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A B S T R A C T   

Background: This joint expert review by the Obesity Medicine Association (OMA) and National Lipid Association 
(NLA) provides clinicians an overview of the pathophysiologic and clinical considerations regarding obesity, 
dyslipidemia, and cardiovascular disease (CVD) risk. 
Methods: This joint expert review is based upon scientific evidence, clinical perspectives of the authors, and peer 
review by the OMA and NLA leadership. 
Results: Among individuals with obesity, adipose tissue may store over 50% of the total body free cholesterol. 
Triglycerides may represent up to 99% of lipid species in adipose tissue. The potential for adipose tissue 
expansion accounts for the greatest weight variance among most individuals, with percent body fat ranging from 
less than 5% to over 60%. While population studies suggest a modest increase in blood low-density lipoprotein 
cholesterol (LDL-C) levels with excess adiposity, the adiposopathic dyslipidemia pattern most often described 
with an increase in adiposity includes elevated triglycerides, reduced high density lipoprotein cholesterol (HDL- 
C), increased non-HDL-C, elevated apolipoprotein B, increased LDL particle concentration, and increased small, 
dense LDL particles. 
Conclusions: Obesity increases CVD risk, at least partially due to promotion of an adiposopathic, atherogenic 
lipid profile. Obesity also worsens other cardiometabolic risk factors. Among patients with obesity, interventions 
that reduce body weight and improve CVD outcomes are generally associated with improved lipid levels. Given 
the modest improvement in blood LDL-C with weight reduction in patients with overweight or obesity, early 
interventions to treat both excess adiposity and elevated atherogenic cholesterol (LDL-C and/or non-HDL-C) 
levels represent priorities in reducing the risk of CVD.   

1. Introduction 

According to the Obesity Medicine Association (OMA), obesity can be 
defined as a: “serious, chronic, progressive, relapsing, and treatable multi- 
factorial, neurobehavioral disease, wherein an increase in adiposity pro
motes adipose tissue dysfunction and abnormal fat mass physical forces, 
resulting in adverse metabolic, biomechanical, and psychosocial health 
consequences” [1]. Obesity is a chronic disease affecting over 40% of 
adults in the United States (U.S.) and nearly 2 billion adults worldwide. 
Cardiovascular disease (CVD) is a leading cause of death among in
dividuals with obesity [2,3], and CVD among patients with increased 
adiposity is a major contributor to increased mortality and 
disability-adjusted life-years [4]. Disparities exist in obesity rates based 
on race/ethnicity, sex, gender and sexual identity, and socioeconomic 
status; however, such disparities may not be adequately explained by 
health behaviors, socioeconomic position, or cumulative stress [5]. Ge
netics, community, and environmental factors may also play a significant 
role [5–10]. The total direct and indirect annual costs of obesity in the U. 
S. are estimated to be over $400 billion [11]. 

The metrics applicable to the diagnosis of obesity include [1]:  

• For the general population, body mass index (BMI) ≥25 kg/m2 is 
considered overweight; BMI ≥30 kg/m2 is considered obesity.  

• Central obesity is defined as waist circumference ≥40 inches (102 
cm) for males and ≥35 inches (88 cm) for females (≥90 cm for Asian 
males; ≥80 cm for Asian females).  

• BMI and even waist circumference can sometimes be misleading. 
Assessment of body composition (i.e., percent body fat and body fat 
distribution) often reflects a more accurate representation of the 
degree of adiposity and associated health risks, especially among sex 
and race/ethnicity subgroups [6–9,12]. 

In 2016, the OMA, the National Lipid Association (NLA), and the 
American Society for Metabolic and Bariatric Surgery, crafted Scientific 
Statements regarding “Lipids and Bariatric Procedures” [13–15]. The 
NLA has also published articles on the relationship of obesity and blood 
lipid levels, including a 2013 Consensus Statement on obesity, adiposity, 
and dyslipidemia [16]. The OMA has published Clinical Practice State
ments regarding obesity and CVD risk factors, such as diabetes mellitus 
[17], hypertension [18], and thrombosis [19], as well as reviews 
regarding obesity and CVD [20,21]. 

The purpose of this current joint expert review by the OMA and NLA 
is to provide clinicians with an overview of the pathophysiology and 
clinical considerations regarding obesity, dyslipidemia, and CVD risk. 
Obesity is associated with increased CVD risk, substantially due to 
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worsening of CVD risk factors that, in addition to high blood pressure, 
high blood glucose, inflammation, and increased risk of thrombosis, 
includes an adiposopathic, atherogenic lipid profile. Among patients 
with obesity, interventions that reduce body weight and improve CVD 
outcomes are generally associated with improved lipid levels. Given the 
modest improvement in blood low-density lipoprotein cholesterol (LDL- 
C) levels with weight reduction in patients with, or at risk for athero
sclerotic CVD (ASCVD), a dual priority is early intervention to prevent 
and/or treat both excess adiposity and elevated blood levels of athero
genic cholesterol (i.e., increased LDL-C and/or non-HDL-C). Box 1 pro
vides a summary of 10 sentinel takeaway messages regarding the clinical 
management of increased adiposity and dyslipidemia. 

2. What is the role of cholesterol and triglycerides in adipose 
tissue? 

Lipids are hydrophobic organic compounds that include cholesterol, 
other sterols, fat-soluble vitamins, fats and oils (e.g., monoglycerides, 
diglycerides, triglycerides), and phospholipids (i.e., 3 carbon glycerol 
molecule backbone attached to a phosphate group and 2 fatty acids (e.g., 
examples include phosphatidylcholine, phosphatidylethanolamine, and 
phosphatidylserine). Sphingomyelin is similar in structure to phospho
lipids. However, sphingomyelin contains a sphingosine backbone 
(instead of a glycerol molecule) attached to a phosphocholine head 
group (which is also attached to a choline unit) and a fatty acid. 
Cholesterol is a waxy substance with the name derived from “chole,” 
which means bile, and “steros,” which means solid or three dimensional 
[14]. Cholesterol serves as a precursor to steroid hormone and vitamin D 
production, as well as a precursor to bile acid production for the purpose 
of digestion and absorption of dietary fats. The composition of most 
plasma membranes includes approximately 50% lipid and 50% protein 
by weight [22]. The carbohydrate portions of glycolipids and glyco
proteins constitute 5–10% of the plasma membrane mass [22]. Choles
terol is the major sterol component of animal cell membranes, where it 
functions to stabilize cellular membranes and aid in cell signaling. 
Phospholipids are the most abundant lipid component of cell mem
branes, whose structure is composed of a hydrophilic outward face and a 
hydrophobic inner face (i.e., polar phosphate-linked head and two hy
drophobic fatty acid tails), which helps form a phospholipid bilayer. 
While phospholipids contain fatty acids, and while free fatty acids are 
also found in plasma membranes (i.e., participating in cell membrane 
structure, signaling, and function) [23], triglycerides are not a signifi
cant contributor to, and are essentially absent from, cell membranes. 

Triglycerides are lipid esters formed when three fatty acids are 
combined with a three-carbon glycerol, hence the alternative name of 
triacylglycerol. Triglycerides stored in cells such as adipocytes serve as a 
source of energy. When incorporated into adipose tissue, the accumu
lation of triglycerides in body fat provides insulation aiding in body 
temperature regulation and provides cushioning to protect body organs 
[24]. Adipocytes store cholesterol and triglycerides during times of 
positive energy (caloric) balance, manifest by increasing adipocyte 
number (i.e., hyperplasia), enlarging of adipocytes (i.e., hypertrophy), 
and expanding adipose tissue size. The profound potential for expansion 
accounts for why adipose tissue represents the body organ having the 
greatest potential weight variance among individuals, with percent body 
fat (i.e., total fat mass/total body mass) ranging from less than 5% to 
well over 60% [25]. Accompanying adipocyte hypertrophy, adipocyte 
proliferation, and adipose tissue expansion is an increase in lipid stor
age. Adipose tissue typically stores the greatest amount of body energy, 
mainly in the form of triglycerides [16]. 

2.1. What are the cellular components of adipose tissue? 

Components of adipose tissue include adipocytes, pre-adipocytes, 
mesenchymal cells, endothelial precursor cells, fibroblasts, smooth 
muscle cells, collagen, nerve cells, blood vessels, blood cells, and im
mune cells, all whose biological processes are important for human 
health, and whose dysfunction may contribute to metabolic and immune 
disease. When assessed based upon cellular content, less than 50% of the 
cells in adipose tissue are adipocytes, with over 50% being other cells, 
such as those found in the stromal vascular fraction [26]. When assessed 
based upon the degree of occupied space, adipocytes make up over 80% 
of adipose tissue volume [26]. 

2.2. How are cholesterol and triglycerides stored in adipose tissue? 

As with other living cells ranging from bacteria to mammals [27], 
white adipocytes contain cytosolic lipid droplets, which are energy 
storage organelles consisting of a hydrophobic core of neutral lipids (e. 

Box 1 
Summary of 10 sentinel takeaway messages regarding the clinical 
management of increased adiposity and dyslipidemia. Non-HDL-C 
sums the cholesterol content of all pro-atherogenic particles that, in 
addition to LDL-C, also includes VLDL-C, IDL-C, remnant lipopro
tein cholesterol, and cholesterol carried by lipoprotein (a).  

EXECUTIVE CLINICAL SUMMARY 

Obesity and dyslipidemia.  

1) The Obesity Medicine Association has defined obesity as a: 
“serious, chronic, progressive, relapsing, and treatable multi- 
factorial, neurobehavioral disease, wherein an increase in 
adiposity promotes adipose tissue dysfunction and abnormal 
fat mass physical forces, resulting in adverse metabolic, 
biomechanical, and psychosocial health consequences.”  

2) In white adipocytes, triglycerides make up over 90% of 
adipocyte volume.  

3) Adipose tissue represents the largest body reservoir for free 
cholesterol. 

4) Most of the lipids in adipose tissue are derived from in
teractions with circulating lipoproteins.  

5) Among patients with increased adiposity, a commonly 
described lipid pattern is adiposopathic dyslipidemia 
(“atherogenic dyslipidemia”) that includes elevated blood tri
glyceride levels, reduced blood HDL-C levels, increased non- 
HDL-C, elevated apolipoprotein B, increased LDL particle 
number, and increased small dense LDL particles.  

6) The mild to modest increase in blood LDL-C levels in patients 
with obesity may not adequately characterize the increased 
ASCVD risk attributable to dyslipidemia.  

7) Among patients with increased adiposity, healthful nutrition 
and routine physical activity may help reduce body weight and 
improve lipid levels.  

8) Among patients with increased adiposity, weight reduction of 
≥5% may reduce blood triglyceride levels, with greater weight 
reduction further reducing blood triglyceride levels and 
increasing blood HDL-C levels; even greater weight reduction 
of >10–15% has the potential to reduce CVD risk.  

9) Among patients with increased adiposity, weight reduction 
typically results in only mild to modest reductions in blood 
LDL-C levels.  

10) Among patients with increased adiposity, treatment strategies 
to reduce CVD risk include evidenced-based therapies that 
concurrently facilitate weight reduction and atherogenic lipid 
lowering. 

ASCVD: Atherosclerotic cardiovascular disease 
HDL-C: High-density lipoprotein cholesterol 
IDL-C: Intermediate density lipoprotein cholesterol 
LDL-C: Low-density lipoprotein cholesterol 
VLDL-C: Very low density lipoprotein cholesterol  
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g., mainly esterified triglyceride with some esterified cholesterol), 
enclosed by a phospholipid monolayer that contains proteins [PAT 
family (perilipin, adipose differentiation-related protein, tail-interacting 
protein of 47 kD), lipid and energy-related proteins, signaling proteins, 
membrane tracking proteins, and other miscellaneous proteins] and free 
(unesterified) cholesterol [27,28]. Steroidogenic cells have a dispro
portionate amount of cholesterol (which is the backbone structure of 
hormones), while adipocytes have a disproportionate amount of tri
glycerides. In white adipocytes, triglycerides make up over 90% of 
adipocyte volume [29], such that the single lipid droplet within the 
adipocyte pushes other organelles, including the nucleus, to the cell’s 
periphery [30]. Beyond storing the greatest amount of the body’s energy 
in the form of triglycerides, over 90% of the cholesterol stored in adi
pocytes is in the amphiphilic (partially hydrophilic/partly lipophilic) 
unesterified form (i.e., free cholesterol) [31,32]. Adipose tissue repre
sents the largest body reservoir for free cholesterol [33]. As adiposity 
increases with obesity, adipocyte hypertrophy often also occurs, 
accompanied by increased adipocyte cholesterol content [34]. 

For most cells, free cholesterol is biologically active (i.e., playing 
structural and signaling roles) and excessive free cholesterol may be 
toxic. Excessive free cholesterol impairs membrane fluidity (resulting in 
membrane protein dysfunction), disrupts membrane domains (resulting 
in impaired signaling), induces apoptosis (leading to cell death), crys
talizes intracellular cholesterol (leading to organelle dysfunction), fa
cilitates toxic oxysterols (leading to oxidative damage), and alters gene 
expression (leading to protein dysfunction) [35]. In non-adipose tissues, 
esterification of cholesterol is a process that mitigates the cellular 
toxicity of free cholesterol [34]. Cholesteryl esters are typically stored 
within cytosolic lipid droplets in most all cells and found in the core of 
lipoproteins, surrounded by free cholesterol, phospholipids, and apoli
poproteins, for cholesterol transport in the blood [36]. 

Within adipocytes, nearly all the free cholesterol is distributed on the 
triglyceride droplet monolayer surface interface, with the remainder 
located in the plasma membrane [34]. In fact, cholesterol accumulation 
and redistribution from the plasma membrane to the lipid droplet 
monolayer is a crucial determinant of adipocyte function during hy
pertrophic expansion [34]. Adipocytes can accommodate high levels of 
free cholesterol that may be toxic to other cells [34]. However, a relative 
decrease in cholesterol in adipocyte plasma membranes may contribute 
to adipocyte dysfunction, potentially resulting in insulin resistance [34]. 
While free cholesterol associated with adipocyte lipid droplets may not 
be toxic, excess free cholesterol deposition can cause dysfunction of 
adipocyte organelles, such as increased endoplasmic reticulum “stress 
[37],” potentially resulting in adiposopathic immune and metabolic 
consequences [38]. 

3. What is the origin of cholesterol in adipose tissue? 

The liver is the body organ most responsible for regulating circu
lating lipoprotein cholesterol, through hepatic lipoprotein secretion 
balanced against lipoprotein uptake, with elimination of cholesterol 
primarily via biliary excretion [44]. The role of circulating lipoproteins 
is to facilitate the delivery and/or uptake of cholesterol (and other 
lipids) to and from body tissues. Given that most body tissues synthesize 
cholesterol, some authors suggest that most of the de novo total body 
cholesterol synthesis occurs in non-hepatic body organs [45,46]. Body 
organs described as having among the highest concentration of choles
terol include the brain [47], liver [48], muscle [49], tendon [49], skin 
[49], intestine, steroidogenic organs (e.g., adrenal, gonadal organs) 
[50], and adipose tissue [49]. 

In addition to the limited amount of cholesterol synthesized by ad
ipocytes [51], the origin of most cholesterol in adipocytes is derived 
from interactions with circulating lipoproteins (see Fig. 1). Because 
cholesteryl esters and triglycerides are insoluble in water, these hydro
phobic lipids must be carried in the blood by water-soluble lipoproteins 
which, depending on their classification and stage of metabolism, 

contain varying amounts of cholesterol and triglycerides. An adverse 
cardiovascular consequence of increased circulating atherogenic lipo
proteins [LDL, intermediate-density lipoprotein (IDL), very-low-density 
lipoprotein (VLDL), chylomicron remnants, and lipoprotein (a)], which 
all contain cholesterol, is the promotion of cholesterol plaques in the 
walls of arteries (e.g., coronary, cerebral, aortic, and peripheral vascular 
arteries). These atherosclerotic arterial lesions may lead to angina, 
myocardial infarction, claudication, limb amputation, revasculariza
tion, stroke, aneurysmal rupture, and ASCVD death [52]. 

3.1. What is the origin of lipoproteins applicable to lipid transfer to 
adipose tissue? 

Especially during times of positive caloric balance and over
consumption of unhealthful saturated fatty acids and refined sugars/ 
simple carbohydrates (i.e., as often found in ultra-processed foods), 
excess fatty acids and glycerol accumulation may occur in the liver, 
increasing triglyceride synthesis and storage [53]. Increased hepatic 
fatty acid influx and increased triglyceride synthesis may enhance the 
secretion of VLDL particles from the liver into the circulation [54]. 
VLDLs are particles that have a core containing both hydro
phobic/lipophilic triglycerides and cholesterol, mainly in the form of 
non-polar, hydrophobic/lipophilic cholesteryl esters, which are 
long-chain fatty acids esterified to the cholesterol hydroxyl group. Sur
rounding the hydrophobic/lipophilic core of the VLDL particle is a 
water-soluble outer shell of hydrophilic phospholipids and apolipopro
teins, as well as partially hydrophilic “free cholesterol” (i.e., unesterified 
to fatty acids). It is the hydrophilic properties of the lipoprotein outer 
shell that help account for the water-soluble amphiphilic properties of 
lipoproteins, and thus allow for circulatory transport of otherwise 
insoluble hydrophobic/lipophilic lipids (i.e., triglycerides and choles
terol). Once in the circulation, the triglyceride mass in VLDL particles is 
hydrolyzed by body lipases to release free fatty acids for uptake by 
systemic tissues. As the VLDL particles are progressively hydrolyzed, 
some authors refer to these smaller VLDL particles as “remnant” or “IDL” 
with VLDL remnants or IDLs being an intermediate stage, both in size 
and lipid content, between VLDL and LDL [55]. When assessed by a 
simple calculation, the term “remnant cholesterol” is sometimes 
considered equivalent to VLDL-C [55]. Yet other authors refer to hy
drolyzed VLDL remnants as apolipoprotein B (apoB)-containing 
triglyceride-rich lipoproteins found within the small VLDL and IDL size 
range [56]. 

Human genetic data coupled with epidemiologic, preclinical, and 
clinical trial data support a causal association between triglyceride-rich 
lipoproteins (i.e., VLDL and their remnants, chylomicrons and their 
remnants, and IDL) and the increased risk of myocardial infarction, 
ischemic stroke, and aortic valve stenosis. Increased triglyceride-rich 
lipoproteins represent increased residual cardiovascular risk in pa
tients on optimized LDL-C lowering therapy [56]. Remnant lipoproteins 
may contain up to 4 times more cholesterol per particle than LDL par
ticles, highlighting their atherogenic potential. Additionally, largely due 
to their small size, triglyceride-rich lipoprotein remnants (i.e., VLDL 
remnants, IDLs, and chylomicron remnants) [57] readily penetrate the 
arterial wall. As opposed to LDL particles that first undergo oxidation 
and/or other modification that initiate an inflammatory process (i.e., 
facilitating oxidized LDL uptake by subendothelial macrophages [58]), 
remnant lipoproteins can be taken up by scavenger receptors on mac
rophages directly without modification [59]. Irrespective of the termi
nology regarding lipoprotein “remnants,” smaller VLDL particles are 
further hydrolyzed to create LDL particles, mainly through the actions of 
lipoprotein lipase and hepatic lipase. LDL particles are the end-product 
of VLDL metabolism and are generally triglyceride poor and enriched 
with cholesteryl ester. 

Adipose tissue lipases are further discussed in section 5.0. Examples 
of lipases most applicable to lipoprotein triglyceride lipolysis (i.e., 
conversion to fatty acids and glycerol) include [60]: 
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• Lipoprotein lipase (LPL): Extracellular enzyme on the vascular 
endothelial surface of capillary walls of adipose tissue, muscle, and 
heart tissue (not liver).  

• Hepatic lipase (HL): Located on the cell surface of liver cells, with 
some expression in the adrenal glands and ovaries.  

• Endothelial lipase (EL): Expressed in a variety of tissues (e.g., 
placenta, thyroid, liver, lung, kidney, ovary, and testes), with high 
phospholipase activity. In addition to metabolism of HDLs, EL is a 
key collaborator with lipoprotein lipase in mediating the lipolysis of 
triglyceride-rich lipoproteins [61]. 

Finally, the above pathogenic processes describe the “inside-to-in” or 
“inside out” mechanism regarding the role of atherogenic lipoproteins in 
the pathogenesis of atherosclerosis. Traditionally, atherosclerosis is 
thought to involve endothelial dysfunction, insudation of the arterial 
intima by circulating lipoproteins, followed by inflammation, plaque 
lesion formation, and fibrous cap vulnerability. Disruption of the fibrous 
cap exposes the lipid core to clotting factors in the vessel lumen, pro
moting thrombosis, and clinically leading to acute ischemic events (i.e., 
myocardial infarction, stroke). Thus, atherogenic lipoprotein deposition 
in the intima is thought to be due to a movement of atherogenic lipo
proteins from “in” the lumen of arterial vessels to the arterial intima. 

However, another proposed mechanism of atherosclerosis is the 
“outside-to-in” process. In this model of atherosclerosis, adiposopathic 
inflammatory responses of cardiac and vascular adipose tissues (i.e., 

epicardial and perivascular adipose tissue) [62] not only increase the 
secretion of cytokines and adipokines, activate an immune response, and 
facilitate glucotoxicity [63], but also contribute to lipotoxicity and 
promote inflammatory macrophages that traverse the vascular adven
titia, all potentially contributing to atherosclerosis [64]. 

3.2. What are the mechanisms of cholesterol influx from lipoproteins to 
adipose tissue? 

Regarding cholesterol influx, cholesterol-enriched lipoproteins, such 
as LDL particles (especially if oxidized), IDL, VLDL remnants, and 
chylomicron remnants, interact with respective adipocyte receptors (e. 
g., LDL receptor, LDL receptor-related protein-1) where they undergo 
endocytosis within adipocytes [65–69]. Dietary cholesterol levels 
appear more strongly correlated with adipocyte cholesterol content than 
plasma cholesterol concentrations, presumably because of adipocyte 
uptake of cholesterol of dietary origin (i.e., via chylomicrons and 
chylomicron remnants) [34]. 

Once internalized, the lipoprotein cores containing cholesteryl esters 
undergo hydrolysis by lysosomal hydrolases into unesterified free 
cholesterol [65,69]. Adipocytes also express bidirectional facilitated 
scavenger receptor class B type 1 (SR-B1) transporters. Thus, adipocytes 
may also obtain cholesterol from the interaction of their SR-B1 receptors 
with hepatic/intestinal-secreted HDL particles [29]. The adipocyte hy
drolysis of lipoproteins, coupled with the relative lack of adipocyte 

Fig. 1. Cholesterol influx within adipocytes. Adipocytes undergo limited de novo synthesis of cholesterol [29]. The origin of most cholesterol found in adipocytes 
is from interactions with lipoproteins. Hepatically secreted, circulating TG-rich lipoproteins such as VLDL and their lipoprotein remnants (i.e., small VLDL and 
intermediate density lipoproteins) interact with adipocyte membrane-anchored lipoprotein receptors such as the VLDL receptor (member of the LDL receptor family) 
[34,39]. Similarly, circulating LDL particles interact with adipocyte LDL receptors. Interaction of lipoproteins (along with their cholesterol) with their respective 
adipocyte receptors result in their endocytosis within adipocytes [40]. Postprandial cholesterol may be delivered to adipocytes from circulating remnants of chy
lomicrons (i.e., chylomicrons being large lipoproteins produced by the small intestine), via interactions with adipocyte LDL receptors and LDL receptor-related 
proteins that recognize and interact with apolipoprotein E containing lipoproteins [41,42]. Finally, adipocytes may obtain additional cholesterol from 
hepatic/intestinal-secreted HDL via bidirectional SR-B1 [43]. 
TG: triglycerides; VLDL: very-low-density lipoprotein; LDL: low-density lipoprotein; HDL: high-density lipoprotein; SR-B1: scavenger receptor type B1. 
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acyl-coenzyme A:cholesterol acetyltransferase (ACAT) enzyme activity 
[70], results in over 90% of the cholesterol in adipocytes being amphi
philic, non-esterified, “free cholesterol.” [51,71]. 

3.3. What are the mechanisms of cholesterol efflux from adipose tissue to 
lipoproteins? 

Regarding cholesterol efflux, adipocytes express cholesterol trans
porters, such as the adenosine triphosphate (ATP)-binding cassette sub- 
family A member 1 (ABCA1) transporters, as well as bidirectional 
facilitated SR-B1 transporters, both of which may provide a gateway for 
cholesterol efflux to apoA-I or HDL particles [70]. 

Among individuals without obesity, adipose tissue generally stores 
about 25% of the body’s free cholesterol [34,71]. Among individuals 
with obesity, it is reported that adipose tissue may store over 50% of the 
body’s free cholesterol [31,33,34]. Adipose tissue is often described as 
the organ that stores the greatest total amount of free or non-esterified 
cholesterol [72]. Some authors have claimed that not only does adi
pose tissue contain the largest pool of free cholesterol, but in adult pa
tients with obesity, adipose tissue contains over 50% of the total body 
cholesterol [73]. Other authors report that regarding rat tissue, adipose 
tissue contains more cholesterol than liver, muscle, or kidney when 
expressed on a mg per protein basis, and more than all other body organs 
except skeletal muscle when expressed on a whole organ basis [31]. 

That said, fat cells of rats reportedly contain an average of 0.5 mg of 
cholesterol per gram of triglyceride [51], with 90% of cholesterol being 
nonesterified and 80% located in the lipid storage compartment [51]. As 
adipocytes enlarge and as adipose tissue expands, the total amount of 
cholesterol and triglycerides in adipose tissue increases as well [74]. The 
marked increase in triglycerides relative to cholesterol helps account for 
why some authors report that while adipose tissue may represent the 
largest cholesterol pool of the body, the concentration of cholesterol in 
adipocytes may represent only about 0.5% of total lipids [75], with 
triglycerides making up to 99% of lipid species in adipose tissue [76]. 

4. How are fatty acids and triglycerides transported in the 
blood? 

Most circulating non-esterified fatty acids are transported in the 
bloodstream bound by albumin. Dissociation of fatty acids from albumin 
may contribute to fatty acids that enter adipocytes [77]. As with cho
lesteryl esters, triglycerides are non-polar, and thus hydrophobic. Also 
as with cholesteryl esters, triglycerides circulate in the blood mainly 
within amphiphilic lipoproteins. Examples of triglyceride-rich lipopro
teins include hepatically-secreted apoB-100 containing VLDL particles 
and VLDL remnants, as well as intestinally-secreted apoB-48 containing 
chylomicrons and chylomicron remnant particles [56] (see Fig. 2). 
About 80% of the rise in triglyceride levels after a fat-load meal is due to 
intestinally derived apoB-48-containing chylomicrons; however, about 
80% of the rise in lipoprotein particle concentration is due to 
apoB-100-containing VLDL particles [56]. 

4.1. What is the origin of fatty acids in adipose tissue? 

The types of fatty acids in adipose tissue largely reflect the types of 
fatty acids present in triglycerides in apoB-100-containing VLDL 
secreted from the liver (and subsequent VLDL remnants), as well as the 
fatty acids consumed in the diet, that are ultimately bound as tri
glycerides and carried and transported from the intestine to adipose 
tissue via apoB-48-containing chylomicrons and chylomicron remnants 
(see Fig. 3). A clinical application is that adipose tissue biopsies are 
sometimes used to roughly estimate specific fatty acids consumed in the 
diet [78]. That said, assessing the effects of dietary fatty acids (e.g., 
consumed omega-3 fatty acids) more often involves measurement of 
plasma and red blood cell fatty acids [79]. Patients with obesity may 
have greater concentrations of red blood cell saturated fatty acids (e.g., 

palmitate and stearate) compared to leaner individuals who may have 
greater concentrations of red blood cell unsaturated fatty acids (e.g., 
oleate, palmitoleate, and palmitelaidic acid, with the latter being a trans 
isomer of palmitoleic acid) [80]. Older data suggested that de novo 
lipogenesis was virtually nonexistent in the human adipocyte [81]. 
However, human adipocytes are capable of synthesis of fatty acids and 
triglycerides, with de novo lipogenesis of fatty acids in adipose tissue 
enhanced with consumption of a carbohydrate-rich diet [82]. 

4.2. What is the origin of triglycerides in adipose tissue? 

As with cholesterol, de novo synthesis of triglycerides in adipocytes is 
limited, albeit sufficient for maturation of differentiating adipocytes 
[81]. LPL is an enzyme on the intravascular surface of capillaries sur
rounding adipocytes (as well as other body tissues) that facilitates the 
hydrolysis of triglycerides from circulating lipoproteins into fatty acids. 
LPL is an extracellular enzyme that hydrolyzes the core triglycerides 
within circulating triglyceride-rich lipoproteins into monoglycerides 
and fatty acids; thus, increased LPL activity reduces circulating blood 
triglyceride levels [83]. 

Apolipoproteins are proteins found on lipoprotein carriers of other
wise insoluble lipids, which interact with receptors of body tissues. 
Apolipoproteins that affect LPL activity include apoC-I (inhibits LPL), 
apoC-II (activates LPL), apoC-III (inhibits LPL) and apoA-V (activates 
LPL) [84,85]. This is mechanistically important because in addition to 
apoB and apoE, triglyceride-rich lipoproteins (i.e., VLDL) also contain 
apoC-I, apoC-II, apoC-III, and apoA-V. For example, obesity is often 
associated with an increase in apoC-III levels, which would be expected 
to inhibit LPL, and impair the lipolysis of triglyceride-rich lipoproteins, 
and thus increase blood triglyceride levels [86]. This is therapeutically 
important because LPL is stimulated by physical exercise, insulin, 
fibrates, omega-3 fatty acids, angiopoietin-like protein 3 inhibitors (e.g., 
evinacumab) and apoC-III inhibitors (e.g., olezarsen), which explains 
why these interventions lower blood triglyceride levels [87]. 

Once the triglycerides within triglyceride-rich lipoproteins are hy
drolyzed into fatty acids by adipose tissue capillary-bound LPL, fatty 
acids can be transported into adipocytes via diffusion or transporter 
proteins [88]. The uptake of fatty acids into adipocytes is rapid, with the 
movement of local fatty acids into adipocytes likely being a balance 
between diffusion-mediated and protein-mediated processes [77]. Ex
amples of putative fatty acid transporters include fatty acid transport 
proteins (SLC27A1-6) [89], plasma membrane fatty acid binding protein 
(FABPpm), caveolin-1, fatty acyl CoA synthetases (FATP and ACSL), and 
fatty acid translocase (FAT/CD36) [77]. 

One of the more well-described transport proteins is CD36, which is a 
scavenger receptor found on the surface of many body cells, and which 
has different functions (e.g., neurologic functions), especially involving 
atherogenic processes [90], such as management of oxidized LDL par
ticles, thrombosis, and immune responses. CD36 is a FAT that transports 
long-chain fatty acids and cholesterol across the plasma membrane of 
adipocytes [91]. CD36 is a marker of human adipocyte progenitors. Cells 
with a high CD36 level have pronounced adipogenicity and triglyceride 
accumulation potential with silencing of the CD36 gene attenuating 
adipocyte adipogenesis. CD36 deletion promotes triglyceride hydrolysis 
and an increase of circulating free fatty acids [90]. Thus, some authors 
suggest adipocyte CD36 may normally be metabolically protective, and 
its selective upregulation might have therapeutic potential in insulin 
resistance [92]. CD36 may be necessary for the maintenance of lipid 
homeostasis, with CD36 deficiency or CD36 gene polymorphism 
contributing to a preference for food with high-fat content, impairment 
of chylomicron formation and clearance, reduced lipid utilization and 
lipid storage, and increased lipolysis [90]. However, other authors 
suggest that, when its expression is increased with obesity [93], then 
CD36 in both macrophages and adipocytes plays an important contrib
utory role in diet-induced adipose tissue inflammation and adipocyte 
cell death [94]. CD36 may facilitate an inflammatory paracrine loop 
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between adipocytes and macrophages that facilitates chronic inflam
mation and contributes to insulin resistance commonly found in patients 
with obesity and dyslipidemia [95]. 

Once in adipocytes, fatty acids combine with glycerol [i.e., derived 
from glucose transport via the facilitative insulin sensitive glucose 
transporter (GLUT) 4] [17] to form adipocyte triglycerides. Specifically, 
once inside the adipocyte, glycerol 3-phosphate acyltransferase (GPAT) 
serves as the rate limiting enzyme in a series of reactions that facilitate 
the combination of fatty acids with glycerol to form triglycerides, with 
diacylglycerol acyltransferase 2 (DGAT-2) participating in the final step 
of triglyceride biosynthesis [96]. 

4.3. What is the role of insulin resistance regarding LPL activity? 

Obesity is usually associated with increased total LPL activity. 
However, among those with obesity, the responsiveness of LPL to insulin 
and feeding may be relatively decreased [97]. Thus, even if total LPL 
activity is increased with obesity, it may be inadequate to fully hydro
lyze the obesity-related increase in circulating triglyceride-rich lipo
proteins (i.e., lower functional LPL activity per unit fat mass in patients 
with obesity [98]), contributing to the common clinical finding of 
elevated triglyceride levels in patients with obesity [86]. This is espe
cially so given that insulin resistance is associated with increased ac
tivity of apoC-III (an inhibitor of LPL) [99], reduced activity of apoC-II 

(an activator of LPL) [100], and reduced activity of apoA-V (an activator 
of LPL) [101], all which would be expected to reduce LPL activity. Thus, 
while total LPL activity may be increased in patients with obesity and 
insulin resistance, its relative impairment per unit fat mass may 
contribute to LPL enzyme activity that is insufficient to prevent hyper
triglyceridemia. An analogy is increased insulin levels that often occur 
early in the course of type 2 diabetes mellitus (T2DM) among patients 
with obesity and insulin resistance which, despite being elevated, may 
be insufficient to prevent hyperglycemia [17]. 

5. How are fatty acids released into the circulation from adipose 
tissue? 

The efflux of fatty acids from adipocytes begins with intracellular 
hydrolysis of triglycerides (i.e., lipolysis of triglycerides in the adipocyte 
lipid droplet [27]), via consecutive hydrolysis of triglycerides by adipose 
triglyceride lipase (ATGL), hormone sensitive lipase (HSL), and mono
acylglycerol lipase (MGL); this sequence ultimately generates free fatty 
acids (and glycerol) [103] (see Fig. 4). ATGL is an enzyme predomi
nantly found in adipocytes and is the rate limiting enzyme for triglyc
eride lipolysis (i.e., hydrolysis of triacylglycerol to diacylglycerol) 
[104]. HSL is also an enzyme found in adipocytes that mediates tri
glyceride hydrolysis (e.g., diacylglycerol), generating free fatty acids 
and glycerol via hormonally-controlled lipolytic processes (i.e., 

Fig. 2. Origin of fatty acids and triglycerides within adipocytes. Adipocytes undergo limited de novo synthesis of triglycerides. Endogenous triglycerides syn
thesized by the liver circulate within hepatically-secreted triglyceride-rich lipoproteins, such as VLDL and their lipoprotein remnants (i.e., intermediate density 
lipoproteins). Dietary triglycerides are carried in the circulation by triglyceride-rich chylomicrons and their remnants (i.e., chylomicrons being large lipoproteins 
produced by the small intestine). LPL found on adipose tissue capillary endothelial cells hydrolyzes triglycerides from triglyceride-rich lipoproteins, generating fatty 
acids and glycerol. Fatty acids are generated when LPL acts upon triglyceride-rich lipoproteins. These fatty acids enter adipocytes, where they may be re-esterified 
with glycerol to (re)form triglycerides. In addition, fatty acids are carried in the circulation attached to albumin. Fatty acids entering adipocytes may also be derived 
from fatty acids that dissociate from albumin. 
VLDL: very-low-density lipoprotein; LPL: lipoprotein lipase. 
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Fig. 3. Key elements of triglyceride metabolism: This figure summarizes the major pathways for metabolism of chylomicrons synthesized in the intestine and 
VLDL synthesized in the liver. 
ApoB: apolipoprotein B; ApoE: apolipoprotein E; FFA: free fatty acids; HL: hepatic lipase, IDL: intermediate-density lipoprotein; LDL: low-density lipoprotein; LPL: 
lipoprotein lipase; VLDL: very-low-density lipoprotein. (Source: Copied with permission from: Hall JE. Chapter 68: Lipid metabolism. In: Guyton and Hall Textbook of 
Medical Physiology. 12th ed. Philadelphia, PA: Saunders Elsevier; 2011:819–830.) 

Fig. 4. Lipolysis of adipocyte triglycerides. The intracellular lipolytic pathways in adipocytes involve: (a) hydrolysis of TAG to DAG and a fatty acid by ATGL, (b) 
hydrolysis of DAG to MAG and a fatty acid by HSL, and (c) hydrolysis of MAG to glycerol and a fatty acid by MGL [102]. HSL is a sentinel enzyme within adipocytes 
that is activated by hormones, such as corticotropin-releasing hormone, epinephrine, norepinephrine, and glucagon, and suppressed by insulin [102]. While this 
figure describes HSL activity on DAG, HSL also has hydrolytic activity regarding other substrates, such as TAG, cholesteryl esters, and retinyl esters [102]. Given that 
HSL is suppressed by insulin, insulin resistance may result in dysregulation of lipolysis, potentially contributing to enlargement of adipose tissue mass [102]. 
ATGL: adipose triglyceride lipase; DAG: diacylglycerol; HSL; hormone sensitive lipase; MAG: monoacylglycerol; MGL: monoglycerol lipase; TAG: triacylglycerol 
(triglyceride). 
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activated by hormones, such as corticotropin-releasing hormone, 
epinephrine, norepinephrine, and glucagon and suppressed by insulin) 
[102]. Finally, MGL catalyzes the hydrolysis of monoacylglycerols to 
fatty acids and glycerol. 

Fatty acids within triglycerides may be shuttled from adipocytes to 
adipose tissue macrophages via exosomes [17,103]. Otherwise, once 
triglycerides are metabolized in adipocytes into fatty acids and glycerol, 
the efflux of fatty acids from adipocytes into the circulation mainly oc
curs via diffusion [88]. Adipocyte fatty acid efflux may also be protein 
mediated [105]. Once fatty acids are released into the circulation, fatty 
acids are bound by albumin and may be transported to skeletal and 
cardiac muscle and oxidized to generate adenosine triphosphate via 
beta-oxidation. Collectively, circulating fatty acids that originate from 
adipocytes, diet, and hepatic secretion are transported to the liver bound 
to albumin or carried by triglyceride-rich lipoproteins where they may 
be converted to triglycerides and contribute to fatty liver disease [106] 
and the increased secretion of VLDL particles [107]. Fatty acids may also 
be used by the liver to generate ketone bodies as an alternative to 
glucose for the following: (a) for body fuel during fasting (i.e., times of 
fasting are often associated with the highest fatty acid levels); (b) for 
body fuel during low carbohydrate intake (i.e., a ketogenic diet); and/or 
(c) for ketone production, thus accounting for ketoacidosis among pa
tients with type 1 diabetes mellitus during absence of insulin. 

6. What is a lipid profile pattern often described in patients with 
obesity? 

Increased adiposity alone (i.e., overweight or obesity) does not 
exclude such a patient from having primary (i.e., genetic) and/or other 
secondary causes of elevated blood LDL-C levels (e.g., diabetes, hypo
thyroidism, kidney disease, adverse side effect of concomitant medica
tions). As with patients without overweight or obesity, an elevated blood 
LDL-C level in a patient with overweight or obesity is a risk factor for 
ASCVD that should be aggressively evaluated and managed [108]. That 
said, a common clinical lipid profile pattern (reflected by underlying 
abnormalities in lipoproteins) associated with obesity (especially in the 
presence of adiposopathy and insulin resistance) includes elevated blood 
triglyceride levels due to elevated triglyceride-rich lipoproteins, reduced 
HDL-C, reduced apoA-I (i.e., reflecting a decrease in HDL particle con
centration), elevated non-HDL-C, elevated apoB, and increased pro
portion of small dense LDL particles with an increase in LDL particle 
concentration [86] (see Fig. 5). For most non-lipid specialists, the adi
posopathic dyslipidemia found with obesity might be more simply 
described as high blood triglyceride levels and low blood HDL-C levels, 
even as blood LDL-C levels may be mildly increased. 

In addition to fasting dyslipidemia, postprandial hyperlipidemia 
with increases in triglyceride-rich lipoproteins is also associated with 
ASCVD [109]. Similar to fasting dyslipidemia, accumulation of post
prandial triglyceride-rich lipoproteins is driven by overproduction 

and/or decreased catabolism of these particles, with predisposing fac
tors being genetic variations and clinical conditions, such as obesity and 
insulin resistance [56]. Acute postprandial increases in triglyceride-rich 
lipoproteins and their remnants impair vasodilation, enhance endothe
lial dysfunction and inflammation, upregulate production of proi
nflammatory cytokines, upregulate expression of vascular cell adhesion 
molecule-1 and monocyte activation, facilitate production of reactive 
oxygen species, and contribute to plaque rupture and thrombus forma
tion [56]. 

In other publications, the lipid pattern described with obesity is 
sometimes termed “atherogenic dyslipidemia” [110] or “diabetes dys
lipidemia” [111]. However, an elevation in blood LDL-C level is also 
“atherogenic,” with an elevation in blood LDL-C level not considered 
part of “atherogenic dyslipidemia” described above. Also, this lipid 
pattern is not exclusively found in patients with diabetes; this lipid 
pattern is often found in patients with obesity who do not have diabetes 
mellitus. Given this lipid pattern is commonly described with obesity, an 
alternative description is termed “adiposopathic dyslipidemia” [8,9,16, 
17,112]. 

7. How does obesity affect blood LDL-C levels? 

The results of population studies, such as the Framingham Offspring 
Study, suggest that while some variance may exist depending on age, the 
increase in blood LDL-C levels with obesity is typically modest [113]. 
One reason why blood LDL-C levels may not be substantially increased 
in patients with obesity is because of the capacity of expanding adipose 
tissue to store cholesterol. The static storage of cholesterol in adipose 
tissue presents the net result of obesity’s dynamic effects on cholesterol 
influx (i.e., effects of obesity on various enzymes and transport) and 
efflux, with excess cholesterol either stored in cellular lipid droplets or 
exported via cholesterol transport [114]. Some authors note that 
“cholesterol cannot be degraded by mammalian cells” [114]. For 
example, when LDL particles are hydrolyzed within lysosomes, choles
terol is not broken down, but instead released as free cholesterol [115]. 
That said, cholesterol can be broken down into bile acids for excretion, 
mostly in the liver [116] (although some cholesterol breakdown into 
bile acids can occur in other tissues such as brain [117]). 

Obesity increases cholesteryl ester transfer protein (CETP) levels. In 
fact, adipose tissue is one of the major sources of CETP production 
[118]. In addition to the transfer of triglycerides from apoB-containing 
particles to HDL particles, CETP also facilitates the transfer of choles
teryl esters from HDL particles to apoB-containing particles, such as LDL 
[119]. Thus, given sufficient cholesterol in HDL particles, an increase in 
CETP activity might be expected to transfer more cholesterol from HDL 
particles to LDL particles, potentially resulting in both an increase in 
blood LDL-C levels and a decrease in blood HDL-C levels. The converse is 
also true. Inhibition of CETP not only raises blood HDL-C levels, but may 
also decrease blood LDL-C levels, such as reported via the use of some 

Fig. 5. Adiposopathic dyslipidemia (“atherogenic dyslipidemia”) [16]. A pattern of dyslipidemia described in patients with obesity often includes elevated 
triglycerides, reduced HDL-C, increased non-HDL-C, elevated apoB, increased LDL particle number, and increased small dense LDL particles. apoAI: apolipoprotein 
AI; apoB: apolipoprotein B; HDL-C: high-density lipoprotein cholesterol; LDL: low-density lipoprotein; Non-HDL-C: non-high-density lipoprotein cholesterol. 
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CETP inhibitors [119]. Thus, one might expect obesity to increase blood 
LDL-C levels, perhaps profoundly so. Contrary to this expectation, 
obesity is usually associated with only mild increases in blood LDL-C 
levels. 

It is possible that one of the mitigating factors affecting this potential 
cholesterol lipoprotein transfer is that, once stored, the efflux of 
cholesterol from adipose tissue to HDL particles is diminished due to 
downregulated ABCA1 and SR-B1 expression. Decreased cholesterol 
efflux to HDL particles may allow for less cholesterol to be available in 
HDL particles to exchange with LDL particles. When coupled with other 
causes for reduced blood HDL-C levels, the diminished transfer of 
cholesterol from HDL particles to LDL particles is another potential 
mechanism that might help mitigate the otherwise expected rise in 
blood LDL-C levels. 

7.1. How does obesity affect intestinal cholesterol absorption? 

Another factor that may limit the increase in blood LDL-C levels with 
obesity is that increased adiposity is associated with decreased intestinal 
cholesterol absorption, especially among patients with insulin resistance 
[120]. Among patients with obesity, weight reduction may improve 
intestinal cholesterol absorption [121]. This may help explain why 
weight reduction with very-low carbohydrate diets (i.e., ketogenic diets) 
may sometimes cause markedly increased blood LDL-C levels [122]. 
Usually, ketogenic diets modestly increase blood LDL-C levels [123]. 
However, some patients with obesity have marked increases in blood 
LDL-C levels with ketogenic diets [124]. It is proposed that the marked 
increase in blood LDL-C levels in some patients with obesity may 
represent the combined result of increased dietary saturated fat and 
cholesterol intakes (i.e., as may occur via very-low carbohydrate, 
ketogenic diet), coupled with the unmasking of genetic intestinal 
hyperabsorption (via weight reduction and reduction in insulin resis
tance). The variability of blood LDL-C levels with dietary cholesterol is 
not unlike what is found in patients with sterol hyperabsorption, as 
illustrated by sitosterolemia [122]. If a patient treated with a ketogenic 
diet develops moderate/marked increases in blood LDL-C levels, then 
recommendations include: (a) replacing dietary saturated fatty acids 
with polyunsaturated and monounsaturated fatty acids; (b) reducing 
dietary cholesterol; (c) consider a trial of ezetimibe; (d) consider addi
tional cholesterol-lowering drug treatment (e.g., statin); and/or (e) 
temporarily or permanently discontinue the ketogenic diet to determine 
if elevated blood LDL-C levels resolve [122]. 

7.2. What is the clinical meaning of a lack of substantially increased 
blood LDL-C levels among some patients with obesity? 

The lack of a substantially elevated blood LDL-C level in some pa
tients with obesity may be misleading. Obesity may contribute to a 
reduced LDL particle size, with smaller more dense LDL particles 
potentially being more atherogenic because they may more easily cross 
the arterial intima, may more avidly bind to intra-arterial proteoglycans 
(trapping them within the arterial wall), and are more susceptible to 
oxidation, enhancing their uptake by local macrophages and facilitating 
a pro-inflammatory state [86]. Smaller sized LDL particles may also have 
conformational changes where smaller LDL particles may have a lower 
affinity for LDL receptors. Lower LDL receptor affinity may decrease LDL 
catabolism, increase the time LDL particles reside in the circulation, and 
thus may increase the number of circulating atherogenic LDL particles 
[125]. Because it is the cholesterol carried by LDL particles that is most 
often measured clinically (i.e., blood LDL-C levels), then, at the same 
level of LDL-C, the patient with smaller LDL particles may have an in
crease in atherogenic lipoprotein particle concentration. In other words, 
the patient with obesity often will have a predominance of small, dense 
LDL particles, and thus will have higher levels of apoB and LDL particle 
concentration for a given blood LDL-C level clinically reported on the 
lipid profile. This is supported by the increase in percent body fat being 

associated with an increase in apoB levels [126] (i.e., one molecule of 
apoB exists on each atherogenic lipoprotein) and an increase in LDL 
particle concentration [86]. The clinical relevance is that an increase in 
atherogenic particle number is an important risk factor for ASCVD. In 
fact, an increase in LDL particle concentration is more strongly related to 
incident CVD events compared to the cholesterol carried by LDL (i.e., 
blood LDL-C levels) [127]. 

7.3. What is the clinical relevance of increased blood non-HDL-C levels 
among patients with obesity? 

In 2015, the NLA published its recommendations regarding patient- 
centered management of dyslipidemia [128]. The conclusions included: 
(1) “An elevated level of cholesterol carried by circulating apolipopro
tein B-containing lipoproteins (non-high-density lipoprotein cholesterol 
and low-density lipoprotein cholesterol [LDL-C], termed atherogenic 
cholesterol) is a root cause of atherosclerosis, the key underlying process 
contributing to most clinical ASCVD events; (2) reducing elevated levels 
of atherogenic cholesterol will lower ASCVD risk in proportion to the 
extent that atherogenic cholesterol is reduced.” 

The prioritization of the evaluation and treatment of blood non-HDL- 
C levels reflects the limitations of relying upon blood LDL-C levels alone 
to assess ASCVD risk. Non-HDL-C is calculated by total cholesterol less 
HDL-C, and therefore is a measure of the cholesterol carried by all 
atherogenic lipoproteins, including, but not exclusively blood LDL-C. As 
with apoB (where one molecule of apoB resides on each atherogenic 
lipoprotein), non-HDL-C is a better predictor of ASCVD risk than LDL-C 
alone. Non-HDL-C sums the cholesterol content of all pro-atherogenic 
particles, which in addition to LDL-C, also includes VLDL-C, IDL-C, 
remnant lipoprotein cholesterol, and cholesterol carried by lipoprotein 
(a). Thus, especially in patients with increased triglyceride-rich lipo
proteins (as often occurs in patients with obesity), measurement and 
management of blood non-HDL-C levels is more inclusive than an iso
lated focus on the measurement and management of blood LDL-C levels. 
Organizations such as the NLA, as well as European guidelines, have 
emphasized the importance of blood non-HDL-C and apoB levels, along 
with blood LDL-C levels, in the clinical management of the patient’s 
lipid profile and lipoproteins [129,130]. 

8. How does obesity contribute to elevated blood triglyceride 
levels? 

Fig. 5 illustrates a lipid pattern often described with the adiposo
pathic consequences of obesity. Fig. 6 describes common causes of 
elevated blood triglyceride levels, which may not be specific to patients 
with obesity. Especially in patients with marked increases in tri
glycerides, hypertriglyceridemia is often due to a “two hit” phenomenon 
of genetic predisposition accompanied by secondary causes that exac
erbate the triglyceride elevation. Some of the contributors to hyper
triglyceridemia include unhealthful dietary intake, excessive alcohol 
intake, physical inactivity, insulin resistance, diabetes mellitus, and 
concomitant medications (e.g., estrogens, corticosteroids, protease in
hibitors, and antipsychotics) [138–141], as well as chronic kidney dis
ease, nephrotic syndrome, hypothyroidism, hypercortisolism, 
pregnancy, increased delivery of fatty acids to the liver, and the adi
posopathic endocrinopathies and immunopathies that often accompany 
obesity. 

Specifically, regarding obesity, adipose tissue endocrinopathies and 
immunopathies increase triglyceride-rich lipoprotein production and 
decrease triglyceride-rich lipoprotein lipolysis. The adiposopathic 
impairment of fat storage in dysfunctional adipocytes (i.e., often already 
hypertrophied in patients with obesity) during positive caloric balance 
increases circulating fatty acids that flux to the liver (i.e., energy over
flow), leading to increased hepatic VLDL production, and thus increased 
circulating blood triglyceride levels. In an example of how adiposo
pathic impairment of triglyceride-rich lipoprotein lipolysis also 
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contributes to increased circulating blood triglyceride levels [86], adi
ponectin decreases apoC-III (an LPL inhibitor) leading to the catabolism 
of triglyceride-rich lipoproteins and thus a decrease in blood triglyceride 
levels [86]. One of the endocrinopathies of obesity is a decrease in 
adiponectin levels, which would be expected to impair LPL activity, 
reduce catabolism of triglyceride-rich lipoproteins, and thus increase 
blood triglyceride levels. Regarding the adiposopathic immunopathies 
associated with obesity, an increase in pro-inflammatory cytokines 
secretion stimulates the production and delays the clearance of 
triglyceride-rich lipoproteins. For example, tumor necrosis factor and 
interleukin-1 are proinflammatory, stimulate lipolysis in adipocytes, 
and increase circulating free fatty acid levels, which increases the de
livery of substrate for hepatic triglyceride synthesis [86]. In the liver, 
pro-inflammatory cytokines may also stimulate de novo fatty acid and 
triglyceride synthesis, leading to increased production and secretion of 
VLDL. Angiopoietin like protein 4, (an inhibitor of LPL) may also be 
increased, decreasing the expression of LPL, thus impairing the hydro
lysis and clearance of triglyceride-rich lipoproteins [86]. 

Adiposopathy is defined as pathogenic adipose tissue anatomic/ 
functional derangements, promoted by positive energy balance in 
genetically and environmentally susceptible individuals, that result in 

adverse endocrine and immune responses that directly and/or indirectly 
contribute to metabolic diseases (e.g., T2DM, hypertension, dyslipide
mia, CVD, and cancer) [1]. One of the most recognized adiposopathic 
consequences of obesity, and one of the most described contributors to 
hypertriglyceridemia, is insulin resistance [16]. Fig. 7 provides an 
overview of how the adiposopathic consequences of obesity lead to in
sulin resistance. Fig. 8 provides a more detailed discussion of how the 
adiposopathic endocrinopathies and immunopathies of obesity affect 
the insulin receptor, disrupt glucose transport, and contribute to insulin 
resistance. The main adverse clinical consequences of insulin resistance 
that contribute to hypertriglyceridemia include:  

• Impaired lipolysis coupled with increased delivery of fatty acids to 
adipose tissue increases fat mass, potentially further leading to adi
posopathic endocrinopathies and immunopathies. 

• Impaired suppression of lipolysis in adipocytes [i.e., impaired sup
pression of HSL (see Fig. 4)] leads to increased release of fatty acids 
into the circulation that are delivered to the liver that, when coupled 
with impaired suppression of hepatic triglyceride production, all 
lead to fatty liver and increased VLDL secretion (see Figs. 3 and 9). 

Fig. 6. Causes of elevated triglycerides in patients with obesity. Elevated blood triglyceride levels, especially very high triglyceride levels, are often the result of 
a “two hit” phenomenon of genetic predisposition, accompanied by secondary contributors [131]. 

H.E. Bays et al.                                                                                                                                                                                                                                  



Obesity Pillars 10 (2024) 100108

11

• Adiposopathic impairment of LPL activity due to: (a) competition for 
LPL hydrolysis due to increased concentration of triglyceride-rich 
lipoproteins [142]; (b) increased inflammation and oxidative stress 
that impairs LPL function [143,144]; (c) alterations in apolipopro
teins that affect LDL, and (d) endocrinopathies such as insulin 
resistance which impairs insulin-mediated increases in LPL activity, 
decreased adiponectin levels which may reduce LPL activity [145], 

and reduced or insufficient leptin activity, which might otherwise 
have increased LPL activity [146]. 

9. How does obesity contribute to reduced blood HDL-C levels? 

Low blood HDL-C levels are associated with increased CVD risk. This 
may be because a low blood HDL-C level is associated with CVD risk 

Fig. 7. Mechanisms detailing how adiposopathic processes lead to insulin resistance. If obesity-mediated adipocyte hypertrophy and adipose tissue accumulation 
outgrows its vascular supply, then the insufficient delivery of oxygen may contribute to adipocyte and adipose tissue hypoxia and increased adipocyte death. 
Adipocyte and adipose tissue hypoxia may adversely affect multiple metabolic processes regarding angiogenesis, adipocyte proliferation, adipocyte differentiation, 
reactive oxygen species generation, inflammation, and fibrosis. Beyond adipocyte and adipose tissue hypoxia, excessive intracellular lipids in the form of fatty acids 
may lead to ceramide (i.e., sphingolipid esterified to a fatty acid) and diacylglycerol (DAG) formation in adipocytes, where similar to the adverse effect of increased 
fatty acid influx and ceramide and DAG accumulation in liver and muscle, may cause lipotoxicity leading to adipocyte dysfunction, such as: (a) inhibiting AKT Protein 
Kinase B and thus decreasing glucose uptake via GLUT 4, (b) inhibiting hormone sensitive lipase and thus decreasing adrenergic-mediated lipolysis, and (c) impairing 
mitochondrial function, resulting in a pro-oxidative state from the increased production of oxygen free radicals and impairments in energy dynamics because of 
reduced adenosine triphosphate production, all contributing to insulin resistance. Mechanotransduction occurs when cells sense, integrate, and respond to me
chanical stimuli via biologic signaling and adaptations. During healthful expansion, adipose tissue responds by adapting to its microenvironment (e.g., formation, 
dissolution, and reformation of extracellular matrix) via continuous remodeling to maintain its structural and functional integrity. During positive caloric balance, 
especially if proliferation is impaired, adipose tissue expansion is often accompanied by hypertrophy of existing adipocytes. Adipocyte hypertrophy, immune cells 
infiltration, fibrosis and changes in vascular architecture may generate mechanical stress on adipocytes, alter healthful adaptive mechanotransduction, and disrupt 
healthful adipose cell expansion physiology. Maladaptive mechanotransduction may promote obesity-associated dysfunction in adipose tissue (i.e., adiposopathy). 
Overall, contributors to mitochondrial dysfunction include adipocyte and adipose tissue hypoxia, lipotoxicity, maladaptive mechanotransduction, hyperglycemia, 
intake of certain unhealthful saturated fatty acids [132], and with specific regard to obesity, excess nutrient supply [133]. Adipocyte mitochondrial dysfunction is a 
potential primary cause of adipose tissue inflammation. Among the adverse consequences of adiposopathic mitochondrial (and endoplasmic reticulum) dysfunction is 
the generation of reactive oxygen species (ROS). ROS are unstable molecules containing oxygen that easily react with other cellular molecules, contributing to 
deoxynucleic acid damage, cancer, fibrosis, and aging. Other contributors to increased ROS production are hyperglycemia and adiposopathic increases in cytokines, 
such as tumor necrosis factor. Increased tumor necrosis factor-mediated mitochondrial ROS production may facilitate JNK activation, increase serine phosphorylation 
of insulin receptor substrate-1 (IRS-1), decrease insulin-stimulated tyrosine phosphorylation of IRS-1, and thus contribute to obesity-mediated insulin resistance. In 
summary, adipocyte hypertrophy leading to initial adipocyte dysfunction results in local proinflammatory effects that, in turn, further worsen adipocyte function, 
resulting in worsening adiposopathy and adipocyte insulin resistance. Systemically, adiposopathic proinflammatory factors, pathogenic hormones, and free fatty 
acids may be released into the circulation either directly from adipose tissue, or via adipocyte extracellular vesicles (e.g., bioactive molecules such as lipids, proteins, 
and nucleic acids that are packaged and transferred from adipocytes to other body tissues via exosomes, microvesicles, and apoptotic bodies formed as the result of 
adipocyte necroptosis or pyroptosis). The increase in pro-inflammatory factors (e.g., tumor necrosis factor and interleukins 1 beta and 6) and decrease secretion of 
anti-inflammatory factors (e.g., adiponectin) may promote insulin resistance (i.e., reduced cellular surface insulin receptors and post-insulin receptor defects) in 
susceptible non-adipose tissue peripheral organs, such as skeletal muscle and liver, contributing to “inflexibility” in managing, responding, or adapting to changes in 
metabolic substrates. (Adapted/copied with permission from: Bays HE, Obesity Pillars. 2023) [17]. 
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factors, such as obesity, T2DM, consumption of ultra-processed foods 
high in refined carbohydrates, physical inactivity, cigarette smoking, 
and increased triglyceride-rich lipoproteins. The challenge is that pa
tients with very high blood HDL-C levels are not necessarily at low CVD 
risk and may sometimes be at increased risk for CVD, CVD death, and all- 
cause death [154–156]. Furthermore, treatments specifically directed 
towards increasing blood HDL-C levels have not yet proven to reduce the 
risk of CVD [155,157]. 

Fig. 10 illustrates obesity-related factors associated with reduced 
blood HDL-C levels. Blood levels of HDL-C are largely dependent on an 
individual’s genetic predisposition [147], nutrition, and physical ac
tivity. Blood HDL-C levels are often lower in patients who consume 
ultra-processed foods [148] containing refined simple sugars [149]) 
and/or who are physically inactive [158]. Some or all of these factors 
may also contribute to obesity. Adiposopathic reduction in LPL activity 
may impair the metabolism of triglyceride-rich lipoproteins (i.e., VLDLs 
and chylomicrons) [118]. Furthermore, obesity facilitates greater 
CETP-mediated transfer of cholesterol from HDL particles to 
triglyceride-rich lipoproteins in exchange for triglycerides. 

Triglyceride-rich HDL particles may then undergo lipolysis from HL, 
creating smaller HDL particles that are more easily metabolized by the 
liver and kidneys [118,151], resulting in reduced blood HDL-C levels. 
Additionally, the HDL-C-lowering effect of CETP may be exacerbated in 
obesity due to adiposopathic endocrine increase in leptin levels, which 
increase CETP activity [118]. 

Another adiposopathic endocrine consequence of obesity is decreased 
adiponectin levels. In addition to decreasing apoC-III (an LPL inhibitor) 
leading to a catabolism of triglyceride-rich lipoproteins and thus a 
decrease in blood triglyceride levels [86], adiponectin increases the 
production of apoA-I (an apolipoprotein that is a major component of 
HDL particles), as well as hepatic ABCA1 (which functions as a lipid 
transporter that mediates the transfer of cellular phospholipid and free 
unesterified cholesterol to apoA-I and related proteins [152]), which 
would be expected to increase blood HDL-C levels. Conversely, the 
decrease in adiponectin commonly found with obesity would be expected 
to decrease blood HDL-C levels [118]. Similarly, adiposopathic promotion 
of insulin resistance (see Figs. 8 and 9) may also reduce apoA-I production 
[153]. Finally, an adiposopathic immune effect of obesity is adipocyte 

Fig. 8. Insulin and insulin receptor functions. Diminished insulin activity can be due to an absolute or relative decrease in circulating insulin and/or impaired 
insulin signaling via a reduced number of insulin receptors and/or impaired post-receptor insulin signaling. Normoglycemia can be maintained in the early stages of 
insulin resistance by increased basal insulin (i.e., hyperinsulinemia), as often occurs in patients with obesity. However, over time, insulin secretion may no longer be 
sufficient to overcome insulin resistance, resulting in hyperglycemia. Obesity and the hyperglycemia of type 2 diabetes mellitus (T2DM) may result in a relative 
decrease in pancreatic insulin secretion, potentially due to elevations in leptin levels, as well as due to apoptosis with decreased pancreatic beta cell mass as the result 
of: (a) beta cell exhaustion/overload, (b) glucolipotoxicity, (c) increase in pro-inflammatory factors, and (d) decrease in anti-inflammatory factors (e.g., adiponectin). 
Insulin is a peptide hormone released by pancreatic beta cells in response to a rise in blood glucose (e.g., postprandial response to carbohydrate ingestion). Fructose, 
some amino acids, and fatty acids can also augment insulin release. Insulin binds to the extracellular alpha subunit portion of the transmembrane insulin cellular 
receptor of body tissues (e.g., liver, muscle, fat, brain). This activates a phosphorylation cascade involving transmembrane insulin receptor beta subunits that process 
tyrosine kinase activity, auto-phosphorylating insulin receptor tyrosines, and promoting the phosphorylation and activation of cytoplasmic insulin receptor substrate 
(IRS). Activated IRS stimulates intracellular mitogen-activated protein (MAP) kinase, which in turn, promotes cell growth (e.g., proliferation and differentiation of 
tissues, such as skeletal muscle cells and fat cells). While insulin mainly functions as a physiologic mitogenic facilitator, hyperinsulinemia may predispose to un
regulated mitogenesis and cancer. Insulin-mediated phosphorylation of IRS also facilitates the phosphoinositide 3-kinase (PI3K)/AKT pathway (i.e., AKT is also 
known as protein kinase B), which is responsible for most of insulin’s metabolic effects, such as the transport of glucose vesicle transporters (GLUT 4) to outer cellular 
membranes resulting in glucose uptake from the circulation into body tissues, thus lowering blood glucose. Insulin-dependent GLUT 4 is found in skeletal muscle and 
adipose tissue; insulin-independent GLUT 2 is found in the liver. Increased PI3K/AKT signaling also promotes (a) increase in endothelial nitric oxide synthase (eNOS) 
that facilitates increased nitric oxide production, increased vasodilation, and increased adipose tissue perfusion allowing for enhanced glucose and free fatty acids 
uptake in adipocytes for storage, (b) synthesis of glycogen, lipids, and proteins, and (c) cell growth (i.e., proliferation and differentiation). Dysregulation of the Ras/ 
MAP kinase and/or PI3K/AKT pathways may adversely affect otherwise healthy cell growth (i.e., proliferation and differentiation), potentially leading to the 
development of human cancer [134,135], which has potential application regarding the increased risk of cancer among patient with obesity [136]. Among patients 
with obesity and T2DM, in addition to a reduced number of insulin receptors potentially as the result of impaired insulin receptor delivery to the cell surface due to 
endoplasmic reticulum stress, severe insulin resistance is mainly described as a post insulin receptor signaling defect, via disruption of the IR/IRS cascade. Spec
ifically, obesity may result in adiposopathic increases in inflammatory factors (e.g., cytokines such as tumor necrosis factor and interleukins) and free fatty acids that 
may impair PI3K/AKT signaling while hyperinsulinemia continues to stimulate MAP kinase signaling, potentially contributing to post-receptor insulin resistance, 
prediabetes, T2DM, endothelial dysfunction, and/or cancer. (Adapted/copied with permission from: Bays HE, Obesity Pillars. 2023) [17]. 
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inflammation, which may downregulate ABCA1 and SR-B1 expression 
and thus impair cholesterol efflux from adipocytes to HDL particles. For 
example, normally, lipidation of apoA-I gradually creates discoidal par
ticles enriched in unesterified cholesterol. Esterification of free choles
terol by lecithin cholesterol acyltransferase (LCAT) converts these 
disc-shaped particles into spherical HDL particles, which promote 
cellular cholesterol efflux through adenosine triphosphate-binding 
cassette transporter G1 (ABCG1) and SR-B1. Afterwards, as HDL parti
cles acquire more cholesterol, they engage in the exchange with 
triglyceride-rich lipoproteins mediated by CETP [70]. 

10. What is the clinical relationship between obesity and 
lipoprotein (a) levels? 

Fig. 5 illustrates how obesity affects various lipoprotein lipid pa
rameters. Not yet discussed is lipoprotein (a), which is an LDL-like 
particle with an attached apolipoprotein (a) moiety. Increased lipopro
tein (a) is an independent risk factor for CVD that is largely determined 
by genetics and not thought to be influenced by dietary intake or 
physical activity. However, both BMI and lipoprotein (a) are ASCVD risk 
factors, with increased lipoprotein (a) and increased BMI being additive 
in increasing the risk for ASCVD [159]. 

11. What is the clinical relationship between abdominal 
(visceral) obesity, blood lipid levels, and metabolic syndrome? 

A misconception is that obesity is due to a genetically defined 
number of adipocytes, with the greater number of adipocytes resulting 
in obesity and increased complications, and a lower number of adipo
cytes resulting in leanness and decreased complications. However, 
adiposity reflects the mass of triglycerides in adipocytes, and not simply 
adipocyte number. Adipose tissue is a highly dynamic organ. It is esti
mated that approximately 10% of adipocytes undergo turnover annually 
throughout adulthood and all ranges of BMI [160]. When body weight is 

stable, the total number of adipocytes may remain relatively constant. At 
least over the timeframes currently studied, during fat weight gain, the 
number and size of adipocytes may increase; during fat weight reduc
tion, the size of adipocytes may decrease with limited change in 
adipocyte number [161]. It is estimated that lean individuals may 
typically have 25–35 billion adipocytes, while patients with obesity may 
typically have 100–150 billion adipocytes [24]. In a study of patients 
without obesity, the estimated number of adipocytes was 41–65 billion 
(variation of 60%) while among patients with obesity, the estimated 
number of adipocytes was 128–237 billion (variation of 85%) [162]. 

While true that the increased number and size of adipocytes alone 
can contribute to biomechanical complications of obesity (i.e., “fat mass 
disease”), it is the functionality of adipocytes that determines the pre
disposition to metabolic diseases (i.e., “sick fat disease”) [1,163]. 
Although it may seem paradoxical, an increase in the number of func
tional adipocytes may sometimes mitigate metabolic disease, while a 
decrease in the number of functional adipocytes may predispose to 
metabolic disease. For example, patients with benign multiple sym
metrical lipomatosis have increased proliferation of smaller, more 
functional adipocytes (and increased secretion of anti-inflammatory 
adipokines, such as adiponectin) within subcutaneous adipose tissue. 
Despite an increase in regional adiposity, patients with benign multiple 
symmetrical lipomatosis are not at increased risk for hyperglycemia or 
dyslipidemia [164]. In another illustrative example, while T2DM is often 
considered a complication of too much body fat, one of the treatments of 
T2DM includes the use of thiazolidinediones (i.e., peroxisome pro
liferator activated receptor gamma agonists, such as pioglitazone). An 
important mechanism of action of thiazolidinediones is the increase in 
the proliferation of functional adipocytes, which in addition to fluid 
retention, helps account for the increase in body weight with thiazoli
dinediones. Improved adipose tissue function via the increased number 
of functional adipocytes helps explain why thiazolidinediones improve 
both glycemia and hypertriglyceridemia [165]. Some have suggested 
that: “Strategies to increase the recruitment of adipocyte progenitor cells 

Fig. 9. Adiposopathic dyslipidemia: Excess adiposity can contribute to hypertriglyceridemia, reduced blood HDL-C levels, and elevated smaller and more dense 
LDL particles. Terms that are similar to “adiposopathic dyslipidemia” include “atherogenic dyslipidemia” and/or “diabetes dyslipidemia,” all intended to reflect a 
lipid pattern found in many patients with obesity, as well as patients with type 2 diabetes mellitus and/or MASLD [137]. The origins of free fatty acid delivery to the 
liver include lipolysis of triglyceride-rich lipoproteins (e.g., VLDL originally from the liver and chylomicrons from the intestine), as well as the adiposopathic flux of 
fatty acids from adipose tissue as the result of insulin resistance. Finally, obesity can be associated with increased de novo synthesis of fatty acids [86]. A substantial 
contributor to adiposopathic dyslipidemia is CETP, which facilitates exchange of triglyceride and cholesteryl esters among circulating lipoproteins. CETP is increased 
with obesity, which may enhance the exchange of triglyceride from VLDL for cholesteryl esters from HDL. Similarly, CETP may facilitate the exchange of triglycerides 
from VLDL for cholesteryl esters in LDL. The action of body lipases on triglyceride-rich HDL particles results in smaller HDL particles that are more easily metabolized 
by the liver and kidney, resulting in reduced blood HDL-C levels. The action of body lipases on triglyceride-rich LDL particles results in smaller, more dense LDL 
particles. (Figure adapted with permission from Bays HE et al. Obesity Algorithm Slides, presented by the Obesity Medicine Association. www.obesityalgorithm.org. 
2020). CETP: cholesteryl ester transfer protein; HDL-C: high-density lipoprotein cholesterol; LDL: low-density lipoprotein; MASLD: metabolic dysfunction-associated 
steatotic liver disease; VLDL: very-low-density lipoprotein. 
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to expand adipose tissue by increasing adipose cell numbers could be 
protective against the metabolic consequences of obesity” [166]. 

Conversely, patients with inherited lipodystrophy have a variable 
lack of adipose tissue, which may contribute to a genetic lack of 
adipocyte function, resulting in hypertriglyceridemia and hyperglyce
mia [164]. In patients with human immunodeficiency virus (HIV) 
treated with some antiretroviral agents (e.g., nucleoside reverse tran
scriptase inhibitors and protease inhibitors), adipocyte function may be 
adversely affected [167], potentially leading to HIV lipodystrophy, and 
likewise development of metabolic diseases [164], such as the metabolic 
profile found with adiposopathic dyslipidemia. Adipose hypertrophy 

with HIV lipodystrophy is often accompanied by increased visceral ad
ipose stores, increased blood triglyceride levels, decreased blood HDL-C 
levels, adipocyte insulin resistance, as well as hypertension and a ten
dency to develop T2DM [168]. 

Even without a defined primary or secondary cause, if a patient’s 
subcutaneous adipose tissue is unable to adequately proliferate and 
differentiate during positive energy balance (sometimes described as a 
type of “acquired lipodystrophy” [169]), then the energy overflow via 
increased circulating free fatty acids locate to other fat depots, such as 
visceral adipose tissue, pericardial fat, and perivascular fat [164]. 
Additionally, the adiposopathic increase in circulating free fatty acids 

Fig. 10. Relationship between reduced HDL-C and obesity. Blood levels of HDL-C are largely determined by individual genetics [147]. Among the more common 
causes of reduced blood HDL-C levels are ultra-processed foods [148] containing refined simple sugars [149]) and physical inactivity [150], both that may 
accompany obesity. The adiposopathic reduction in LPL activity found in patients with obesity impairs the metabolism of triglyceride-rich lipoproteins (i.e., VLDL 
and chylomicrons) [118]. Obesity may facilitate greater CETP mediated transfer of cholesterol from HDL particles to triglyceride-rich lipoproteins in exchange for 
triglycerides. Triglyceride-rich HDL particles may then undergo lipolysis from hepatic lipase, creating smaller HDL particles that are more easily metabolized by the 
liver and kidneys [151], resulting in reduced blood HDL-C levels. Additionally, the HDL-C lowering effect of CETP may be exacerbated in obesity due to adipo
sopathic endocrine increase in leptin levels, which increase CETP activity [118]. Another adiposopathic endocrine consequence of obesity is reduced adiponectin 
levels. Adiponectin increases the production of apoA-I (an apolipoprotein that is a major component of HDL particles) as well as hepatic ABCA1, which functions as a 
lipid transporter that mediates the transfer of cellular phospholipid and free (unesterified) cholesterol to apoA-I and related proteins [152], which would be expected 
to increase blood HDL-C levels. Conversely, the decrease in adiponectin commonly found with obesity would be expected to decrease blood HDL-C levels [118] 
Similarly, adiposopathic promotion of insulin resistance (see Figs. 7 and 8) may also reduce apoA-I production [153]. Finally, an adiposopathic immune effect of 
obesity is adipocyte inflammation which may downregulate ABCA1 and SR-B1 expression and thus impair cholesterol efflux from adipocytes to HDL particles. 
ABCA1: adenosine triphosphate-binding cassette sub-family member 1; apoA-I: apolipoprotein A–I: CETP: cholesteryl ester transfer protein; HDL-C: high-density 
lipoprotein cholesterol; LPL: lipoprotein lipase; SR-B1: Scavenger receptor class B type 1; VLDL: very-low-density lipoprotein. 
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may promote “lipotoxicity” [164] in non-adipose tissue, such as the 
liver, skeletal muscle, heart, endothelia, pancreas, and kidney, contrib
uting to insulin resistance [17], hyperglycemia [17], fatty liver disease 
[170], metabolic syndrome/dyslipidemia [171,172], hypertension [18], 
sarcopenia [173], atherosclerosis [174], cardiomyopathy [173], endo
thelial dysfunction [175], diminished insulin secretion [176], and renal 
apoptosis with proteinuria [173]. 

Due to confounders related to race and sex, central obesity may not 
always correlate with visceral adiposity [7,177]. However, the presence of 
central obesity may reflect an adiposopathic inability to accumulate adi
pose tissue in peripheral subcutaneous adipose tissue, while visceral 
adiposity is reasonably considered a marker for global adipose tissue 
dysfunction and increased CVD risk [178]. From a clinical perspective, all 
these factors help explain the diagnostic criteria for “metabolic syndrome,” 
which includes central obesity, increased triglycerides, low HDL-C, 
increased blood glucose, and increased blood pressures. While visceral 
fat may correlate to blood LDL-C levels in some populations [179], the 
dyslipidemias most often described with adiposopathic dyslipidemia are 
hypertriglyceridemia and reduced blood HDL-C levels [164]. In short, 
metabolic syndrome is not a “disease.” No medication has a Food and Drug 
Administration approved indication to treat the metabolic syndrome. 
However, metabolic syndrome is a common clustering of cardiovascular 
risk factors (i.e., including lipid abnormalities), with increased waist 
circumference as the only anatomic diagnostic criterion [164]. 

12. What is the effect of dietary intake on the clinical lipid 
profile and blood lipoprotein levels? 

Nutritional intake affects both body weight as well as blood lipo
protein levels and common clinical lipid profiles. A thorough discussion 
of medical nutrition therapy/dietary patterns and the lipid effects of 
dietary macronutrients is beyond the scope of this expert review, and 
reviewed elsewhere [122,203,204]. Table 1 shows the general effects of 
dietary macronutrient substitutions on common lipid profile and lipo
protein levels. However, the lipid profile, lipoprotein, and cardiovas
cular effects of nutritional intake may vary within an individual patient 
depending on factors such as genetic background, age, race, sex, 
concomitant metabolic diseases, concomitant medications, and envi
ronment, as well as the dynamics of weight changes (i.e., weight in
creases or weight decreases), whether the macronutrients are added or 
substituted for other macronutrients, and the subtypes of macronutri
ents. For example, while both are carbohydrates, consumption of com
plex carbohydrates may have different effects on blood lipid levels 
compared to consumption of refined/simple carbohydrates (See 
Table 1). Similarly, stearic acid (C18:0) (i.e., about 25% of the saturated 
fatty acids in the U.S. adult diet) has minimal effects upon blood LDL-C 
levels, while palmitic acid (C16:0) (i.e., 50% of the saturated fatty acids 
in the U.S. adult diet) increases blood LDL-C levels [122]. Also, while 
dietary fats and dietary carbohydrates provide a potential source of fatty 
acids via de novo lipogenesis in fasting healthy individuals, factors such 
as obesity, insulin resistance, and fatty liver may contribute to marked 
de novo alterations in fatty acid composition, affecting tissue content of 
fatty acids, such as palmitic acid [205]. Table 2 describes some sentinel 
publications regarding nutritional intervention, weight reduction, and 
lipid effects, with the general clinical message being that, across a 
spectrum of nutritional interventions, lipid levels typically improve with 
weight reduction, especially blood triglyceride and HDL-C levels. 

13. What is the effect of physical activity on the clinical lipid 
profile and blood lipid levels? 

Increased physical activity is a priority towards managing CVD risk, 
which includes clinical recommendations regarding both dynamic 
(“aerobic”) physical exercise [122,206] and resistance training 
(“anaerobic”) [207]. Lipid profile changes with increased dynamic 
physical activity generally include an increase in blood HDL-C levels, a 

reduction in blood triglyceride levels, and variable effects on blood 
LDL-C levels [208,209]. Resistance training (“anaerobic”) similarly may 
result in an increase in blood HDL-C levels, a reduction in blood tri
glyceride levels, and (again) variable effects on blood LDL-C levels 
[209]. It is unclear whether time engaged in the combination of dynamic 
and resistance training has any greater effect on the lipid profile and 
lipoprotein levels compared to the same time engaged in either form of 
exercise alone [209]. 

Table 1 
Summary of effects of isocaloric replacement of selected macronutrients on 
circulating concentrations of LDL-C, triglycerides, and HDL-C from intervention 
trials [180–185]. If refined starches and added sugars, alcohol, and/or some 
unhealthful saturated fatty acids are substituted by more healthful macronu
trients, then this may potentially improve lipid and lipoprotein levels. Macro
nutrient quality and quantity consumption may have variable effects on the lipid 
profile within an individual patient depending on factors such as genetic back
ground, age, race, sex, concomitant metabolic diseases, concomitant medica
tions, and environment, as well as the dynamics of weight changes (i.e., weight 
increases or weight decreases) [86,186–189].  

Macronutrient LDL-C Triglycerides HDL-C 

SFA replaced with carbohydrate ↓ ↑ ↓ 
SFA replaced with UFA ↓ ↓ ↓ 
SFA replaced with protein ↓ ↓ ↓ 
Carbohydrate replaced with UFA ↓ ↓ ↑ 
Carbohydrate replaced with protein ↓ ↓ ↓ 
Alcohol replaced with carbohydrate ↔ ↓ ↔ ↓ 
Alcohol replaced with UFA ↓ ↓ ↓ 

↓ indicates decrease; ↔ indicates no change; ↑ indicates increase 
HDL-C: high-density lipoprotein cholesterol; LDL-C: low-density lipoprotein 
cholesterol; SFAs: saturated fatty acids; UFA: unsaturated fatty acids (e.g., mono- 
and/or polyunsaturated fatty acids) 

Table 2 
Effect of weight reduction on lipid levels. Variance exists in the degree of 
lipid effects of weight reduction, depending on the studies selected for meta- 
analyses. The overall message is that weight reduction generally reduces 
blood LDL-C and triglycerides, and raises HDL-C, with the effects dependent on 
the amount of weight reduction.  

Study Weight & lipid effects Type of study 
(reference) 

Dattilo, Kris- 
Etherton 
(1992) 

For every 1-kg decrease in body weight:  
• ↓ LDL-C 0.77 mg/dL  
• ↓ TG 1.33 mg/dL  
• ↓ HDL-C 0.27 mg/dL (during active 

weight reduction)  
• ↑ HDL-C 0.35 mg/dL (after stabilization 

of body weight) 

Meta-analysis 
[190] 

Zomer (2016) Overall lipid effects regarding interventions 
that promote weight reduction:  
• ↓ LDL-C 8 mg/dL  
• ↓Triglycerides 12 mg/dL  
• ↔ HDL-C 

Meta-analysis 
[191] 

Hasan (2020) For every 1 kg decrease in body weight with 
lifestyle interventions (“diet, exercise, or 
both”):  
• ↓ LDL-C 1.28 mg/dL  
• ↓ TG 4.0 mg/dL  
• ↑ HDL-C 0.46 mg/dL 

Meta-analysis 
[192] 

HDL-C: High-density lipoprotein cholesterol 
LDL-C: Low-density lipoprotein cholesterol 
TG: Triglycerides 
↓: Decreases 
↑: Increases 
↔: Neutral effect 
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14. In patients with obesity, what is the effect of weight 
reduction on the lipid profile, blood lipoprotein levels, and CVD 
risk? 

Table 2 summarizes the effects of weight reduction on lipid profile 
and lipoprotein levels among patients with increased adiposity. Inten
tional weight reduction among patients with obesity can improve lipid 
levels, especially in reducing blood triglyceride levels. The data are more 
scarce and more variable in support of reduction of blood LDL-C levels 
with weight reduction. Some publications report that rapid weight 
reduction can sometimes result in a transient increase in LDL-C levels, 
with a potential disproportionate increase in larger LDL particles [210]. 
Results of other publications suggest that rapid weight reduction may 
initially reduce LDL-C levels, followed by a transient rise in LDL-C, 
possibly due to mobilization of adipose cholesterol stores, which may 
resolve upon stabilization of body weight [211]. Other observational 
trials suggest that a weight reduction of 5–10% or more is required for 
longer-term, meaningful reductions in blood LDL-C levels [212]. The 
type of nutritional intervention promoting weight reduction influences 
the effect on LDL-C levels, with lower dietary fat intake decreasing 
LDL-C levels relative to higher (saturated) dietary fat intake which may 
increase LDL-C levels [213]. 

The effects of weight reduction on blood HDL-C levels may be time 
dependent, with no change or reduction in blood HDL-C levels during 
active weight reduction and return to baseline or increase in blood HDL- 
C levels once weight stabilizes [214,215]. In general, the greater the 
weight reduction, the greater the improvement in lipid levels. 

The Look AHEAD (Action for Health in Diabetes) study was a 
multicenter, randomized clinical trial examining the long-term effects of 
lifestyle interventions on cardiovascular morbidity and mortality in 
5145 patients with overweight or obesity and T2DM who were ran
domized to intensive lifestyle intervention or usual care. After a median 
follow-up of 9.6 years, the study was stopped early due to futility in 
reducing CVD events [216]. An observational analysis of the Look 

AHEAD study based upon the magnitude of weight reduction supported 
the principle that a modest weight reduction of 5–10% was associated 
with improvements in CVD risk factors at 1 year, but larger weight 
reduction had greater benefits [217]. Specifically, HbA1c and blood 
pressure (especially systolic blood pressure) were further reduced with 
each increment of weight reduction (≥ 2% to < 5%, ≥ 5% to < 10%, ≥
10 to < 15%, and ≥ 15%). Proportional to the amount of weight 
reduction across these categorical ranges, blood triglyceride levels were 
progressively, and significantly reduced >60 mg/dL and blood HDL-C 
levels were progressively and significantly increased ~4–5 mg/dL. In 
contrast, the effects on blood LDL-C levels did not achieve statistical 
significance, either in the overall patient population, or among patients 
on lipid-lowering medications [217]. Regarding other lipid parameters, 
weight reduction may reduce apoB levels (i.e., one molecule of apoB 
resides on each atherogenic lipoprotein) more consistently than a 
reduction in blood LDL-C levels [218]. 

Overall, among patients with increased adiposity, weight reduction 
of ≥2.5% can result in mild improvement in cardiometabolic parame
ters, such as a reduction in blood triglyceride levels and some 
improvement in glucose metabolism. Greater weight reduction of ≥5% 
is usually required for more clinically meaningful improvements in the 
multiple adiposopathic and fat mass complications of obesity, including 
further reduction in blood triglyceride levels and increases in blood 
HDL-C levels. Even greater reduction in body weight (e.g., >15%) has 
the potential to reduce cardiovascular and overall mortality [219,220]. 

15. In patients with obesity, what is the effect of anti-obesity 
medications on the lipid profile, lipoprotein levels, and 
cardiovascular risk? 

Anti-obesity medications (AOMs) can reduce CVD risk factors [221]. 
Table 3 illustrates reported lipid effects of AOMs. Additionally, a ”real 
world” analysis of AOMs prior to the approval of highly-effective AOMs 
(defined as AOM’s producing weight reduction ≥15% in a clinically 

Table 3 
Effects of anti-obesity medications (AOM) and bariatric surgery on lipid levels. These reported effects are not intended to reflect efficacy in patients with specific 
dyslipidemias. Also, because these are independent studies, of varying duration, with different protocol designs (i.e., some including patients with diabetes mellitus, 
others not), different baseline lipid levels, different dose ranges, and at different points in active weight reduction, the reported lipid effects of these interventions are 
not intended to reflect direct comparisons. See references for more information about the interventions, doses of AOMs, drug formulations, duration of studies, and 
other details of each study. While somewhat variable depending on the analysis, the overall message is that AOMs generally have the greatest effect on lowering blood 
triglyceride levels, with neutral to increases in HDL-C levels, and marginal decreases in blood LDL-C levels. The exception may be orlistat, that may have greater 
reductions in blood LDL-C levels due to mechanisms beyond weight reduction alone [201]. Bariatric surgery generally results in greater weight reduction and greater 
improvements in lipid profiles than current monotherapy AOMs.  

Intervention Change TGa Change HDL-Ca Change LDL-Ca Change weighta Ref. 

Anti-obesity medications 
Orlistat − 0.09 mmol 

(− 8 mg/dL) 
− 0.034 mmol/L 
(− 1.3 mg/dL) 

− 0.27 mmol/L 
(− 10.44 mg/dL) 

− 2.12 kg [193] 

Phentermine/topiramate − 13.38% +4.62% − 0.96% − 7.73 kg [194] 
Naltrexone/bupropion − 11 to − 15 mg/dL +3 to +5 mg/dL − 1 to − 4 mg/dL  [195,196] 
Liraglutide − 23 mg/dL − 0.4 mg/dL − 4.6 mg/dL − 2.38 kg [195,196] 
Semaglutide − 15.64% +4.24% − 2.18% − 8.51% [197] 
Tirzepatide − 20.3 mg/dL +8.8 mg/dL − 4.2% − 17.8% with 15-mg dose [198] 
Pharmacotherapy in general − 1.25 mg/dL per one kg  

weight reduction 
+0.37 mg/dL per one kg  
weight reduction 

− 1.67 mg/dL per one kg  
weight reduction 

NA [192] 

Bariatric surgery 
Gastric bypass − 36 to − 63% +23 to +39% − 17 to − 31% − 35% [199,200] 
Sleeve gastrectomy − 35 to − 42% +19 to +28% − 12 to − 23% − 34% [199] 

[200] 
Bariatric surgery in general − 2.47 mg/dL per one kg  

weight reduction 
+0.42 mg/dL per one kg  
weight reduction 

− 0.33 mg/dL per one kg  
weight reduction 

NA [192] 

HDL-C: High-density lipoprotein cholesterol 
LDL-C: Low-density lipoprotein cholesterol 
NA: Not applicable 
TG: Triglycerides 

a Some of the chosen cited references were sentinel clinical trials, while others were meta-analyses. The reported data reflect variances in how the data were reported 
(i.e., percent versus mean reductions). Also, while the bariatric literature mostly reports “excessive weight loss,” this is a different calculation than total weight loss, 
and makes it challenging to compare the bariatric literature to the medical literature (i.e., publications regarding AOMs [202]). The values given here are “total weight 
loss” and not “excessive weight loss.” 
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meaningful percent of patients [222]) suggested that mild reduction in 
body weight was associated with marginal improvements in CVD risk 
factors (including blood lipids) with older and less effective AOMs 
[223]. 

Conversely, results from clinical trials support that, among patients 
with obesity, some highly effective AOM’s that reduce body weight and 
improve CVD outcomes, also improve the lipid profile and blood lipo
proteins levels. An illustrative example is the Semaglutide and Cardio
vascular Outcomes in Obesity without Diabetes (SELECT) Trial. SELECT 
was an integral part of the semaglutide development program for 
treatment of obesity [220]. SELECT was a placebo-controlled cardio
vascular outcomes trial of semaglutide 2.4 mg subcutaneously once 
weekly involving patients with overweight or obesity with CVD but 
without diabetes mellitus [197]. In this cardiovascular outcome study of 
17,604 patients treated with semaglutide or placebo for 34.2 ± 13.7 
months (and the mean duration of follow-up was 39.8 ± 9.4 months), 
the semaglutide group experienced a 20% reduction in major adverse 
cardiac events. The baseline lipid values in the semaglutide group 
included total cholesterol 153 mg/dL, LDL-C 78 mg/dL, triglycerides 
134 mg/dL, and HDL-C 44 mg/dL. The mean change in body weight over 
the 104 weeks after randomization was − 9.4% with semaglutide and 
− 0.88% with placebo (estimated treatment difference, − 8.5% points). 
At study end, semaglutide produced a reduction in total cholesterol of 
4.6%, reduction in LDL-C of 5.3%, reduction in triglycerides of 18.3%, 
and increase in HDL-C of 4.9%. While the lipid effects were generally 
favorable, reduction in LDL-C levels were modest. Furthermore, this 
study did not evaluate the degree that the CVD risk reduction was due to 
improvement in lipid levels, nor did this study specifically evaluate the 
degree the CVD risk reduction (or the reduction in C-reactive protein) 
was due to weight reduction alone. 

16. In patients with obesity, what is the effect of bariatric 
surgery on the lipid profile, blood lipoprotein levels, and 
cardiovascular risk? 

Bariatric surgery can reduce CVD risk factors [221]. Table 3 illus
trates reported lipid effects of bariatric surgery. The effects of bariatric 
procedures/surgery on the lipid profile and lipoprotein levels can vary, 
depending on the types of bariatric procedures/surgery. Compared to 
the more rarely performed laparoscopic banding, sleeve gastrectomy, 
Roux-en-Y gastric bypass, and biliopancreatic diversion/duodenal 
switch have directionally similar, but more profound effects in reducing 
blood LDL-C, reducing blood triglyceride levels, increasing blood HDL-C 
levels, as well as decreasing non-HDL-C, apoB, lipoprotein particle 
number, and lipoprotein remnants [15]. Results from some studies 
suggest bariatric surgery produces no change in lipoprotein (a) [15], 
while the results from other studies suggest bariatric surgery may in
crease lipoprotein (a) [224]. Yet the results of other studies suggest 
bariatric surgery may decrease lipoprotein (a) [225], independent of 
weight reduction [226], with some indication that gastric bypass may 
lower lipoprotein (a) more than sleeve gastrectomy [227]. 

Similar to the SELECT trial evaluating the cardiovascular outcomes, 
lipid profile, and lipoprotein effects of AOMs, bariatric surgery may have 
cardiovascular outcome benefits. A supporting clinical trial would be the 
Swedish Obese Subjects (SOS) study, which was a prospective, 
controlled, 10.9-year study that included 4047 participants with obesity 
who were treated with bariatric surgery (i.e., gastric bypass, 32%; 
vertical-banded gastroplasty, 25%; and banding, 20%) or conventional 
treatment (matched control group). Bariatric surgery resulted in a 
relative risk reduction in mortality of 24% with 25 deaths due to 
myocardial infarction in the control group and 13 subjects in the bar
iatric surgery group. Death due to cancers were 47 in the control group 
and 29 in the surgery group [228]. By study end, the incidence of study 
participants diagnosed with hypertriglyceridemia was 27% in the con
trol group and 17% in the surgery group, while the incidence of low 
HDL-C was 6% in the control group and 3% in the surgery group [229]. 

The results of other analyses also support that bariatric surgery reduces 
blood LDL-C and triglyceride levels, and increases blood HDL-C [230] 
levels, with the most consistent lipid profile and lipoprotein effects being 
a decrease in triglycerides and increase in blood HDL-C levels [231]. 

17. Among patients with increased adiposity, what are the 
relative benefits of weight reduction versus blood LDL-C level 
lowering in reducing ASCVD risk? 

Without head-to-head comparative data derived from specifically 
designed clinical outcomes trials, it is challenging to compare the CVD 
benefits of reducing body weight versus lowering blood LDL-C levels 
among patients with increased adiposity. Management of both increased 
body fat and increased blood atherogenic lipids are important compo
nents of a global strategy to reduce CVD risk. 

Reduction in blood LDL-C levels primarily reduces the risk of ASCVD. 
Among patients with increased adiposity, weight reduction may not 
only improve blood lipid levels, but also may improve other major 
ASCVD risk factors, such as blood glucose, blood pressure, as well as 
inflammation, thrombosis, and ability to engage in routine physical 
activity. Reducing body weight in patients with overweight or obesity 
may also improve both “sick fat disease” and “fat mass disease” (see 
Section 11), with potential improvements in ASCVD (as well as other 
CVDs such as heart failure and atrial fibrillation), as well as improve
ments in sleep apnea [232]). 

Regarding weight reduction, prior to the favorable CVD findings in 
the SELECT study of the AOM semaglutide [197] (previously discussed 
in Section 15.0), little evidence supported that weight reduction with 
AOM use resulted in a clinically meaningful reduction in CVD risk. 
Furthermore, as previously noted, the SELECT study did not evaluate the 
degree that the CVD risk reduction was due to improvement in lipid 
levels, nor did the SELECT study specifically evaluate the degree the 
CVD risk reduction was due to weight reduction alone. The same might 
be said regarding bariatric surgery. Overall, among patients with 
obesity, bariatric surgery has the potential to reduce all-cause mortality, 
cardiovascular mortality, heart failure, myocardial infarction, and 
stroke by ~40–50% [233]. It is uncertain how much of the benefit of 
bariatric surgery in patients with obesity is due to weight reduction 
alone and how much is due to improvement in cardiometabolic risk 
factors (e.g., improvement in blood lipid levels, blood pressure, blood 
glucose), improvement in heart failure, improvement in sleep apnea, or 
improvement in other metabolic, inflammatory, or fat mass factors that 
contribute to CVD. 

Regarding blood lipid levels, among patients with LDL-C levels ~90 
mg/dL at baseline, analyses from ODYSSEY OUTCOMES (i.e., alir
ocumab) and FOURIER (i.e., evolocumab) supported that regarding 
patients at high CVD risk, lowering blood LDL-C levels over 50% with 
proprotein convertase subtilisin kexin-9 inhibitors resulted in about a 
15% relative risk reduction of CVD [234,235]. Of note, patients in these 
studies were treated with maximally tolerated or high dose statins and 
underwent follow-up for a median of only 2–3 years. 

Perhaps a more clinically relevant analysis is the Cholesterol Treat
ment Trialists Collaboration (CTT). The CTT evaluated a broader patient 
population treated with various statins, studied in multiple clinical tri
als, over a variable amount of time (i.e., often longer follow-up than the 
ODYSSEY OUTCOMES and FOURIER trials). The CTT authors concluded 
in their meta-analyses, that among patients with varying baseline blood 
LDL-C levels, the risk of an ASCVD event was reduced by 22% per 38.7 
mg/dL reduction in blood LDL-C levels [236]. 

In short, in the SELECT trial, semaglutide reduced body weight by 
8.5% and reduced CVD events by 20% [197]. When calculated as 
percent weight loss (and not “percent excess body mass index loss,”) 
bariatric surgery may reduce body weight approximately 30–40% [202] 
As previously noted, among patients with obesity, bariatric surgery has 
the potential to reduce all-cause mortality, cardiovascular mortality, 
heart failure, myocardial infarction, and stroke by ~40–50%. Thus, 
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among patients with increased adiposity, when the evidence of weight 
reduction is compared to the evidence of blood LDL-C lowering (i.e., 
utilizing CTT data), then current evidence provides little insight as to 
which is more effective in reducing CVD risk or events. Rather, the to
tality of evidence suggests that such a comparison is both unhelpful and 
unnecessary. Depending on the intervention, both weight reduction and 
blood LDL-C level lowering represent evidenced-based priorities in the 
management of patient with increased adiposity and increased athero
genic blood lipids. 

The potential benefits of attaining optimal body weight and optimal 
blood lipid levels might be illustrated by human hunter-gatherer pop
ulations. Historically, the mean BMI of hunter-gatherers (e.g., Australian 
aborigines) has been reported as being <20 kg/m2 [237]. Reports have 
also recorded hunter-gatherer populations as having a total cholesterol 
level of ~100 mg/dL [238]. Regarding hunter-gatherer populations, 
“coronary heart disease “is virtually absent and is rarely seen in patients 
admitted to rural hospitals” [239]. Conversely, over 2/3 of U.S. adults 
have overweight or obesity, with rates of obesity being higher among 
certain races and ethnicities (i.e., Blacks and Hispanics) [240] The 
average total blood cholesterol levels in U.S. adults in years from 1999 to 
2000 was 188 mg/dL and the average blood LDL-C for the same time 
period was 112 mg/dL, which included blood lipid values among those 
using cholesterol lowering medications, such as statins [241]. Cardio
vascular disease is the most common cause of mortality among U.S. 
adults [7]. 

The reduced risk for CVD among hunter-gatherers is despite whether 
the nutritional intake is higher or lower in fat [239,242], despite vari
ances in plant vs meat intake [239,242], and despite weight-adjusted 
total energy expenditure among rural hunter-gathers being similar to 
some Western populations (i.e., European or US cities), which have high 
rates of obesity [243]. This suggests that lifelong avoidance of increased 
adiposity has the potential to substantially reduce the risk ASCVD. 
Furthermore, from a lipid standpoint, the CVD beneficial effects of 
lifelong limited exposure to adiposopathic CVD risk factors would be 
consistent with findings that incident CVD event risk is dependent on the 
cumulative time exposure to increased blood LDL-C levels. Collectively, 
this emphasizes the importance of optimal body weight and optimal 
blood LDL-C level control, starting early in life [244]. 

18. Among children with obesity, what is the effect of weight 
reduction on lipid profile, blood lipoprotein levels, and 
cardiovascular risk factors? 

Regarding children, a systematic review and meta-regression eval
uated 42 studies conducted through February 2015 of interventions to 
treat pediatric obesity (medication, surgery, lifestyle, and community- 
based interventions), all having a 6-month follow-up. The baseline 
characteristics of the participants included a mean age of 12.2 years, a 
mean weight of 74.7 kg, and a mean BMI of 31.7 kg/m2. The results of 
this analysis revealed that a 0.74-kg decrease in weight was associated 
with a 1-mg/dL increase in blood HDL-C levels and a 0.1-kg decrease in 
weight was associated with a 1-mg/dL decrease in blood triglyceride 
levels [245]. The conclusion of the authors was that weight reduction in 
children was associated with significant changes in measures of car
diometabolic risk, including an increase in blood HDL-C levels and a 
decrease in blood triglyceride levels (as well as systolic blood pressure), 
with the degree of anticipated improvement helping to inform shared 
decision-making and counseling [245]. 

19. What is the role of dyslipidemia management in patients 
with obesity? 

Patients with acute adiposopathic metabolic consequences of obesity 
(i.e., severely elevated blood glucose, blood pressures, CVD, thrombosis, 
or cancer) require concomitant treatment of their acute metabolic dis
eases, as well as concomitant treatment of obesity. For patients with 

obesity without acute metabolic disease (i.e., those with modest eleva
tions in blood glucose, blood pressure, or blood triglyceride levels), and 
at lower CVD risk, a Clinical Practice Statement from the OMA has 
suggested that some patients may benefit from a “Treat Obesity First” 
approach [17]. Such an approach may be especially considered with 
implementation of evidenced-based nutritional intervention, physical 
activity, AOMs, and bariatric procedures with proven effectiveness in 
improving these CVD risk factors (and cardiovascular outcomes), and in 
patients where anti-diabetes medications may increase the risk of hy
poglycemia and antihypertensive medications may increase the risk of 
hypotension, if administered concurrently during active weight reduc
tion. The recognition of the potential effectiveness of weight reduction 
to reduce blood glucose levels [17] and blood pressures [18] is reflected 
in the common medical practice of reducing (or discontinuing) 
anti-diabetes and anti-hypertensive medications before bariatric sur
gery, and the substantial rate of remission of diabetes mellitus and hy
pertension that directly correlates to the amount of post operative 
weight reduction [24,202,246–248], with a directionally similar need to 
adjust anti-diabetes and antihypertension medications with very 
low-calorie diets [249,250]. 

A potential exception to this “Treat Obesity First” paradigm would be 
patients with obesity with, or who are at high risk for, ASCVD and who 
have elevated blood LDL-C levels. Given the limited blood LDL-C level 
reduction anticipated with most treatments for obesity, and given 
improved CVD outcomes with earlier lipid-lowering therapy adminis
tration [112], patients with, or at high risk for, ASCVD should have 
management priorities that include both a reduction in excess adiposity 
and appropriate management of atherogenic lipoproteins [108]. Simi
larly, both management of obesity and management of dyslipidemia 
may be optimally achieved via use of a guideline-directed and multi
disciplinary team approach [108,251,252]. 

20. Conclusion 

The adiposopathic dyslipidemia pattern most described in patients 
with increased adiposity includes elevated blood triglyceride levels, 
reduced blood HDL-C levels, increased non-HDL-C levels, elevated apoB, 
increased LDL particle concentration, and increased small dense LDL 
particles. Population studies suggest blood LDL-C levels are modestly 
increased with increased adiposity. The clinical takeaways from this 
joint expert review by the OMA and NLA are that.  

• An increase in adiposity is generally associated with an atherogenic 
lipid profile, as well as other cardiometabolic risk factors, all that 
likely contribute to increased CVD risk.  

• Among patients with obesity, interventions that reduce body weight 
and improve CVD outcomes are generally associated with reduced 
blood triglyceride levels and increased blood HDL-C levels, often 
with only mild to modest improvements in blood LDL-C levels.  

• In patients with, or at risk for ASCVD, a dual priority includes early 
lifestyle and/or pharmacologic intervention to treat both excess 
adiposity and elevated levels of atherogenic cholesterol (i.e., LDL-C 
and/or non-HDL-C). 

Transparency and group composition [253] 

The authors reflect a multidisciplinary and balanced group of experts 
in obesity science, patient evaluation, and clinical treatment. 
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