFIIE is correlated with the mRNA synthesis rate,
and the number of mRNA molecules produced during a TFIIE
residence time suggests that one TFIIE binding event is associated
with the production of one mRNA molecule (Fig. 3D). This is in
contrast to the other GTFs for which one binding event was
associated with less than one mRNA molecule produced. We were
not able to measure Pol II directly using CC because we do not have
a system for inducing the expression of all of the Pol II subunits to
generate a competitor isoform of Pol II. However, TFIIF can serve
as a proxy for Pol II itself as biochemical and structural data
support a model in which TFIIF can enter the PIC in association
with Pol II (Bushnell et al, 1996; Ranish and Hahn, 1996;
Orphanides et al, 1996; Sainsbury et al, 2015; Osman and Cramer,
2020). The combined results suggest that the formation of a PIC is
an inefficient process in vivo, with most interactions of GTFs
leading to subcomplexes that decay rather than leading to the
formation of a PIC capable of producing mRNA. This general view
of transcription initiation inefficiency is consistent with live cell
imaging data obtained by analysis of a gene array in a mouse cell
line (Stasevich et al, 2014). Moreover, this pattern is broadly
consistent with a PIC assembly pathway derived from in vitro
studies in which TBP/TFIID initially interacts with DNA directly,
followed by the binding of TFIIA and TFIIB, which provide a
platform for the binding of Pol II and TFIIF, and subsequently
TFIIE (Fig. 5C; (Luse, 2014)). The broad outlines of the pathway
suggested here are compatible with the notion of dynamic and even
branching assembly pathways proposed on the basis of observa-
tions of single complexes formed using nuclear extracts (Baek et al,
2021). As the work presented here includes a genome-scale
inventory of kinetic behavior and most promoters do not possess
a regulatory region (Rossi et al, 2021), the distribution of residence
times reflects the behavior of GTFs at such promoters. This
probably explains why, for example, we observe promoters with a
wide range of TFIIE residence times (including promoters where it
is relatively long-lived), whereas Baek et al (2021) observed
unexpectedly dynamically bound TFIIE in that system. Addition-
ally, our data do not have sufficient resolution to distinguish GTF
loading at regulatory regions (Baek et al, 2021) versus core
promoters, and we are therefore unable to draw inferences about
the impact of activators per se on the assembly process. We infer
the existence of stable TFIIB complexes on the basis of slow
turnover at a relatively small number of genes; it appears that most
TFIIB-containing complexes are unstable and that assembly of
TFIIB in the PIC requires Pol II (Nguyen et al, 2021). Despite the
dispensability of some GTFs in vitro under certain conditions, our
results are also consistent with depletion experiments showing that
all of the GTFs are required for all Pol II-mediated transcription
in vivo, and that stable, partially assembled PICs are not detectable
(Petrenko et al, 2019). Of note, however, we did observe a small
number of relatively long-lived complexes containing TFIIA or
TFIIB (Fig. 2D,F; Dataset EV1). Such long-lived complexes could
be consistent with the formation of a subcomplex of GTFs that is

durably bound to promoters and promotes reinitiation (Yudkovsky
et al, 2000). The formation of long-lived scaffolds of GTFs at some
promoters is also suggested by the residence times of TFIIE and
TFIIF at Cluster 1 genes, which were associated with the production
of multiple mRNAs (Fig. 4B). Lastly, our analysis includes the
minimal set of GTFs required for in vitro transcription using a
naked DNA template (Tyree et al, 1993; Fujiwara and Murakami,
2019; Luse, 2019). Given the complexity in interpreting the results
from a CC experiment in which one overexpressed a single or a few
subunits of a multisubunit complex, it could be difficult to apply
this method to the analysis of multisubunit complexes as currently
implemented. In future work and using methods suitable for the
analysis of multisubunit complexes, it will be interesting to
investigate the dynamics of TFIID, TFIIH (Greber et al, 2019;
Nogales and Greber, 2019), Mediator, and Pol II itself (Nozawa
et al, 2017; Plaschka et al, 2015). Other important questions that
could be addressed by performing kinetic measurements in suitably
perturbed cells include probing the roles of promoter chromatin
structure, particularly the function of the first nucleosome
(Petrenko et al, 2019). Taken together, we feel that the results
presented here provide a foundation for future work to understand
how TFs, cofactors, and the native chromatin environment
contribute mechanistically to the establishment of the rates of
transcription initiation observed in vivo.

Conclusions

The results reported here provide a wealth of kinetic information
describing the chromatin binding dynamics of five key GTFs at the
majority of promoters in budding yeast. In general agreement with
live cell imaging results, we find that many interactions are too
short-lived to be measured by CC. However, there are many
interactions with residence times in the several-minute range, and
importantly, promoters with shared GTF kinetics are functionally
related. This supports a model in which the rates of RNA synthesis
in vivo are influenced or perhaps controlled by rates of PIC
assembly, which themselves result from the combination of
promoter sequence, chromatin environment, and the TFs and
cofactors that impact them. Overall, the kinetic behavior is
consistent with the stepwise PIC assembly pathway established
using purified components in vitro in which the RNA synthesis rate
is closely correlated with the residence time of TFIIE. These results
suggest that at most promoters, relatively unstable GTF subcom-
plexes give rise to more stable fully assembled PICs and that the
initiation of RNA synthesis is accompanied by PIC dissolution. At
certain promoters, GTF binding events are associated with the
production of multiple mRNAs, suggesting the formation of stable
PIC subcomplexes that facilitate transcription reinitiation.

Methods

Yeast strains

The parental diploid strain W303 (Ralser et al, 2012) was used to
generate all of the competition ChIP strains. For each GTF, one
allele was N-terminally tagged with 3xHA and placed under the
control of an inducible GAL1 promoter. The other allele was
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N-terminally tagged with 9xMyc and remained under the control of
the endogenous promoter (Longtine et al, 1998). For the
measurement of GTFs with two subunits, one allele of each
subunit was placed under GAL1 control, and one subunit was
tagged with Myc or HA. For TFIIA, the Toa1 subunit was epitope-
tagged; for TFIIE, the Tfa1 subunit was tagged, and for TFIIF, the
Tfg2 subunit was tagged.

For construction of the GAL1-induced alleles, the plasmid
pFA6-His3MX6-PGAL1-3HA (RRID:Addgene_41610, ref. (Long-
tine et al, 1998)) was used to obtain the His3MX6-PGAL1-3HA
cassette by PCR amplification (see Appendix Table S2 for primers)
and was integrated into the genome using standard yeast molecular
biology techniques. For the GTFs TFIIA, TFIIE, and TFIIF, which
consist of two subunits, one copy of each subunit was placed under
GAL1 control to ensure balanced expression of the competitor
isoform. Following the integration of the HIS3-GAL1-3HA cassette
at one gene subunit, the strain was transformed with the TRP1-
GAL1 cassette from pFA6-TRP1-PGAL1 (RRID:Addgene_41606,
ref. (Longtine et al, 1998)), placing the second subunit under GAL1
control but without an epitope tag. The 9xMyc tag was integrated
into the genome of another isolate of W303 using the integration
and Cre-recombinase knockout method and reagents developed by
Gauss et al (Gauss et al, 2005). The 9xMyc tag and loxP-flanked
KanMX6 marker were PCR amplified from pOM20 and integrated
into the yeast genome using standard methods as above. The
KanMX6 marker was then then deleted using the GAL-inducible
Cre-recombinase carried on the plasmid pSH47 (Güldener et al,
1996). The Myc-tagged strains were then transformed with pRS319
(RRID:Addgene_35459, ref. (Sikorski and Hieter, 1989)) to
introduce a LEU3 marker for selection. In subsequent steps, diploid
strains with HA- or Myc-tagged alleles were sporulated, and
haploid segregants were mated to yield the competition ChIP (CC)
strains with different tags on each of the alleles for the GTF of
interest. Proper integration and function of the targeted alleles were
confirmed for all strains by PCR (Appendix Table S2 for primers),
Western blotting using anti-HA or anti-Myc antibodies, and
targeted DNA sequencing of the modified loci. Functionality of
the Myc- and HA-tagged alleles was confirmed by spot tests and
streaking of the strains on appropriate media (Appendix Fig. S9).

Western blotting

To measure the time course of synthesis of the GAL1-induced
alleles, CC strains were grown in 175 ml YEP+ 2% raffinose. At
OD600 of 0.6, a 20 ml aliquot of the culture was collected for the
0 min time point and 11 ml of 30% galactose was added to the
remaining culture. About 20 ml aliquots were removed at 10, 20, 25,
30, 40, 60, 90, and 120 min after galactose addition, and whole-cell
extracts were prepared from them as described previously (Zaidi
et al, 2017b). Whole-cell extract protein was resolved on 10–12%
SDS-Page gels (depending on the size of the tagged protein). The
protein was transferred overnight to 0.22 µ PVDF membranes and
probed using either anti-HA (Abcam Cat# ab9110, RRI-
D:AB_307019) or anti-Myc (Abcam Cat# ab32, RRID:AB_303599)
antibodies followed by detection using either the HRP-conjugated
goat anti-mouse secondary antibody, (for Myc; Thermo Fisher
Scientific Cat# 31430, RRID:AB_228307) or goat anti-rabbit
secondary antibody (for HA; Thermo Fisher Scientific Cat#
31460, RRID:AB_228341) and ECL substrate (Thermo Fisher

Scientific Cat# 32106). Although the galactose-induction experi-
ments were conducted in the same way for each strain, for
unknown reasons, we observed reproducible differences in the time
course of accumulation of the competitor (Fig. 2C). Since the
promoter is the same for each factor, we presume this reflects
differences in the rate of protein synthesis in vivo post-
transcription. The CC method relies on measuring a difference
between the rate of HA/Myc isoform turnover versus the rate of
synthesis of the competitor (HA-isoform), and for this reason,
factor-specific differences in the rate of competitor synthesis do not
impact the results reported here.

CC time course experiments and ChIP-seq
library preparation

Each CC strain was inoculated in 100 ml YEP+ 2% raffinose at
30 °C and incubated overnight. These starter cultures were then
used the next day to inoculate 2250 ml cultures of YEP+ 2%
raffinose at an initial OD600 of 0.05. When an OD of 0.6 was
reached, for the 0-min time point, 250 ml of the culture was
crosslinked by adding 6.75 ml formaldehyde (Thermo Fisher
Scientific Cat# F79-500) to achieve a final concentration of 1%
for 20 min. The reaction was then quenched by adding 15 ml of
2.5 M glycine for 5 min, and the cells were collected by centrifuga-
tion. To the rest of the 2000 ml culture, 142.8 ml of 30% galactose
was added to yield a final concentration of 2%. At 10, 20, 25, 30, 40,
60, 90, and 120-min time points, 250 ml of the culture was
collected, crosslinked, and quenched the same way as the 0-min
time point. Cell pellets were washed three times with TBS buffer
(40 mM Tris-HCl, pH 7.5 plus 300 mM NaCl), and ChIP was
performed as described (Viswanathan et al, 2014). The HA and
Myc antibodies used for ChIP were the same as those used for
western blotting described above. Successful ChIP was confirmed
by RT-PCR using primers to detect binding to the URA3 promoter
(5′-AAGATGCCCATCACCAAAA-3′ and 5′-AAGAATACCGGTT
CCCGATG-3′). ChIP-seq libraries were prepared following the
manufacturer’s instructions using the Illumina TruSeq ChIP library
prep kit set A and B (Cat# IP-202-1012 and IP-202-1024).
Successful amplification was confirmed by RT-PCR using the
URA3 promoter primers. Library quality was assessed using an
Agilent Bioanalyzer 2100 and the Agilent-1000 DNA kit (Agilent
Cat# 5067-1504), and libraries were quantified using the Qubit
dsDNA Quantitation, High Sensitivity kit (Cat# Q32851). A 5 nM
pool of each library was sequenced by the UVA Genome Analysis
and Technology Core (RRID:SCR_018883) using Illumina Next-
Seq500 and NextSeq2000 instruments. While we only gathered one
replicate competition ChIP-seq sample per time point, the
normalized data from the eight-time points were required to fit
both the Hill model and turnover model with R2 > 0.7, as
detailed below.

Nascent RNA labeling

Nascent RNA labeling was performed as previously described
(Warfield et al, 2017). Briefly, W303 cells were grown as for
competition ChIP and induced with 2% galactose for 20 or 60 min.
An 800 ml culture in YEP+ 2% raffinose was grown at 30 °C to an
OD600 of 0.6, then 57 ml of 30% galactose was added. Twenty
minutes after galactose addition, 400 ml of the culture was divided
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into 200 ml aliquots, and 500 μl of 2 M 4-thiouracil (4-sU, Sigma-
Aldrich Cat# 440736-1 G) was added to one of the flasks with
vigorous mixing and returned to the shaking incubator for 6 min.
Cells with and without 4-sU were pelleted and washed with TBS. At
the 60-min time point, the remaining 400 ml culture was split and
treated as described for the 20-min time point culture. Two
biological replicates were obtained for each condition.

S. pombe strain SY78 cells were used as a spike-in normalization
control. About 100 ml of S. pombe cells were grown in YE media
(0.5% yeast extract plus 3% glucose) to an OD600 of 0.6 and labeled
by adding 125 μl of 2 M 4-sU for 6 min and collected by
centrifugation.

The S. cerevisiae W303 cells and S. pombe SY78 cells were mixed
in an 8:1 ratio for each condition, and RNA was isolated using the
Ribopure Yeast Kit (Ambion Cat# AM1924). About 40 μg of RNA
was biotinylated with 4 μg of MTSEA Biotin XX (Biotium Cat#
90066). The biotinylated RNA was isolated by binding to 80 μl of a
Dynabeads MyOne Streptavidin C1 bead suspension (Invitrogen
Cat# 65001) by rotating the tube for 15 min, and the unbound
supernatant was saved. The bound RNA was eluted in 50 μl of
streptavidin elution buffer. The eluted RNA and the RNA in the
flowthrough were purified and concentrated using RNeasy columns
(Qiagen Cat# 74104).

RNA-seq

Ribosomal RNA was depleted using the Ribo Minus Yeast module
(Thermo Fisher Scientific Cat# 45-7013) and libraries were
constructed using the Ultra Directional RNA Library Prep Kit
(NEBNext Cat# E74205) and Multiplex Oligos (NEBNext Cat#
E73355). Sequencing was performed by Novogene using the
Illumina NovaSeq 6000 platform.

Preprocessing of high throughput DNA sequencing data

Libraries prepared from each time point for a given GTF and for
either HA- or Myc-tagged samples were sequenced in a single
multiplexed run. Raw read quality was assessed using FASTQC
(v0.11.5) (Andrews, 2010). Fastq files from individual flow cells
were merged, and reads were mapped to the sacSer3 reference
genome using Bowtie2 (v2.2.6) (Langmead and Salzberg, 2012)
with default settings. Overall read mapping was typically in the 90+
% range, yielding ~20–30M reads per time point on average. The
resulting SAM files were converted to BAM format, unmapped
reads were removed, and the BAM files were sorted and indexed
using SAMtools (v0.1.19-44428 cd) (Li et al, 2009). The landscape
of read mapping was inspected using the Integrated Genomics
Viewer (IGV) (Thorvaldsdottir et al, 2013), and peaks of
enrichment were identified using MACS2 (v2.1.0.20151222)
(Zhang et al, 2008) applied to each of several early time point
Myc datasets with an input dataset as control and options
--nomodel --extsize 147. Peaks from individual MACS2 runs were
browsed in IGV, then concatenated and merged using the bedtools
(v2.18.2) merge function (Quinlan and Hall, 2010). Count tables
were then generated by associating reads with the peak intervals
using bedtools multicov. Read counts were normalized in a three-
step process. First, read counts in each peak and for each time point
were normalized to the overall read depth. Next, read counts for the
HA samples were normalized to the average relative levels of the

factor of interest using the average values obtained from three
independent western blots. Lastly, the normalized HA read count
matrix was divided by the normalized Myc count matrix to yield
the ratio count tables for mathematical modeling as described
below. Importantly, this normalization approach was validated by
comparison with earlier results: residence times derived from
normalized TBP CC data were strikingly well correlated with TBP
CC data obtained many years earlier and using arrays rather than
sequencing (Appendix Fig. S8C). Since most GTF binding events
display fast, second-timescale dynamics (Nguyen et al, 2021), this
normalization method tends to bring the kinetics of fast sites in line
with the timescale of competitor induction regardless of whether
there is a delay in e.g., the time it takes for competitor protein
maturation or nuclear import. Notably, the turnover model
assumes the protein induction is effectively occurring in the
nucleus, which this normalization approximates.

Deriving residence times from competition ChIP-seq
ratio data using a mass action kinetics turnover model

We adapted the approach of Zaidi et al, (Zaidi et al, 2017a),
originally developed for TBP competition ChIP-chip data, to fit a
differential equation-based turnover model at every GTF site using
normalized competition ChIP-seq data from multiple GTFs. We
used normalized count tables (see previous section of Materials and
Methods) with HA/Myc ratios for every GTF site, R(t), for every
time point, t. We ultimately estimate the ratio of fractional
occupancies of HA- over Myc-tagged GTF, θBðtÞ=θAðtÞ with B and
A representing HA- and Myc-tagged proteins, respectively, from
R(t) at every time point. We then fit a mass action kinetic turnover
model to the estimated ratio of fractional occupancies at every
promoter site where a peak was identified to derive the residence
time for a GTF at that site. As previously reported (Lickwar et al,
2012; Zaidi et al, 2017a) and detailed below, the ratio, θBðtÞ=θAðtÞ,
is insensitive to the overall on-rate, which is the only place that the
concentrations of HA- and Myc-tagged proteins enters the mass
action model. Consequently, the estimation of residence time is
insensitive to the relative levels of HA- and Myc-tagged proteins at
steady state.

More specifically, we first fit the normalized ratio of HA- over
Myc-tagged relative protein levels as estimated by Western blotting
versus induction time, which we denote cBðtÞ=cA with B and A
representing HA- and Myc-tagged protein, respectively, to a Hill
model

cBðtÞ=cA ¼ XP t=t1=2ind
� �n

= 1þ t=t1=2ind
� �n� �� �

(1)

In Appendix Table S3, we show the resulting fitted parameters
(XP , t1=2ind) and statistics associated with the significance of each
parameter’s contribution to the fit for every GTF. In this case, we
fixed the Hill coefficient, n, to be an integer and selected the value
that maximized the adjusted R2. In order to satisfy the t ¼ 0 and
t ! 1 boundary condition of the mass action kinetic turnover
model shown below in Eqs. (2) and (3), which are θBð0Þ=θA 0ð Þ ¼ 0
and limt!1 θBðtÞ=θAðtÞ ¼ XP , we subtract the residual background
and scale the normalized competition ChIP-seq ratio data at every
site where peaks were called as follows. We fit the data to a Hill
model with the form shown in Eq. (1) with the same n and an
added background variable B at every site. This yields an amplitude,

Kristyna Kupkova et al The EMBO Journal

© The Author(s) The EMBO Journal Volume 43 | Issue 9 | May 2024 | 1799 – 1821 1809



XCC, a half-time rise, t1=2CC , and background B for every site. We
estimate the ratio of HA- over Myc-tagged GTF occupancy,
θBðtÞ=θAðtÞ, at every site for every time point, t, by subtracting the
residual background B from the normalized ChIP signal ratio data,
RðtÞ, and scaling the result: θBðtÞ=θA tð Þ ¼ XP=XCCð Þ R tð Þ � Bð Þ. We
then effectively solve the following coupled differential equations,
which model each GTF’s turnover at every site which we assume
follows mass action kinetics, where ka and kd are the molecular on-
and off-rate, respectively:

dθBðtÞ
dt

¼ ðkacAÞ cBðtÞcA
1� θA tð Þ � θBðtÞð Þ � kdθBðtÞ (2)

dθAðtÞ
dt

¼ ðkacAÞ 1� θA tð Þ � θBðtÞð Þ � kdθAðtÞ (3)

We assume that these rates are the same for both HA- and Myc-
tagged GTFs. These coupled equations cannot be solved analyti-
cally. Thus, we effectively solve them and fit the resulting ratio of
occupancies, θBðtÞ=θAðtÞ, to the background subtracted, scaled
competition ChIP-seq data using Mathematica. Briefly, we use the
function ParametricNDSolveValue twice to return an effective,
numerical solution of Eqs. (2) and (3) as a function of the
parameters kacA and kd : θBðt;kacA; kdÞ and θA t;kacA; kdð Þ. We then
take the ratio of the outputs of ParametricNDSolveValue,
θBðt;kacA; kdÞ=θA t;kacA; kdð Þ, and input it into NonlinearModelFit
which then fits this ratio to the background subtracted, scaled
competition ChIP-seq data. We and others formally show the ratio
of fractional occupancies is relatively insensitive to the on-rate,
kacA, while being highly sensitive to the off-rate, kd . We derive the
physical residence time for every GTF at every site using
t1=2 ¼ ln2=kd . Finally, we make use of an observation made in
(Zaidi et al, 2017a) to make precise starting estimates of the
residence time for non-linear model fitting using NonlinearMo-
delFit. Specifically, the residence time is well approximated by a
relatively simple linear or quadratic function of t1=2CC � t1=2ind
derived by fitting a Hill model to the normalized competition ChIP-
seq ratio data at every site and the ratio of GTF protein levels as a
function of time. We start with an initial guess that works well for
most GTFs: t01=2 ¼ 0:6ðt1=2CC � t1=2indÞ þ 0:1 (Fig. 1D), perform the
fit of the actual turnover model to the scaled, background
subtracted competition ChIP-seq data, derive estimates of t1=2, fit
t1=2 to linear or quadratic functions of t1=2CC � t1=2ind , use this more
precise relationship of an initial estimate of residence time, t01=2, and
refit the turnover model to the competition ChIP data. In Appendix
Table S4, we show the initialization formulas used for the final
turnover model fit the competition ChIP-seq data used to derive the
final estimates of residence times for every GTF. Finally,
NonlinerModelFit returns a number of statistics associated with
the fit at every site. This includes an error estimate of the off-rate,
4kd , and the adjusted R2. Sites that yielded a relative error
4kd=kd<3 and adjusted R2>0:7 were used in downstream analysis
involving residence time estimates.

Fitting additional reliably fast sites

After the initial fitting, additional reliably fast sites were added to
the estimated residence times. These were identified by fitting Hill
equation Eq. (1) with the R nls function to the normalized HA/Myc

count ratios which were further normalized to range between zero
and one. Hill coefficients were provided from protein induction
curve fits (Figs. 2C and EV1E). Initial estimates for fitting the Hill
model using the nls function were set with parameter start = list(t1/
2CC = 40, XCC = 1), and parameter control was set to nlc. For each
GTF, sites without estimated residence times from the turnover
model whose 4t1=2 ¼ t1=2CC � t1=2ind (Fig. 1D) were less than 2 min
were classified as reliably fast (<1 min). All residence time estimates
are available in Dataset EV1.

For plotting purposes, the residence times for the reliably fast
sites were generated with the R runif function with min = 0,
max = 1. At the beginning of each script, the function set.seed was
used with parameter 42 for reproducibility. In each plot, the
randomly generated values are highlighted either by their separa-
tion by a dashed line or shaded area.

Gene assignment and filtering

Individual regions were assigned to the nearest genes with calcFea-
tureDist_aY function (available from https://github.com/AubleLab/
annotateYeast) with default parameters. Only regions within −250 to
100 bp from transcription start sites (TSSs) were kept. If multiple
regions were assigned to one gene, only the closest one was kept.
Regions assigned to tRNAs were removed from the analysis.

Nascent RNA-seq analysis

Raw paired-end FASTQ files were mapped to the S. cerevisiae
genome (http://daehwankimlab.github.io/hisat2/download/#s-
cerevisiae, R64-1-1) with HISAT2 (2.0.4) (Kim et al, 2019) with
parameter --rna-strandness RF and converted to BAM files using
SAMtools (0.1.19-44428 cd) (Li et al, 2009) view function with
parameters -S -b. SAMtools sort and index functions with default
parameters were used to sort and index the BAM alignment files.

To create alignment indexes for S. pombe (used for normal-
ization), the S. pombe FASTA file (ASM294v2) was obtained from
Ensembl (Cunningham et al, 2022) and converted to an index file
with the hisat2-build function with default parameters. The paired-
end FASTQ files were then mapped against the created index files
and further processed analogously to S. cerevisiae.

The quality of both FASTQ and BAM files was assessed with
FastQC (0.11.5) (Andrews, 2010) in combination with multiQC
(v1.11) (Ewels et al, 2016), and BAM files were further visually
inspected with IGV (2.7.2) (Thorvaldsdottir et al, 2013).

The aligned reads were quantified over S. cerevisiae genes using
Rsubread (2.4.3) (Liao et al, 2014) featureCounts function with
parameters GTF.featureType = ”gene”, GTF.attrType = ”gene_id”,
countMultiMappingReads = TRUE, strandSpecific = 2, isPairedEnd =
TRUE. The GTF and FASTA files provided to the function were
obtained from Ensembl (Cunningham et al, 2022), genome assembly
R64-1-1. To normalize the data, normalization factors for each sample
were calculated as the total number of reads mapped to S. pombe
divided by 2,000,000. The normalized counts were obtained by
dividing the raw counts by each sample’s corresponding normalization
factor. Genes with 0 counts in more than half of the samples were
filtered out.

Principal component analysis (PCA) was performed by first
creating a DESeq object from the raw count table (with low count
genes filtered out) with the DESeq2 (1.30.1) (Love et al, 2014)
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DESeqDataSetFromMatrix function followed by S. pombe normal-
ization with DESeq2 normalizationFactors and regularized log
transformation with DESeq2 rlog function with parameter blind =
TRUE. The resulting object was passed to R prcomp function.

DESeq2 was used to identify any differences in gene
expression between samples grown for 20 or 60 min in galactose.
Raw counts from samples with thiouracil addition were passed to
DESeqDataSetFromMatrix function with design parameter set to
time in galactose. S. pombe normalization factors were set with
normalizationFactors. Genes with adjusted p value (padj) <0.05
were considered differentially expressed between the two
conditions.

Synthesis rates were estimated with DTA (2.36.0) (Schwalb et al,
2012) DTA.estimate function. S. pombe-normalized counts from
samples with thiouracil addition were used for the analysis. All
genes with 0 count in any of the samples were filtered out, and the
final matrix passed to the function. All genes from the final filtered
matrix were passed to the parameter reliable. Further parameters
were set to: tnumber = Sc.tnumber, check = TRUE, ccl = 150,
mRNAs = 60000, condition = “real_data”, ratiomethod = “bias”, and
time in the phenomat object was set to 6. Final synthesis rates in
mRNA per cell per minute were obtained by dividing the synthesis
rates output from the DTA.estimate function by 150 (length of the
cell cycle in minutes). The final synthesis rates are available in
Dataset EV2. Comparison of synthesis rates between samples
grown for 20 vs. 60 min in galactose was performed using
DTA.dynamic.estimate functions similarly as described above with
additional columns timeframe and timecourse in the phenomat
object specifying 20 vs. 60 min conditions. The correlation between
the synthesis rates of the two time courses was calculated using the
R cor function with method = ”pearson”.

Comparison with other data

TBP residence time estimates were obtained from Zaidi et al, 2017a
(Zaidi et al, 2017a), TBP and TFIIE residence time estimates from
Zaidi et al, 2017b (Zaidi et al, 2017b), transcription rates from
Garcıá-Martıńez et al, 2004 (García-Martínez et al, 2004), and Rap1
residence times from Lickwar et al, 2012 (Lickwar et al, 2012).
Correlations were calculated with R cor function. For residence
time correlations, where we do not have exact time estimates for
fast sites, Pearson’s correlation was used, while for synthesis rates,
Spearman’s rank correlation was used.

Model plotting

Examples of model fits were obtained by extracting Hill equation
coefficients, as described in “Fitting additional reliably fast sites”
section of Materials and Methods. Output model values and the
measured competition ChIP (CC) values were both scaled to range
between zero and one to create comparable plots by dividing the
values by the estimated Xcc parameter.

Visual inspection with genome browser

To view the normalized HA/Myc ratios in the genome browser,
BAM alignment files were first converted to bigWig files using the
deepTools (3.3.1) (Ramírez et al, 2014) bamCoverage function. The
parameter scaleFactor was set to per million mapped reads scaling

factor for the Myc samples and to per million mapped reads
multiplied by HA/Myc protein induction ratio for the HA samples.
The final log2 transformed ratios of HA/Myc were obtained by
passing the generated bigWig files to the deepTools bigwigCompare
function with parameter operation set to log2.

Residence time vs. synthesis rate

To explore the residence times of each analyzed GTF in relation-
ship to synthesis rates, synthesis rates were first divided into
quartiles using the R ntile function with the parameter ngroups set
to 4. Residence times within each synthesis quartile were plotted as
boxplots with ggplot2 (3.3.6) (Wickham, 2016) geom_boxplot
function, where the middle line represents the median, the lower
and upper hinge represent the first and third quartiles, and the
whiskers represent 1.5 * interquartile range of the values. Normal-
ity was tested with q-q plots. Statistical testing between pairs of
groups was performed using unpaired two-sided Wilcoxon tests,
and an overall summary for each GTF with Kruskal–Wallis test.

The correlations between synthesis rates and residence times
were calculated with the R cor function with method set to
“pearson”.

Linear models between synthesis rates were built with the R lm
function either as linear models between synthesis rate and
residence times of individual GTFs or as a linear model between
synthesis rates and a linear combination of residence times of all
factors in one model.

Transcription efficiency

Transcription efficiency (TE) was obtained by multiplying the
synthesis rate by the residence time of a given TF. The log2
transformed values were plotted with the ggplot2 geom_violin
function to better represent the efficiency of a binding event to
produce an RNA molecule (values below zero represent multiple
binding events for RNA molecule synthesis). Medians of the log2
transformed TE values for each TF were added to the violin plots
with the tidyverse (1.3.1) (Wickham et al, 2019) stat_summary
function with parameter fun=median.

PCA

To represent genes or GTFs using their corresponding high
dimensional data in low-dimensional space, we performed PCA
on the residence times with or without the exclusion of the reliably
fast sites. Since the residence time estimates for all TFs were not
available for all genes, the missing values were imputed with the
missMDA (1.18) package (Josse and Husson, 2016). The table
containing the reliable residence times was first passed to the
estim_ncpPCA function with the parameter method.cv set to
“Kfold”. The residence timetable was then passed to the imputePCA
function along with the ncp object outputted from the
estim_ncpPCA function. The completeObs object from the out-
putted list was then passed to the prcomp function with parameter
scale.=TRUE to obtain the principal components. Depending on
the orientation of the input matrix passed to the prcomp function,
principal components representing genes or GTFs were obtained.
To color-code the PCA plot with mean synthesis rates, the tidyverse
(1.3.1) (Wickham et al, 2019) function stat_summary_2d was used
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with parameter z set to the synthesis rates and parameter color set
to “transparent”. Viridis (0.6.2) (Garnier et al, 2024) color scale “B”
was used for coloring. The first two principal components from the
“gene-oriented” PCA matrices were then correlated with the
residence times of each TF and with the synthesis rates using the
R function cor with method = ”pearson”.

Residence time and synthesis rate comparison between
gene classes

The list of genes with TATA-containing promoters was obtained
from (Rhee and Pugh, 2012). Genes were classified as ribosomal
subunits if their systematic name started with “RPL”. To compare
the residence times and synthesis rates between classes, an unpaired
two-sided Wilcoxon test (normality tested with q-q plots) was
carried out with results plotted using the ggpubr (0.4.0)
(Kassambara, 2020) stat_compare_means function with default
parameters. To compare residence times across synthesis quartiles,
synthesis rates were separated into the four quartiles based on
synthesis rates within each group (e.g., TATA-containing and
TATA-less). Box plots were created using ggplot2 (3.3.6) (Wick-
ham, 2016) geom_boxplot function, where the middle line
represents the median, the lower and upper hinge represent the
first and third quartiles, and the whiskers represent 1.5 *
interquartile range of the values.

Heatmap

Only genes for which residence times were available across all
GTFs (except for excluded TBP, whose residence times are mostly
<1 min and would therefore present mostly randomly generated
values) were included in the heatmap (n = 1417). Reliable fast
residence times were replaced by randomly generated values
between zero and one (function runif: min = 0, max = 1; set.-
seed(42)). Prior to plotting, residence times for each factor were
z-score normalized using the R function scale with default settings.
A final heatmap was created with the ComplexHeatmap (2.6.2) (Gu
et al, 2016) function Heatmap with parameters set to cluster-
ing_method_rows = “ward.D”, row_split = 10. Genes belonging to
each of the ten clusters (Dataset EV3) were extracted from the
heatmap object, and mean synthesis rates for each cluster were
calculated.

Functional annotation

Genes belonging to each heatmap cluster were passed to g:Profiler
(Raudvere et al, 2019) for pathway enrichment. In g:Profiler, S.
cerevisiae S88C was selected as an organism, and data sources were
set to GO molecular function (GO:MF), GO biological process
(GO:BP), KEGG, WikiPathways (WP), and TRANSFAC. Addi-
tionally, genes from the clusters were tested for enrichment within
genes associated with DNA-binding factors (DBFs) from (Rossi
et al, 2021), here referred to as Yeast Epigenome database (see
section “Yeast DBF database (Yeast Epigenome)” of the Materials
and Methods for information about data accessions and curation).
Enrichment was established by performing Fisher’s exact test (R
function fisher.test, parameter alternative = ”greater”), where the
universe was set to the union of all genes involved in the heatmap
and all genes associated with a given factor. Final p values were

corrected for multiple testing with false discovery rate (FDR, R
function p.adjust: method = ”fdr”). Results with FDR padj < 0.05 or
p < 0.05 were considered significant.

Yeast DBF database (Yeast epigenome)

BED files from (Rossi et al, 2021) were obtained from Gene Expression
Omnibus under accession number GSE147927. Replicates were merged
with the bedtools (v2.29.2) (Quinlan and Hall, 2010) merge function
after they were sorted with the base Linux sort function with
parameters -k1,1 -k2,2n. Regions were then assigned to genes
analogously to the assignment of the CC regions (see “Gene assignment
and filtering” section of Materials and Methods). The output consists of
gene lists for individual DBFs within promoter regions.

Additional tools used

Tidyverse (1.3.1) package (Wickham et al, 2019) was used for data
processing in R, ggplot2 (3.3.6) (Wickham, 2016) was used for
plotting. Illustrations were made with Biorender (https://
biorender.com/). Figures were assembled with Inkscape (1.0.2,
https://inkscape.org/).

Data Availability

The datasets and computer code produced in this study are
available in the following databases: • SuperSeries with all data::
Gene Expression Omnibus GSE235002. • Competition ChIP-seq
data: Gene Expression Omnibus GSE235000. • Nascent RNA-seq
data: Gene Expression Omnibus GSE235001. • The scripts with
source data are available from https://github.com/AubleLab/
PIC_competition_ChIP_scripts (release v02) and https://doi.org/
10.5281/zenodo.10236107.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44318-024-00089-2.
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A peer review file is available at https://doi.org/10.1038/s44318-024-00089-2
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Figure EV1. Protein induction.

(A–D) Western blots of (A) TBP, (B) TFIIA (Toa1), (C) TFIIB, and (D) TFIIF (Tfg1) over the indicated time course. Myc tag indicates proteins made from genes expressed
under the control of their endogenous promoters, and the HA tag measures the level of the competitor expressed under galactose control. (E) Normalized HA/Myc ratios
quantified from Western blots (n= 2 biological replicates) with Hill fits. Hill fit parameters are shown in the bottom right corner of each panel, n Hill coefficients, t1/2ind
half-time of HA-tagged protein induction. Source data are available online for this figure.
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Figure EV2. Synthesis rate estimation with dynamic transcriptome analysis (DTA).

(A) Schematic overview of the DTA method as adapted in this study. (B) Principal component analysis (PCA) plot showing the first two principal components (PCs)
calculated from normalized read coverage signal from all samples generated in this study. Highlighted are clusters of samples representing nascent RNA (L fraction after
4-sU addition), total RNA (T fraction after 4-sU addition as well as from negative control, along with U fraction from negative control), and unlabeled RNA (U fraction after
4-sU addition). Percentages within the axis labels indicate the percentage of variance explained by a given PC. (C) MA plot showing differentially expressed genes between
samples grown for 60 vs. 20 min in galactose. Each point represents a gene, the x-axis indicates the size of a given gene in terms of the mean number of reads after
normalization mapped to the gene, and the y-axis shows log2 of fold change between the two conditions. Highlighted are significantly misregulated genes, blue:
upregulated at 60 min, red: downregulated at 60min compared to the 20-min time point, significance threshold: FDR-corrected p value (padj) <0.05. (D) Comparison of
synthesis rates (in mRNA per cell per minute) estimated from samples grown for 20 min in galactose (x-axis) vs. 60min in galactose (y-axis). Pearson’s correlation
coefficient can be found above the plot. (E) Histogram showing the distribution of synthesis rates (in mRNA per cell per minute) estimated jointly from samples grown for
20 and 60min in galactose. Synthesis rates higher than 1.5 were combined into one bar to eliminate long tails. (F) Comparison of synthesis rates generated in this study (x-
axis) to those generated by García-Martínez et al, 2004 (García-Martínez et al, 2004). Spearman’s correlation coefficient is mentioned above in the plot. The plot is color-
coded based on point density in each area. Symbol ≥ on the axis indicates that values higher than an indicated value were shrunk for plotting purposes to eliminate outliers.
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Figure EV3. Comparison between residence times and synthesis rates.

(A) Bar plot showing β (beta) coefficients for linear models built between synthesis rates and residence times of an indicated GTF (synthesis rate ~ β*res. timeGTF+ α). (B)
Analogous to (A), showing coefficient from a linear model combining all factors (synthesis rate ~ βTBP*res. timeTBP+ βTFIIA*res. TimeTFIIA+ βTFIIB*res.
TimeTFIIB+ βTFIIF*res. TimeTFIIF+ βTFIIE*res. TimeTFIIE+ α). (C) Relationship between residence times (x-axis) and synthesis rates (y-axis) for GTFs as indicated. Pearson’s
correlation coefficient estimates, r, are indicated in each panel. Symbol ≥ on the axis indicates that values higher than an indicated value were shrunk for plotting purposes
to eliminate outliers. In the plots, gray dashed line separates values randomly generated in this study for reliably fast sites.
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Figure EV4. Relationships among GTF residence times and to mRNA synthesis rates.

Each panel shows a comparison of residence times of pairs of GTFs as indicated in the panel titles. Each point is a shared gene target. The color map shows the mean
synthesis rates of the genes under the given area. Source data are available online for this figure.
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Figure EV5. Comparison of residence times between genes coding for ribosomal subunits and others.

(A) Box plots showing the comparison of residence times (y-axis) for a given GTF (x-axis) for genes coding for ribosomal subunits (red) and other genes (green). The
number of observations (n): not ribosomal/ribosomal TBP- 2810/87; TFIIA- 2418/76; TFIIB- 3420/93; TFIIF- 2776/88; TFIIE- 3723/86. (B) Box plot showing the
comparison of synthesis rates (y-axis) between genes coding for ribosomal subunits and other genes. Wilcoxon p value is indicated. Number of observations (n): not
ribosomal- 3169, ribosomal- 57. (C) Box plots showing the comparison of residence times (y-axis) for a given GTF (x-axis) across synthesis quartiles within genes coding
for ribosomal subunits and other genes. In the plots, the gray area highlights values randomly generated in this study for reliably fast sites. Symbol ≥ on the axis indicates
that values higher than an indicated value were shrunk for plotting purposes to eliminate outliers. The number of observations (n): not ribosomal/ribosomal TBP- Q1: 209/
11, Q2: 320/10, Q3: 414/11, Q4: 583/14; TFIIA- Q1: 231/13, Q2: 316/9, Q3: 382/13, Q4: 409/9; TFIIB Q1: 293/14, Q2: 475/12, Q3: 569/11, Q4: 589/12; TFIIF- Q1: 245/11,
Q2: 355/12, Q3: 419/12, Q4: 494/12; TFIIE- Q1: 403/13, Q2: 577/12, Q3: 598/10, Q4:540/10. Data information: (A–C) In boxplots, the middle line represents the median,
the lower and upper hinges represent the first and third quartiles, and the whiskers represent the 1.5 * interquartile range.
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