Skip to main content
. 2024 Apr 26;72:102617. doi: 10.1016/j.eclinm.2024.102617

Table 3.

Diagnostic performance of each model for NSCLC bone metastases in external validation cohort.

Model Accuracy AUC (95% CI) Kappa Sensitivity % Specitivity % Youden index F1 score
DT 0.80 0.79 (0.73–0.86) 0.61 81.93% 79.00% 0.61 0.81
Logistic 0.83 0.90 (0.85–0.94) 0.65 84.00% 81.00% 0.65 0.83
MLP 0.81 0.91 (0.86–0.95) 0.62 70.34% 91.76% 0.62 0.79
RF 0.89 0.97 (0.94–0.99) 0.77 86.11% 90.65% 0.77 0.89
SVM 0.69 0.92 (0.87–0.96) 0.38 42.36% 97.06% 0.39 0.58
Xgboost 0.86 0.95 (0.91–0.98) 0.72 88.36% 84.12% 0.72 0.87

NSCLC: Non-Small Cell Lung Cancer; AUC: Area Under Curve; CI: Confidence Interval; DT: Decision tree model; Logistic: Logistic regression model; MLP: Multilayer perceptron model; RF: Random forest model; SVM: Support vector machine model; Xgboost: Extreme gradient boosting model.