Skip to main content
. 2024 Apr 24;10(9):e30238. doi: 10.1016/j.heliyon.2024.e30238

Table 1.

Nanoparticles in autophagy regulation.

Nanostructure Applied agents in nanoparticle synthesis Drug/gene delivery Zeta potential (mV) Particle size (nm) In vitro/in vivo Cell line/animal model Remarks Refs
Polymeric nanoparticles Selenium Hydroxyapatite 50–100 nm In vitro In vivo MNNG/HOS cells Orthotropic xenograft mouse model Selenium plays a part in chemotherapy. Bone repair is provided by hydroxyapatite. Raising the amount of ROS JNK signaling being triggered and Akt/mTOR signaling being inhibited Causing cancer cells to undergo autophagy and apoptosis [81]
Polymeric nanoparticles Selenium Laminarin Chloroquine 60 nm In vitro HepG2 cells causing cancer cells to undergo both autophagy and apoptosis Up regulating p62 and LC3-II in the induction of autophagy Using chloroquine to block autophagy causes cell death [82]
Polymeric nanoparticles Selenium 30 nm In vitro HCT116 cells Beclin-1 up regulation Activating autophagy in cancer cells to accelerate their demise [83]
Polymeric nanoparticles (PLGA and succinate) Doxorubicin Chloroquine In vitro A549 cells doxorubicin's protection via autophagy inhibition and improved nuclear translocation of this chemotherapy drug [84]
Polystyrene nanoparticles Amino groups +37 to − 56.7 mV In vitro OVCAR3 cells Autophagy inhibition increases anti-tumour action that exhibits time- and concentration-dependent behaviour. [85]
Polymeric nanoparticles PEI PLGA Paclitaxel +21.7 mV 80 nm In vitro U251 cells Preventing the growth and invasion of cancerous cells LC3-II and autophagosome accumulation are important in initiating autophagy. [86]
Polymeric nanoparticles HGFK1 Sorafenib +6.68 mV 106.67 nm In vitro In vivo 786-O, and ACHN cells Xenograft mouse model inhibiting the development of tumours enhancing the survival of mice demonstrating the combinatorial effects of sorafenib reducing sorafenib-mediated autophagy by HGFK1 administration [87]
Polymeric nanoparticles PLGA Curcumin GANT61 213.3 mV 190–400 nm In vitro MCF-7 cells reducing the ability of cancer stem cells to self-renew lowering the survival of cancer cells by inducing both autophagy and apoptosis [88]
Selenium nanoparticles 27.5 nm In vitro MCF-7 cells Selenium nanoparticles and radiation have a synergistic effect by inducing autophagy and raising ROS levels. [89]
Lipid nanoparticles +29.8 mV Up to 136 nm In vitro Hela cells Bcl-2 expression is down regulated during endoplasmic stress to initiate autophagy. [90]
Au–Ag nanoparticles Polydopamine 200 nm In vitro In vivo T24 cells Xenograft model Delivering photo-thermal treatment and raising ROS concentrations Activating the ERK and Akt signaling pathway promoting both apoptosis and autophagy [91]
Au nanoparticles Valine −29 mV 20 nm In vitro In vivo MDA-mB-231 cells Mouse model Increasing ROS concentrations Activating autophagy Applying cytotoxicity to cancerous cells [92]
Au nanoparticles Quercetin −19.1 mV 106.7 nm In vitro In vivo U87 cells Nude mice decreasing cell viability in a way depending on concentration and time suppressing the expression of PI3K/Akt and mTOR Up regulation of ERK and LC3-II triggering autophagy [93]
Super-paramagnetic iron oxide nanoparticles AGO2 MiRNA-3765B −20 mV 70 nm In vitro In vivo MCF7 and MDA-MB-453 cells Xenograft nude mice demonstrating anti-tumour action and increasing cisplatin's cytotoxicity against cancer cells suppression of autophagy lowering the expressions of ATG4C and Beclin-1 [94]
Zinc oxide nanoparticles 20 nm In vitro SKOV3 cells Cancer cell viability declining p53 and LC3 up regulation Encouragement of autophagy [95]
Zinc oxide nanoparticles −5.01 mV 172 nm In vitro In vivo MCF-7 cells Animal models of 4 T1 tumour cells Increasing ROS concentrations Increasing ATG5 Activating autophagy [96]
Hollow mesoporous silica nanoparticles Hydroxychloroquine +41.15 to − 26.50 mV 48.8 nm In vitro In vivo HCT116 cells Xenograft model Growing hydroxy-chloroquine intracellular accumulation preventing autophagy as a means of promoting survival Increasing radiation's cytotoxicity for cancer treatment [97]
Silica nanoparticles 86 nm In vitro HCT116 cells Colon cancer treatment via influencing the endoplasmic reticulum to induce autophagy raising the LC3-II levels [98]
Mesoporous silica nanoparticles Poly-dopamine Chloroquine Glucose consumer glucose oxidase Up to 235 nm In vitro In vivo HepG2 cells Tumour bearing mice The malnutrition that GOx causes in cancer cells Providing photo-thermal treatment Increasing the potential for autophagy inhibition to decrease cancer by fasting and photo-thermal treatment [99]
Cuprous oxide nanoparticles In vitro In vivo J82, T24, 5637, UMUC-3 cells Xenografts Causing apoptosis and cell cycle arrest; decreasing the survival of cancer cells in a way depending on time and concentration to increase apoptotic cell death, ERK signaling up regulation and autophagy activation are important. [100]
TiO2 nanoparticles 5-Fluorouracil 20–30 nm In vitro AGS cells Raising ROS levels causing lysosomal function disruptions inhibiting autophagy encouraging chemotherapy's cytotoxicity bringing about apoptosis [101]
Magnetic iron nanoparticles PEI 25.1 mV 26.3 nm In vitro HeLa cells Increasing ROS concentrations ATG7 up regulation and activation of the Akt/mTOR axis triggering autophagy [102]
Polymeric nanoparticles Selenium Laminarin Chloroquine 60 nm In vitro HepG2 cells causing cancer cells to undergo both autophagy and apoptosis Up regulating p62 and LC3-II in the induction of autophagy Using chloroquine to block autophagy causes cell death [103]
Polymeric nanoparticles Selenium 30 nm In vitro HCT116 cells Beclin-1 up regulation Activating autophagy in cancer cells to accelerate their demise [104]
Polymeric nanoparticles (PLGA and succinate) Doxorubicin Chloroquine In vitro A549 cells doxorubicin's protection via autophagy inhibition and improved nuclear translocation of this chemotherapy drug [105]
Polystyrene nanoparticles Amino groups +37 to − 56.7 mV In vitro OVCAR3 cells Autophagy inhibition increases anti-tumour action that exhibits time- and concentration-dependent behaviour. [106]
Polymeric nanoparticles PEI PLGA Paclitaxel +21.7 mV 80 nm In vitro U251 cells Preventing the growth and invasion of cancerous cells LC3-II and autophagosome accumulation are important in initiating autophagy. [107]
Polymeric nanoparticles HGFK1 Sorafenib +6.68 mV 106.67 nm In vitro In vivo 786-O, and ACHN cells Xenograft mouse model inhibiting the development of tumours enhancing the survival of mice demonstrating the combinatorial effects of sorafenib reducing sorafenib-mediated autophagy by HGFK1 administration [108]
Polymeric nanoparticles PLGA Curcumin GANT61 213.3 mV 190–400 nm In vitro MCF-7 cells reducing the ability of cancer stem cells to self-renew lowering the survival of cancer cells by inducing both autophagy and apoptosis [109]
Selenium nanoparticles 27.5 nm In vitro MCF-7 cells Selenium nanoparticles and radiation have a synergistic effect by inducing autophagy and raising ROS levels. [110]
Lipid nanoparticles +29.8 mV Up to 136 nm In vitro Hela cells Bcl-2 expression is down regulated during endoplasmic stress to initiate autophagy. [111]
Au–Ag nanoparticles Polydopamine 200 nm In vitro In vivo T24 cells Xenograft model Delivering photo-thermal treatment and raising ROS concentrations Activating the ERK and Akt signaling pathway promoting both apoptosis and autophagy [112]
Au nanoparticles Valine −29 mV 20 nm In vitro In vivo MDA-mB-231 cells Mouse model Increasing ROS concentrations Activating autophagy Applying cytotoxicity to cancerous cells [113]
Au nanoparticles Quercetin −19.1 mV 106.7 nm In vitro In vivo U87 cells Nude mice decreasing cell viability in a way depending on concentration and time suppressing the expression of PI3K/Akt and mTOR Up regulation of ERK and LC3-II triggering autophagy [114]
Super-paramagnetic iron oxide nanoparticles AGO2 MiRNA-3765B −20 mV 70 nm In vitro In vivo MCF7 and MDA-MB-453 cells Xenograft nude mice demonstrating anti-tumour action and increasing cisplatin's cytotoxicity against cancer cells suppression of autophagy lowering the expressions of ATG4C and Beclin-1 [115]
Zinc oxide nanoparticles 20 nm In vitro SKOV3 cells Cancer cell viability declining p53 and LC3 up regulation Encouragement of autophagy [116]
Zinc oxide nanoparticles −5.01 mV 172 nm In vitro In vivo MCF-7 cells Animal models of 4 T1 tumour cells Increasing ROS concentrations Increasing ATG5 Activating autophagy [117]
Hollow mesoporous silica nanoparticles Hydroxychloroquine +41.15 to − 26.50 mV 48.8 nm In vitro In vivo HCT116 cells Xenograft model Growing hydroxy-chloroquine intracellular accumulation preventing autophagy as a means of promoting survival Increasing radiation's cytotoxicity for cancer treatment [118]
Silica nanoparticles 86 nm In vitro HCT116 cells Colon cancer treatment via influencing the endoplasmic reticulum to induce autophagy raising the LC3-II levels [119]
Mesoporous silica nanoparticles Poly-dopamine Chloroquine Glucose consumer glucose oxidase Up to 235 nm In vitro In vivo HepG2 cells Tumour bearing mice The malnutrition that GOx causes in cancer cells Providing photo-thermal treatment Increasing the potential for autophagy inhibition to decrease cancer by fasting and photo-thermal treatment [120]
Cuprous oxide nanoparticles In vitro In vivo J82, T24, 5637, UMUC-3 cells Xenografts Causing apoptosis and cell cycle arrest; decreasing the survival of cancer cells in a way depending on time and concentration To increase apoptotic cell death, ERK signaling up regulation and autophagy activation are important. [121]
TiO2 nanoparticles 5-Fluorouracil 20–30 nm In vitro AGS cells Raising ROS levels causing lysosomal function disruptions inhibiting autophagy encouraging chemotherapy's cytotoxicity bringing about apoptosis [122]