Skip to main content
. 2024 Apr 26;72:102617. doi: 10.1016/j.eclinm.2024.102617

Table 2.

Diagnostic performance of each model for NSCLC bone metastasis in internal validation cohort.

Model Accuracy AUC (95% CI) Kappa Sensitivity % Specitivity % Youden index F1 score
DT 0.85 0.89 (0.82–0.93) 0.70 87.18% 82.35% 0.70 0.87
Logistic 0.69 0.80 (0.76–0.83) 0.37 87.76% 62.75% 0.51 0.88
MLP 0.67 0.71 (0.67–0.76) 0.17 42.86% 75.16% 0.18 0.43
RF 0.94 0.98 (0.95–0.99) 0.84 91.84% 94.12% 0.86 0.92
SVM 0.79 0.88 (0.81–0.94) 0.58 87.18% 70.59% 0.58 0.87
Xgboost 0.93 0.97 (0.93–0.99) 0.80 89.80% 93.46% 0.83 0.90

NSCLC: Non-Small Cell Lung Cancer; AUC: Area Under Curve; CI: Confidence Interval; DT: Decision tree model; Logistic: Logistic regression model; MLP: Multilayer perceptron model; RF: Random forest model; SVM: Support vector machine model; Xgboost: Extreme gradient boosting model.