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PUBLIC SUMMARY

- We established a large integrated transcriptomic database of colorectal cancer suitable for biomarker discovery.

- The cohort was used to uncover genes with the highest correlation to relapse-free survival in colon cancer.

- The top genes were filtered to include hits with higher expression and potential druggability.

- This pipeline can be used to prioritize clinically useful biomarkers of solid tumors by excluding likely failures.
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Identifying genes with prognostic significance that can act as biomarkers
in solid tumors can help stratify patients and uncover novel therapy tar-
gets. Here, our goal was to expand our previous ranking analysis of sur-
vival-associated genes in various solid tumors to include colon cancer
specimens with available transcriptomic and clinical data. A Gene Expres-
sion Omnibus search was performed to identify available datasets with
clinical data and raw gene expression measurements. A combined data-
base was set up and integrated into our Kaplan-Meier plotter, making it
possible to identify genes with expression changes linked to altered sur-
vival. As a demonstration of the utility of the platform, the most powerful
genes linked to overall survival in colon cancer were identified using uni-
and multivariate Cox regression analysis. The combined colon cancer
database includes 2,137 tumor samples from 17 independent cohorts.
The most significant genes associated with relapse-free survival with a
false discovery rate below 1% in colon cancer carcinoma were RBPMS
(hazard rate [HR] = 2.52), TIMP1 (HR = 2.44), and COL4A2 (HR = 2.36).
The three strongest genes associated with shorter survival in stage II co-
lon cancer include CSF1R (HR = 2.86), FLNA (HR = 2.88), and TPBG (HR =
2.65). In summary, a new integrated database for colon cancer is pre-
sented. A colon cancer analysis subsystem was integrated into our
Kaplan-Meier plotter that can be used to mine the entire database
(https://www.kmplot.com). The portal has the potential to be employed
for the identification and prioritization of promising biomarkers and thera-
peutic target candidates in multiple solid tumors including, among others,
breast, lung, ovarian, gastric, pancreatic, and colon cancers.
INTRODUCTION
Transcriptomics involves the analysis of the transcriptome, which encom-

passes all RNA transcripts synthesized within a specific cell. Analyzing transcrip-
tome-level data can offer more accurate prognostic insights than examining the
mutation status, as we have previously demonstrated for lung cancer.1 Another
example is the expression of TSPAN6 as a new predictive marker for Epidermal
Growth Factor Receptor (EGFR)-targeted therapies beyond RAS pathway muta-
tions in colorectal cancer (CRC).2 However, precision medicine still encounters a
substantial challenge in translating the findings of transcriptomic investigations,
as it necessitates the consolidation of numerous molecular changes within a tu-
mor to discern which ones are causative and clinically significant.3

The integration ofmultiple available cohorts into a unified database has the po-
tential to facilitate the discovery and validation of themost robust prognostic bio-
markers. For this purpose,we have previously established the Kaplan-Meier (KM)
plotter, a platform for performing survival analysis in real time using transcrip-
tomic data of large patient cohorts.4 In this platform, the patient samples are
divided into two groups conferring to various quantile expressions of the investi-
gated gene, and the two cohorts are compared by a Cox regression and a KM
survival plot.5 However, until now, it was not possible to perform a survival anal-
ysis of CRC using an integrated database of publicly available cohorts.

CRC is the second most common sex-independent cancer. In the United
States, there have been a total of 153,000 new cases, with 107,000 occurring
in the colon and 46,000 in the rectum.6 Mortality from CRC is on a slightly
decreasing trend with about a 2% reduction per year.7 Survival rates vary by
stage, with over 89%–90% survival of patients with a localized stage and a
mere 14%–15% survival of those in whom the tumor has spread to distant
metastases.8
ll
Survival can be improved by the utilization of biomarkers that can stratify pa-
tients into effective treatment regimens.9 For example, the response rate to the
anti-EGFRcetuximab10 and the vascular endothelial growth factor receptor inhib-
itor bevacizumab11 is higher in tumors with Kirsten rat sarcoma viral oncogene
(KRAS) wild-type status compared to those with KRAS mutations. 5-fluorouracil
(5-FU) has been linked to increased toxicity and diminished clinical response in
patients with microsatellite instability (MSI) status, as well as in those who
have dihydropyrimidine dehydrogenase deficiency.12 Immunotherapy using the
PD-1 inhibitor dostarlimabwas approved for patientswith locally advanced rectal
cancer whose tumors show mismatch repair deficiency (dMMR) as determined
by measuring the loss of expression of four genes, MLH1, MSH1, MSH6, and
PMS2.13 Notably, over 200 genes had higher predictive power than MLH1
when analyzing PD-1 resistance-associated genes in our recent study.14 The ur-
gency to identify additional biomarkers is underscored by the fact that, as per na-
tional guidelines, only KRAS, NRAS, BRAF, MSI status, and dMMR are currently
recommended for assessing treatment response and forecasting outcomes
in CRC.
The goal of this study was to rank gene expression-based biomarkers associ-

ated with prognosis in diverse cohorts of patients with colon cancer. Our
research had two specific objectives: first, we aimed to establish a comprehen-
sive transcriptomic database of colon cancer cases, incorporating pathological
and follow-up data, to serve as the basis for biomarker discovery. Secondly, we
employed our previously established online platform for mining the CRC data-
base and conducted an in-depth analysis to identify genes strongly correlated
with survival in three cohorts: all patients with CRC, stage II patients, and
advanced-stage patients. The results of our project have the potential to assist
researchers in prioritizing genes in future investigations aimed at pinpointing clin-
ically relevant biomarkers and therapeutic targets in various cohorts of CRC.

RESULTS
Combined database
Altogether, 2,885 colon cancer samples were identified. Duplicate samples

were identified by searching for identical expression values. After the removal
of duplicate samples, 2,137 samples from 17 datasets were integrated into the
final database. All in all, 53% of the samples were male, and the average age
at diagnosis was 67.4 ± 12.9 years. Of all patients, 1,338 had relapse-free
(RFS) survival data, and 1,061 samples had overall survival (OS) time. The
mean follow-up for RFS was 49.8 ± 37.1 months and for time to death was
54.6 ± 39.3 months. Of all patients, 1,436 had stage data, and these can be split
into stage I (n = 138, 9.6%), stage II (n = 596, 41.5%), stage III (n = 486, 33.8%), and
stage IV (n = 216, 15%). Microsatellite status was available for 1,438 tumors, of
which 584 (40.6%) were classified as stable, 602 (41.9%) were stable or low, and
252 (17.5%) were high. The tumor was localized proximal in 439 cases (40.8%)
and distal in 638 cases (59.2%). Utilizing the JetSet best probes, we obtained
gene expression data for a total of 10,090 distinct genes. Among these, 2,750
genes exhibit potential druggability, as indicated by the DGIdb database. You
can findan overviewof the clinical attributes of the entire study cohort in Figure 1,
and for a comprehensive breakdown of each dataset included, please refer to
Table 1.

Survival analysis across all genes in all colon cancer samples
The first analyzed cohort included all CRC samples with available RFS follow-

up. The four most significant genes, where higher expression was linked to
shorter RFS in CRC, including RNA-binding protein mRNA processing factor
(RBPMS), TIMP metallopeptidase inhibitor 1 (TIMP1), COL4A2, and transgelin
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Figure 1. Clinicopathological characteristics of all tumor samples contained within the integrated database The list of all datasets with proportional sample numbers (A), relapse-
free and overall survival across all available patients (B), distribution of stage (C), and microsatellite instability status (D).
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(TAGLN), are displayed in Figure 2, and the tenmost significant genes are listed in
Table 2. The aforementioned key genes maintained their significance in a multi-
variate analysis that took into account gender, stage, MSI, and location (the re-
maining clinical variables lacked sufficient data). The Cox regression results for
all investigated genes in all available colon cancer specimens with RFS data
are provided in Table S1, and the results for sampleswithOS data are inTable S2.

We used the muTarget platform to identify genes correlated to the mutation
status of the most commonly altered genes including APC (Adenomatous polyp-
osis coli), KRAS, TP53, and BRAF. APC gene mutations were found in 73.5% of
colon cancer cases in TCGA cohort and are thought to be an early event in the
development of the disease. KRAS mutations were present in 40.6% of cases,
TP53 mutations were found in 53.5% of cases, BRAF mutations were detected
in 15.9% of cases, and all three were associated with a more aggressive form
of the disease. We have identified altogether 124, 169, 447, and 1,576 differen-
tially expressed genes for APC, KRAS, TP53, and BRAF mutations, respectively.
When restricting to genes up-regulated in tumors with a mutation and simulta-
neously linked to shorter RFS at a false discovery rate (FDR) <5%, one gene
reached significance for APC mutations, four genes for KRAS mutations, three
genes for TP53 mutations, and 106 genes for BRAF mutations. Differential
expression among APC, KRAS, and TP53 mutated and wild-type tumors as
well as correlation to RFS are presented in Table 3, and the complete list of
BRAF-mutation-linked and survival-associated genes is provided in Table S3.

Druggable genes in stage II
When restricting the analysis to stage II tumors, the correlation between sur-

vival and gene expression with an FDR below 1% and a hazard rate (HR) over
2 The Innovation 5(3): 100625, May 6, 2024
one was significant for 72 druggable genes. This analysis was restricted to drug-
gable genes to focus our search on potential therapy targets.When ranked by the
achieved p value, the five most significant genes include colony-stimulating fac-
tor 1 receptor (CSF1R; HR = 2.86), filamin A (FLNA; HR = 2.88), trophoblast glyco-
protein (TPBG; HR = 2.65), beta-2-microglobulin (B2M; HR = 2.62), and lysyl oxi-
dase-like 2 (LOXL2; HR = 2.63). The KM plots for the top three genes are
displayed in Figure 3, and the top ten genes are listed in Table 2. The complete
list of all stage II-linked druggable genes is available in Table S4.

Druggable genes in stage III and IV tumors
In the third setting, we included a combined cohort of all stage III and all stage

IV patients. The selection of this cohort is based on the fact that these patients
routinely receive chemotherapy. The analysis results were filtered for druggable
genes. When ordered by the Cox regression p value, the five strongest genes
were basic-helix-loop-helix family member E40 (BHLHE40; HR = 2.6), COL4A2
(HR = 2.02), TSC22 domain family member 3 (TSC22D3; HR = 1.95), natriuretic
peptide receptor 3 (NPR3; HR = 1.91), and A2M (HR = 1.86). Survival plots for
the three top genes are available in Figure 3, and the strongest genes are listed
in Table 2. The complete list of all genes significant in stage III and IV patients is
accessible in Table S5.

GO analysis results
To reveal the underlying biological mechanisms, we thoroughly examined the

comprehensive list of significant genes for overrepresented Gene Ontology (GO)
categories using the TNM plotter’s functional analysis tools. The list included
genes associated with RFS and OS in all patients with CRC with an FDR below
www.cell.com/the-innovation
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Table 1. Aggregate characteristics of the colon cancer cohorts included in the analysis

Dataset

Sample
number,
n (%)

Age, years,
mean ± SD

Relapse-free survival Overall survival

Male,
n (%)

Stage, n (%) MSI, n (%) Location, n (%) Mutations, n (%)

Months,
mean ± SD

Events,
n (%)

Months,
mean ± SD

Events,
n (%) I II III IV Stable Stable/low High Proximal Distal BRAF KRAS TP53

GSE12945 62 (2.9) 64.5 ± 11.8 45.2 ± 14.1 12 (19.4) 42.2 ± 16.0 12 (19.4) 28 (45.2) 13 (21.0) 23 (37.1) 21 (33.9) 5 (8.1) N/A N/A N/A 0 (0) 33 (100) N/A N/A N/A

GSE13294 155 (7.3) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 77 (49.7) 0 (0) 78 (50.3) N/A N/A N/A N/A N/A

GSE14333 123 (5.8) 67.0 ± 11.5 39.7 ± 23.8 22 (22.2) N/A N/A 72 (58.5) 22 (17.9) 43 (35.0) 37 (30.1) 21 (17.1) N/A N/A N/A 47 (39.2) 73 (60.8) N/A N/A N/A

GSE143985 91 (4.3) N/A 70.1 ± 37.6 15 (16.5) N/A N/A N/A 0 (0) 55 (60.4) 36 (39.6) 0 (0) 85 (94.4) 0 (0) 5 (5.6) N/A N/A 2 (2.2) 35 (38.5) 53 (58.2)

GSE17538 232 (10.9) 64.7 ± 13.4 47.2 ± 29.5 55 (31.1) 50.6 ± 33.7 92 (39.7) 122 (52.6) 28 (12.1) 72 (31.0) 76 (32.8) 56 (24.1) N/A N/A N/A 78 (47.0) 88 (53.0) N/A N/A N/A

GSE18088 53 (2.5) 65.4 ± 12.2 N/A 13 (24.5) N/A N/A 26 (49.1) N/A N/A N/A N/A 34 (64.2) 0 (0) 19 (35.8) 28 (52.8) 25 (47.2) N/A N/A N/A

GSE26682 331 (15.5) 72.2 ± 10.8 N/A N/A N/A N/A 179 (54.1) N/A N/A N/A N/A 218 (65.9) 78 (23.6) 35 (10.6) N/A N/A N/A N/A N/A

GSE29621 2 (0.1) N/A 70.5 ± 12.7 1 (50.0) 73.8 ± 17.2 1 (50.0) 1 (50.0) 0 (0) 1 (50.0) 1 (50.0) 0 (0) N/A N/A N/A N/A N/A N/A N/A N/A

GSE30540 35 (1.6) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GSE31595 37 (1.7) 74.1 ± 10.1 47.7 ± 30.2 8 (21.6) N/A 11 (29.7) 15 (40.5) 0 (0) 20 (54.1) 17 (45.9) 0 (0) N/A N/A N/A 23 (62.2) 14 (37.8) N/A N/A N/A

GSE33114 90 (4.2) 70.6 ± 12.8 40.4 ± 26.5 20 (22.2) N/A N/A 42 (46.7) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GSE34489 33 (1.5) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

GSE37892 65 (3.0) 68.6 ± 11.8 41.7 ± 21.0 13 (20.0) N/A N/A 34 (52.3) 0 (0) 55 (84.6) 10 (15.4) 0 (0) 0 (0) 52 (100) 0 (0) 29 (45.3) 35 (54.7) 0 (0) 22 (33.8) 8 (12.3)

GSE38832 70 (3.3) N/A 27.8 ± 19.8 6 (11.1) 26.2 ± 19.2 11 (15.7) N/A 14 (20.0) 21 (30.0) 19 (27.1) 16 (22.9) N/A N/A N/A N/A N/A N/A N/A N/A

GSE39582 514 (24.1) 66.6 ± 13.3 48.2 ± 41.5 170 (33.6) 56.8 ± 39.6 177 (34.7) 281 (54.7) 33 (6.5) 213 (41.8) 204 (40.0) 60 (11.8) 0 (0) 439 (85.4) 75 (14.6) 202 (39.3) 312 (60.7) 51 (9.9) 195 (37.9) 182 (35.4)

GSE41258 185 (8.7) 63.5 ± 13.9 66.4 ± 47.2 36 (30.5) 68.4 ± 48.3 93 (50.3) 98 (53.0) 28 (15.1) 50 (27.0) 49 (26.5) 58 (31.4) 117 (63.2) 33 (17.8) 35 (18.9) 32 (35.6) 58 (64.4) N/A N/A N/A

GSE92921 59 (2.8) N/A 72.1 ± 36.1 6 (10.2) N/A N/A N/A 0 (0) 43 (72.9) 16 (27.1) 0 (0) 53 (91.4) 0 (0) 5 (8.6) N/A N/A 2 (3.4) 23 (39.0) 35 (59.3)

All samples 2,137 (100) 67.5 ± 12.9 49.8 ± 37.1 377 (26.7) 54.6 ± 39.3 397 (36.2) 898 (53.0) 138 (10) 596 (42) 486 (34) 216 (15) 584 (41) 602 (42) 252 (18) 439 (41) 638 (59) 55 (8) 275 (40) 278 (55)

SD, standard deviation; N/A, not available.
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Figure 2. Most robust genes associated with relapse-free survival in colon carcinoma The four strongest genes with higher expression correlated to shorter survival are depicted,
including RBPMS (A), TIMP1 (B), COL4A2 (C), and TAGLN (D). HR = Hazard Rate, FDR = False Discovery Rate.
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1%, a cutoff exceeding 200, and an HR greater than one. Themost significant GO
categories linked to RFS include extracellular matrix organization (GO: 0030198,
p = 9.7E�38), cell-substrate adhesion (GO: 0031589, p = 2.4E�18), and cell-ma-
trix adhesion (GO: 0007160, p = 1.2E�13). Interestingly, the same categories
reached the highest significance for the OS-linked gene list as well—for a detailed
account of all biological processes in each of the two settings, please refer to
Table S6.

DISCUSSION
Biomarkers linked to survival, with heightened expression correlating to unfa-

vorable outcomes, present promising targets for therapeutic interventions in the
field of oncology. An illustrative instance isHER2, initially identified as an indicator
of poor prognosis in breast cancer. The availability of trastuzumab for patients
with HER2-positive breast tumors enhanced OS and disease-free survival by
almost 40%.20 Presently, the prognosis for early-stage HER2-positive breast can-
4 The Innovation 5(3): 100625, May 6, 2024
cer is notably positive, with the majority of patients potentially remaining free
from the disease. In our present investigation, we leveraged a substantial cohort
of patients with colon cancer with comprehensive clinical follow-up and tran-
scriptome-level gene expression data. Using this dataset, we aimed to pinpoint
new biomarker candidates and the most noteworthy druggable targets in three
cohorts of patients with colon cancer.
The analysis performed using the integrated database was preceded by

multiple levels of quality control. These include the removal of redundant
samples, the utilization of the best available probe set for each gene, and
the automated analysis of each available cutoff value with simultaneous
calculation of the FDR. In addition, a filter was added to include only genes
where the cutoff value was at least twice the background intensity. While
the online available KM plotter allows the reproduction of the results, we
suggest using similar quality control steps when validating the role of a
selected gene. These quality control steps enable avoiding false discoveries
www.cell.com/the-innovation
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Table 2. The ten strongest genes with higher gene expression correlated to shorter
relapse-free survival length in three colon cancer cohorts including all patients, stage II
patients, and stage III and IV tumors

Gene symbol p value FDR HR Cutoff value

All patients

RBPMS 1.1E�17 5.7E�16 2.49 812

TIMP1 6.5E�17 3.3E�15 2.44 9,073.5

COL4A2 4.0E�16 2.1E�14 2.35 4,413

TAGLN 4.4E�16 2.2E�14 2.58 2,601.4

LOXL2 2.0E�15 6.9E�14 2.33 1,333

S100A11 1.0E�14 5.1E�13 2.31 8,250.3

NOTCH3 1.0E�14 5.9E�13 2.26 544

FAM127A 2.1E�14 1.1E�12 2.24 1,523.6

LMO2 2.1E�13 7.9E�12 2.17 471

SERPINE1 2.8E�13 1.8E�11 2.18 537

Stage II

CSF1R 1.1E�06 1.3E�05 2.86 323.5

FLNA 1.1E�06 2.9E�05 2.88 764.4

TPBG 1.5E�06 2.6E�05 2.65 1,199.4

B2M 2.0E�06 1.0E�04 2.62 30,461.9

LOXL2 2.1E�06 4.9E�05 2.63 1,333.0

TAGLN 4.4E�06 7.5E�05 2.75 2,568.7

LMO2 7.9E�06 8.1E�05 2.48 403.4

YWHAE 1.1E�05 2.8E�04 2.62 3,600.2

PLOD1 1.7E�05 1.5E�04 2.43 689.0

ARRB2 2.4E�05 3.7E�04 2.63 207.3

Stage III/IV

BHLHE40 3.1E�08 6.7E�07 2.06 3,756.5

COL4A2 2.1E�07 2.7E�06 2.02 4,054.0

TSC22D3 3.7E�07 9.3E�06 1.95 1,522.2

NPR3 1.9E�06 6.8E�05 1.91 230.8

A2M 2.6E�06 2.7E�05 1.86 4,767.2

NR1D1 2.7E�06 3.7E�05 2.32 347.2

NOTCH3 2.9E�06 1.8E�05 2.27 236.1

LOXL2 3.7E�06 6.2E�05 1.88 1,166.3

TAGLN 5.7E�06 5.6E�05 2 2,413.7

KLK6 6.0E�06 3.1E�04 1.85 203.3

The stage II and stage III/IV gene lists were restricted to druggable genes with at
least one possible inhibitor. HR, hazard rate; FDR, false discovery rate.

REPORT
and the identification of clinically useful biomarker candidates and therapy
targets.

Among the genes most strongly linked to shorter RFS in all available pa-
tients with colon cancer was RBPMS, a gene that regulates the cytokinesis
of embryonic cardiomyocytes, which has not been linked to CRC previously.
Another top gene was TIMP1, which blocks peptidases involved in the degra-
dation of the extracellular matrix. TIMP1 promotes cellular proliferation and
invasion,21 and higher expression of the gene was already described previ-
ously as a prognostic marker in 190 patients with CRC.22 Similarly, the
high expression of TAGLN was also identified previously in colon cancer in
connection with worse survival.23 These results show that our analysis
ll
was robust and that we were able to validate a set of top genes associated
with survival in colon cancer.
Adjuvant chemotherapy is designed to eliminate micrometastatic disease de-

tected during surgery, avert the emergence of distant metastatic conditions, and
ultimately achieve a cure for these patients. Chemotherapy is recommended for
stage III and IV patients and not suggested for stage I tumors. However, in stage
II colon cancer, adjuvant treatment remains a subject of debate. Both national
and international guidelines for adjuvant treatment in stage II colon cancer pro-
pose a spectrum of therapeutic choices, spanning from close observation to the
administration of chemotherapy through single-agent or combination regi-
mens.24 In this field, novel prognostic biomarkers could help to stratify patients
into clinically useful cohorts. Interestingly, two of the five most significant genes
uncovered in our analysis have links to the immune system, includingCSF1R and
B2M. Inhibition of CSF1R has been recently identified as a factor enhancing
immunotherapy,25 and an orally active CSF1R inhibitor has already been tested
in amurinemodel of colon cancer.26 Three of the top genes were linked to extra-
and intracellular structures, including FLNA, an actin-binding protein crosslinking
actin filaments; TPBG, a gene involved in cell adhesion; and LOXL2, which cata-
lyzes the formation of crosslinks in collagens and elastin. Collectively, these re-
sults suggest that immunotherapy should be further evaluated in stage II tumors
and that the genes linked to extracellular structuresmight serve as potential bio-
markers of worse outcomes.
Patients with stage III and IV tumors have a tumor that already spread to

nearby lymph nodes (stage III) or distant organs (stage IV). These tumors
need chemotherapy to improve survival, with more regimes available for stage
IV tumors. The genes with the strongest prognostic power include BHLHE40, a
transcription factor involved in cellular differentiation that also promotes colon
cancer proliferation27; TSC22D3, a gene linked to the anti-inflammatory and
immunosuppressive effects of interleukin-10 with no implications in colon can-
cer; and NPR3. Higher expression of NPR3 has been recently uncovered as a
marker of worse outcomes in CRC.28 The list of genes with higher expression
linked to worse prognosis in stage III and IV tumors could represent potential
new therapy targets.
Two notable constraints within our study warrant mention. Firstly, our data

exclusively encompass an examination of patient cohorts from prior publica-
tions, which precludes the possibility of an independent prospective validation
of the outcomes. The second constraint is rooted in our reliance on gene expres-
sion data. This stems primarily from the unavailability of protein expression data
for a sufficiently expansive cohort of proteins across a comprehensive set of pa-
tients, completewith clinical profiles and follow-up information. To address these
limitations, a prospective large-scale investigation that concurrently assesses a
multitude of genes and proteins may be essential to secure the requisite valida-
tion for the identified target genes. Note that the performed multiple testing
correction is limited to the genes analyzed in the currentmanuscript.We suggest
using our multiple testing correction tool available at www.multipletesting.com
when analyzing other sets of biomarker candidates.29

In brief, here, we established a comprehensive transcriptomic database for co-
lon cancer cases, which includes pathological details and follow-up information.
Utilizing this dataset, we pinpointed the key genes that exhibited a strong corre-
lationwith RFS across all stages of colon cancer, aswell as specifically in stage II
and stage III/IV tumors. Our analysis focused on druggable genes that showed
elevated expression in patients with a poorer prognosis, aiming to identify the
most reliable genes with potential therapeutic value. The presented analysis
can also be used as a step-by-step guide for utilizing the online available KM
plotter for the identification and validation of new gene expression-based prog-
nostic biomarkers in various other types of solid tumors including, among others,
breast, gastric, kidney, liver, lung, ovarian, pancreatic, and thyroid cancers.
MATERIALS AND METHODS
Identification of colon cancer cohorts

Our search for colon cancer cohorts was conducted through the NCBI Gene Expression

Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) and the Genomic Data Commons Data

Portal (https://portal.gdc.cancer.gov/). We specifically included samples that had available

transcriptome-level data and restricted our initial selection to those comprising a minimum

of 30 patients. The final combined database has fewer patients in some cohorts because

duplicate gene arrays have been removed. To ensure the consistency of our data and elim-

inate potential discrepancies arising from variations in sensitivity, specificity, and dynamic
The Innovation 5(3): 100625, May 6, 2024 5
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Table 3. Genes whose expression is higher in APC-/KRAS-/TP53-/BRAF-mutated CRC tumors and are correlated to relapse-free survival. These genes might represent optimal
targets for future pharmacological developments

Mutation Gene symbol Mean mutant (n = 291) Mean wild (n = 105) FC (mutant/wild) MW p value Direction RFS: Cox p value FDR RFS: HR Cutoff

APC MPP1 1,006.61 640.55 1.57 1.44E�06 up 8.13E�03 2.74E�02 1.37 452

KRAS S100A2 469.6 218.91 2.15 1.30E�05 up 6.15E�03 1.71E�02 1.36 292

KRAS TGFBI 35,480.06 21,977.36 1.61 1.52E�08 up 2.46E�03 1.10E�02 1.41 9,067.7

KRAS KCNN4 3,761.12 2,382.31 1.58 2.82E�10 up 5.87E�03 1.85E�02 1.44 527

KRAS TBXAS1 1,163.81 773.79 1.5 1.08E�07 up 1.10E�03 5.73E�03 1.43 284

TP53 GDPD5 1,316.4 764.68 1.72 7.44E�09 up 3.00E�03 1.07E�02 1.51 256

TP53 MPP1 1,092.34 698.95 1.56 3.14E�08 up 8.13E�03 2.74E�02 1.37 452

TP53 ZSCAN18 258.77 177.81 1.46 2.97E�04 up 2.71E�09 1.30E�08 1.97 300

BRAF RAMP1 1,330.98 394.09 3.38 1.87E�11 up 1.24E�06 2.36E�05 1.71 276

BRAF SERPINB5 4,249.44 1,652.96 2.57 8.96E�08 up 2.09E�03 4.48E�03 1.52 382

BRAF SLC43A3 934.53 383.75 2.44 4.38E�08 up 4.60E�03 1.01E�02 1.43 295

BRAF TRIB2 1,371.95 569.11 2.41 4.32E�15 up 7.73E�03 5.76E�02 1.34 564

For BRAF, only the top ten genes (based of FCmutant/wild) are shown. FC, fold change; MW, Mann-Whitney; RFS, relapse-free survival; FDR, false discovery rate; HR,
hazard rate; NS, not significant.
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range across different gene expression detection technologies, our search focused on tu-

mor samples analyzed using the following in situ oligonucleotide array platforms: GPL96 (Af-

fymetrix Human Genome U133A Array), GPL571 (GeneChip Human Genome U133A 2.0

Array), andGPL570 (AffymetrixHumanGenomeU133Plus 2.0 Array). These platformsoffer

the advantage of employing identical probe sequences to assess the expression levels of

individual genes.

Normalization and gene annotation
Gene expressiondata obtained from the genearrays underwent a two-step normalization

process. Initially, MAS5 normalization was applied, followed by a subsequent scaling

normalization to standardize the mean expression to 1,000 within each array. Only probes

present in the GPL96 platform were utilized to ensure consistency and mitigate potential

platform-specific variations, particularly considering the substantial number of additional

probes in the GPL570 arrays. To determine the most reliable probe set for each gene, the

JetSet algorithm was employed.15 Quality control measures were implemented to assess

background intensity, noise levels, the percentage of present calls, the presence of bioBCD

spikes, and the 30/50 ratios of GAPDH and ACTB.

Assembly of clinical and pathological data
Clinical information was sourced from the supplementary materials provided in the orig-

inal publications or extracted from the series matrix files accessible through GEO. We gath-

ered pertinent data, including RFS time and event details, OS time and event, MSI status, tu-

mor localization, stage, grade, TNM (Tumour, Node, and Metastasis) status, gender, and

KRAS, BRAF, and TP53 mutation status, as well as treatment information for each sample

whenever it was available.

Survival analysis
We used Cox proportional hazards regression analysis to calculate differential survival

rates. Initially, a univariate analysis was conducted for each gene independently. In order

to ensure that we did not miss any correlations due to the use of a specific cutoff value,

we considered all available cutoff values between the lower and upper quartiles of expres-

sion for each gene. Additionally, we computed the FDR using the Benjamini-Hochberg

method to correct for multiple hypothesis testing.16 Then, we selected the cutoff value

with the highest level of significance, also marked by the lowest level of FDR. In cases

where multiple cutoff values had identical significance, we chose the cutoff with the high-

est HR for the final analysis. To reduce noise when identifying the top genes with the most

robust correlation with survival, we only considered genes with a cutoff value exceeding

200, which is twice the background intensity of approximately 100. Furthermore, we

filtered for genes associated with a worse prognosis at higher expression levels

(HR > 1), as these genes hold potential as future therapeutic targets. For the selected

top genes, we conducted multivariate Cox regression analysis to validate the correlation

between clinical and pathological variables as well as gene expression on survival. To visu-
6 The Innovation 5(3): 100625, May 6, 2024
alize differences in survival, KM plots were generated using the cutoff values identified in

the univariate analysis.

Integration of the colon cancer cohort into the KM plotter
We integrated the colon cancer cohort into our previously established KM plotter, which

can be accessed at https://www.kmplot.com.17 The plotter enables the analysis of the cor-

relation between survival outcome and any gene or combination of genes in various tumor

types including, among others, breast, esophageal, gastric, kidney, liver, lung, ovarian,

pancreatic, thyroid, and uterine cancers. Filtering can be done for all available pathological

(stage, TNM, mutation status, MSI, grade, localization) and clinical (gender, treatment) pa-

rameters. In addition, the analysis can be executed by setting the targeted outcome to

RFS, OS, or post-progression survival. Post-progression survival only includes those tumors

that had a relapse (an event for RFS) and the OS is known, regardless of the OS event status.

The KM-plotter platform provides a valuable opportunity for the future analysis and valida-

tion of recently discovered gene expression-based biomarkers and signatures in different

types of solid tumors and across various patient subgroups, including those that have

not been explored to date. Note that in the KM plotter, the analysis results can be exported

as a table, thereby enabling the visualization of the results in other software as well (e.g., Mi-

crosoft Excel).

Filtering for the most robust potentially druggable genes
By analyzing the similarities in both sequence and structure to established drug targets, a

set of proteins that could be influenced by small drug-like molecules has been identified.

This set of genes is commonly referred to as the “druggable genome.” To aid researchers

in interpreting genome-wide studies within the context of druggable genomes, the DGIdb

databasewas created.18DGIdb serves as a comprehensive platform that consolidates infor-

mation fromvarious sources, including humangenes associatedwith diseases, drugs, drug-

gene interactions, and potential druggability. In our demonstration analysis, we used DGIdb

as a filter to further narrow down our analysis results to genes that exhibit potential

druggability.

GO analysis
To better understand the broader functions linked to alterations in RFS, we performed a

GO analysis through the GO functional analysis tool provided by the TNM plotter.19We con-

ducted three distinct analyses, including of those genes that were identified as significant

with anFDRbelow0.01. Specifically, we focused on genes demonstratinghigher expression

associated with poorer survival for each of the three CRC cohorts. The goal of each analysis

was to pinpoint significant biological processes with an FDR threshold of less than 1%.
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