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Abstract 
In this review article, we explore the transformative impact of deep learning (DL) on structural bioinformatics, emphasizing its pivotal 
role in a scientific revolution driven by extensive data, accessible toolkits and robust computing resources. As big data continue 
to advance, DL is poised to become an integral component in healthcare and biology, revolutionizing analytical processes. Our 
comprehensive review provides detailed insights into DL, featuring specific demonstrations of its notable applications in bioinformatics. 
We address challenges tailored for DL, spotlight recent successes in structural bioinformatics and present a clear exposition of DL— 
from basic shallow neural networks to advanced models such as convolution, recurrent, artificial and transformer neural networks. This 
paper discusses the emerging use of DL for understanding biomolecular structures, anticipating ongoing developments and applications 
in the realm of structural bioinformatics. 
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INTRODUCTION 
The initial applications of artificial intelligence (AI) that relied 
on hardware, emerged during the 1950s [1], while machine learn-
ing (ML), a more modern concept with well-established theories, 
first emerged in the 1960s [2]. Deep learning (DL) is another ML 
technique that makes use of artificial neural networks (ANNs) 
with numerous layers of nonlinear processing units. An ANN is 
composed of three fundamental layers: the input layer, the hidden 
layer and the output layer. The nodes, also known as neurons, in 
adjacent layers might be fully or partially connected, depending 
on the kind of ANN. After the input nodes receive the input 
variables, hidden nodes change the variables, and output nodes 
compute the final output values [3]. 

A growing variety of Engineered Nanomaterials, including 
nanoparticles and nanotubes, have been used in consumer goods 
and technological applications in recent years. Therefore, the 
creation of these instruments can aid in the control of safe 
and sustainable research. Uses of ML have been used in many 
domains, such as toxicity assessment and nano informatics 
[4]. Fourches et al. [5] used k-nearest neighbor (kNN)-based 
regression and Support Vector Machine-based classification to 
create Quantitative Nanostructure–Activity Relationship models 
to predict the biological activity profiles of novel nanomaterials 
in one of the first uses of ML techniques in manufacturing 
nanoparticles. It enabled rapid assessment of the possible toxicity 
of manufactured nanoparticles. Puzyn et al. [6]. 

DL, a subfield of ML that is still in its developing stages, was ini-
tially developed in the early 2000s and quickly found applications 
in various areas due to its remarkable predictive capabilities on 
large datasets [7, 8]. In image processing, lower layers detect edges, 
while higher layers recognize significant concepts to humans, 
such as faces, numbers and letters [9]. 

DL makes use of complex algorithms made up of numerous 
layers of nonlinear computing units to obtain a representation of 
the data with multiple layers of abstraction. The effectiveness of 
DL is demonstrated by its success across a wide range of applica-
tion domains. DL is dependent on the creation of specialized NN 
architectures that can capture key properties of the data, such 
as sequential nature (recurrent neural networks—RNNs), context 
dependence (Transformers), spatial locality (convolution neural 
networks—CNNs) and data distribution (autoencoders—AEs) [10]. 

Clustering of data in useful groups is an important problem 
in sciences. K-means clustering is a very popular approach used 
in the scientific community. It works by first choosing the initial 
cluster center, subsequently changing cluster centers and allo-
cating points to clusters repeatedly based on the closest cluster 
center. Estimating the parameters of other statistical models pro-
duces a space of unique clustering techniques if we see the task 
of identifying excellent cluster centers as a statistical parameter 
prediction issue. K-model clustering, a logical extension of K-
means clustering, is presented in [11]. By using proximity as 
a distance metric, similarity measures are used to group data
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items into the same K-means cluster. The K-models clustering 
technique alters K-means by substituting the least squared error 
based on one of the K statistical models for the proximity to a clus-
ter center. A popular and well-researched statistical model, linear 
regression, yields result that diverge significantly from K-means 
[12]. With the advancements facilitated by the big data era, it is 
anticipated that DL will become more prevalent and play a greater 
role in structural bioinformatics. The structure of a protein, which 
is determined by its amino acid sequence, significantly influences 
its function and activity. Modeling and characterizing proteins 
from their primary amino acid sequences to their secondary and 
tertiary structures are crucial for understanding and predicting 
protein functions [13]. Scientists have spent decades trying to 
figure out how to accurately infer a protein structure just from 
its amino acid sequence. These techniques encompassed nuclear 
magnetic resonance and X-ray crystallography, which required 
years of arduous labor, expensive specialized equipment and a 
great deal of error and trial [14]. The goal of developing various 
web servers and algorithms is to enhance the prediction of protein 
structures. A new program called AlphaFold, which excelled in the 
13th critical assessment of protein structure prediction competi-
tion, was introduced in 2018 by DeepMind, a Google business [15– 
17]. It was shown that protein-specific potential could be learned 
by training a neural network with only the protein sequence in the 
initial AlphaFold version, which employed DL to predict the pro-
tein structure [15, 18]. DeepMind recently stated the revolutionary 
improvement made to its most recent AlphaFold model, announc-
ing a major advancement in the field of drug development and 
molecular investigation [15, 16]. A new era of predictive molecular 
analysis was ushered in by DeepMind in 2020 with the release of 
AlphaFold2, an upgraded and more reliable version that built on 
its earlier success [16]. In a stunning accomplishment, DeepMind 
has demonstrated that the latest and most recent version of the 
AlphaFold Model, known as AlphaFold3, can predict a wide range 
of molecules that are present in the Protein data bank, which 
is the world’s largest collection of biological molecules that are 
available for free public use [15, 19]. The future of molecular 
research is extremely promising, especially in the areas of ther-
apeutic intervention and drug discovery [20]. 

In some proteins, side chain alterations of amino acids occur 
after biosynthesis and are referred to as posttranslational modi-
fications (PTMs) [21]. PTMs come in over 400 varieties and impact 
several facets of protein function. These alterations take place 
as essential molecular regulatory systems that govern various 
cellular functions. Numerous computational methods (such as 
sumoylation, palmitoylation or phosphorylation) have been cre-
ated to examine PTMs, demonstrating the significance of these 
methods in predicting changed sites that can be further studied by 
experimental methods [22]. Many computational techniques have 
recently been developed for PTM prediction due to the high cost 
and challenges of experimental methods for PTM identification 
[23]. A multitude of public databases exist that scientists and 
researchers may readily use to construct computational algo-
rithms [21]. 

It takes many years of research and billions of dollars to 
move a chemical through the challenging method of drug dis-
covery. For molecular docking, there are numerous software pro-
grams accessible, although only a small number of them are now 
often utilized. A few instances of benchmark packages include 
AutoDock [24], DOCK [25], FlexX [26], Glide [27], GOLD [28] and  
ICM [29]. When the binding sites are unknown, potential active 
sites within proteins can be found using cavity detection software 
or internet servers, such as GRID [30], POCKET [31], SurfNet [32], 

PASS [33] and MMC [34]. The degree of precision with which the 
crystallized binding mode is identified is where most programs 
differ, even though binding poses are typically well-predicted [35]. 
The Deep Docking (DD) platform is a cutting-edge DL tool that 
can quickly and accurately dock billions of molecules. By approx-
imating the docking results for raw entries, the DD technique 
removes undesirable molecules iteratively. It does this by using 
quantitative structure–activity relationship (QSAR) deep models 
that have been trained on docking scores of subsets of a chemical 
library [36]. GOLD, ICM, GLIDE, FlexX, AutoDock and DOCK have 
higher accuracy compared with GRID, POCKET, SurfNet, PASS and 
MMC. It is discovered that the outcome from GLIDE is much more 
accurate than other programs. Among the docking programs that 
were examined, FlexX and GLIDE were the fastest and AutoDock 
was the slowest, according to a speed comparison. Overall, when 
screening the X-ray structure of the cognate enzyme, the docking 
tools (FLEXX, GLIDE, GOLD and SURFLEX) that were thought to 
be the most accurate in terms of docking (predicting the X-ray 
pose) were also the most successful in enriching a virtual hit list in 
known inhibitors. AutoDock, DOCK, GRID, POCKET, SurfNet, PASS 
and MMC are free tools available, but GLIDE, GOLD, FLEXX and 
SURFLEX are paid software for virtual screening and docking. 

Several web servers are created and published every year for 
various services, which work very well initially, but later, they 
become inaccessible for various reasons. Temporarily, when many 
users attempt to access a website, the server may go down. If the 
server is not set up for heavy traffic, or if it is not equipped with 
enough RAM, CPU or bandwidth to meet demand, this can occur. 
Like any other complicated technology or system, there might 
be several reasons why servers go down. Sometimes, web servers 
are not maintained over time either due to the unavailability of 
the expert person/fund or those servers are left behind as newly 
published web servers perform better. 

Databases and other resources are located behind the server 
and can only manage a certain number of connections at once. 
One approach to give websites more strength is to place a device 
in front of several web servers with identical information and 
connect each one to a powerful back end (such as a mainframe). A 
single server sees fewer connections because of the round-robin 
distribution of requests among the web servers. It is much less 
work to create pages ahead of time and distribute them as static 
pages rather than creating them from scratch for every demand. 
The hardware may need additional resources if the website is 
sophisticated, runs server code and has a database persistence 
layer. 

Advantages of DL 
Handling large and complex data 
It would be challenging for typical ML algorithms to process vast 
and complicated datasets, but DL algorithms can manage them. 
It can therefore be used as a helpful tool to glean insights from 
large amounts of data. The application of DL to bioinformatics has 
yielded remarkable results in managing large datasets, uncover-
ing hidden information and producing accurate predictions. DL 
is superior for certain tasks such as image analysis and very 
useful for de novo molecular design and reaction predictions. For 
example, CNN-based techniques have already taken the lead in 
the field of computer vision in three of its main areas: image 
recognition, object identification, picture-in painting and super-
resolution. RNN-based techniques often reflect the state-of-the-
art performance in the field of natural language processing (NLP) 
for a wide range of applications, including machine translation, 
speech recognition and classification of texts.
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Automatic feature learning 
DL algorithms do not need the features to be manually designed 
because they can automatically learn features from the data. This 
is especially helpful for jobs such as picture recognition when 
defining the features is challenging; for example, in complex, 
medical image analyses such as lung, a lump examination on 
computer tomography scans and DL algorithms with automati-
cally generated features have similar discriminative power to the 
computer-aided diagnosis (CADx) systems that are currently in 
use with traditional hand-crafted features. Moreover, well-tuned 
DL algorithms outperform traditional CADx [37]. 

Improved performance 
DL algorithms have demonstrated state-of-the-art performance 
on a variety of tasks, such as computer vision, NLP and picture and 
audio recognition. For example, Structure-to-function learning 
in bioinformatics has seen a surge in research, thanks to the 
quick development of geometric DL. DeepMind’s Alpha Fold 2 pro-
tein structure prediction model is arguably the most well-known 
example. The model learns on three distinct data structures: a 
sequence-level representation, a pairwise nucleotide interaction 
representation and the atom-level 3D structure of the protein that 
the model generates with high performance and accuracy [38]. 

Handling nonlinear relationships 
It would be challenging to find nonlinear relationships in data 
using conventional techniques, but DL can reveal them. For exam-
ple, to create nonlinear models and algorithms that can adjust to 
the complexity and diversity of data, we can utilize techniques 
such as decision trees, neural networks and KNN [39]. Although 
these models and algorithms may need more data, calibration, 
as well as translation than linear models and algorithms, they 
frequently accomplish higher accuracy and more adaptability. 

Handling structured and unstructured data 
A variety of data types, including text, audio and photos, can be 
handled by DL systems. For example, DL has recently been imple-
mented to handle aggregated electronic health records contain-
ing both structured and unstructured data (e.g. free-text clinical 
notes and medication, diagnosis and laboratory tests). Specifi-
cally, a popular strategy is to demonstrate that DL outperforms 
traditional ML models in terms of specific metrics, such as accu-
racy, F-score and Area Under the Receiver Operating Characteris-
tic Curve [40]. 

Predictive modeling 
The application of DL techniques to forecast future trends or 
events can assist organizations in making strategic decisions and 
future planning. 

Handling missing data 
DL algorithms are helpful in real-world applications where data 
are frequently incomplete because they can handle missing data 
and still generate predictions. In several fields, including electron-
ics, image processing, genomics and medical records, missing data 
are a widespread challenge. KNN is still a better method because 
Random Forest is more difficult to compute and has problems 
with more complicated missing data structures [41]. 

Handling sequential data 
Sequential data, such as time series, audio and text, are especially 
well-suited for DL algorithms such as RNNs and Long Short-Term 

Memory (LSTM) networks. These algorithms can forecast or make 
judgments based on previous inputs because they can retain con-
text and memory over time. These networks have historically been 
employed in language processing, where context and meaning 
are largely dependent on word order. Likewise, these networks 
are suitable for handling sequence data or biological time-series 
data processing. As an example, the presence of a stop codon 
would probably be stored in long-term memory if a model was 
attempting to predict whether a protein will be translated from a 
specific mRNA and retained there until a downstream start codon 
is found [42]. 

Disadvantages of DL 
Lack of data 
The application of DL to bioinformatics has yielded remarkable 
results in managing large datasets, uncovering hidden informa-
tion and producing accurate predictions. Given that it incorpo-
rates representation learning, DL is known to be extremely data-
hungry [43]. Typically, we need a lot more data than shallow 
methods to get a decent-performing DL model. Training a DL 
model with unbalanced data could have unfavorable effects. 

Overfitting 
DL models run a significant risk of becoming overfit to the training 
set and underperforming when it comes to generalizing to the 
testing set due to their extremely high model complexity and large 
number of precisely associated features [44]. While this issue is 
not unique to the use of DL in bioinformatics, it is a problem 
that practically all DL models have. As such, when using DL 
techniques, they should be carefully evaluated and managed. 

Data imbalance 
Typically, the biological data are skewed, with a large proportion 
of positive samples compared with negative ones [45]. As a case 
study, the quantity of non-enzyme proteins is significantly higher 
than that of a particular class of enzyme proteins [46]. The 
problem of data imbalance also occurs in Poly(A) site prediction 
[47], transcription beginning site prediction [48], etc. Unwanted 
outcomes could emerge from training a DL model with unbal-
anced data. 

Interpretability 
Typically, in the discipline of bioinformatics, we aim to interpret 
DL so that we can identify the meaningful patterns and motifs 
that the model has identified. To illustrate, if we have constructed 
a model to forecast the DNA–protein binding affinity, we might 
wonder which DNA motifs influence the binding affinity land-
scape more [49]. When training a DL model to diagnose diseases, 
we need not only the diagnosis and prediction outcomes but also 
the decision-making process and the supporting data that the 
model uses to boost our confidence in the model’s predictions 
[50]. 

Catastrophic forgetting 
The phenomenon of catastrophic forgetting occurs when fresh 
information is added to a basic DL model without disrupting 
previously learned information [51], as a case study, PDB [52] 
contained 147 595 entries as of 2018 compared with 13 590 in 
2000. Additionally, the size of Swiss-Prot [53] has grown, from 
roughly 100 000 in 2000 to 559 077 in 2018. We will most likely have 
new classes in the future as reflected in the Enzyme Commission 
numbering system because fresh data are being developed [54]. 
Training a brand-new model from scratch using both fresh and
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historical data can be a simple approach, but it is laborious and 
computationally demanding, and it can lead to unstable learned 
representations of the original data. 

Model compression and reducing computational 
requirement 
DL models are typically quite complicated and require a large 
number of parameters to be trained, therefore getting well-
trained models—and even using the models productively—can be 
computationally and memory-intensive [55]. The implementation 
of DL in machines with limited computational power is severely 
restricted by these requirements, particularly in the data-
intensive fields of bioinformatics and healthcare. The healthcare 
data are more complicated and greater in size due to the different 
methods of evaluating people’s health and the heterogeneous 
properties of the data [56], which increases the computational 
challenge of addressing the issue [57]. 

High computational cost 
Large quantities of RAM and potent GPUs are the two computa-
tional resources needed to train DL models. This may require a lot 
of money and time. 

DL ALGORITHMS IN BIOINFORMATICS 
DL neural networks aim to replicate the functioning of the human 
brain by integrating data inputs, biases and weights [58]. These 
networks are structured with multiple interconnected layers of 
nodes, where each layer improves the prediction or classification 
made by the previous layer. The process through which data flow 
forward in the neural network is called forward propagation. The 
input and output layers are the visible layers of deep neural net-
works (DNNs) [59]. The DL model processes the input data through 
the network’s layers, ultimately producing the final prediction or 
classification in the output layer (Figure 1A). 

Backpropagation is a technique that involves iteratively 
traversing the layers in the reverse direction to adjust the 
weights and biases of the network, thereby training the model. 
Backpropagation employs methods such as gradient descent to 
measure prediction errors. By combining forward propagation 
and backpropagation, a neural network can make predictions 
and continuously improve its performance over time [60, 61]. 
In the context of protein structure prediction, DNNs have 
been widely used due to the complexity involved in predicting 
3D structures [62–64]. Previous studies have employed less 
sophisticated methods, such as forecasting the secondary 
structure or torsion angle of proteins. For example, Heffernan 
et al. [63] utilized Stacked Autoencoder to estimate secondary 
structure, accessible surface area and torsion angle from protein 
amino acid sequences. Additionally, Spencer et al. [64] employed  
Deep Belief Network along with Position-Specific Scoring Matrix 
(PSSM) and Free Accessible Chunks characteristics to predict 
protein secondary structure. Some important applications of DL 
in structural bioinformatics are listed in Table 1. 

The major categories of neural networks which find application 
in structural bioinformatics are the following. 

Artificial neural network 
ANNs are designed to mimic the functioning of the human brain’s 
neurons and learn from data to make predictions or classifica-
tions. ANNs are inspired by the human nervous system and aim 
to replicate the learning process of neurons [65]. The term ‘Neural 
Networks’ was coined by Waller Pitts and Warren S. McCulloch 

in the 1940s. ANNs can learn from data and discover complex 
relationships between inputs and outputs. They can identify novel 
patterns and make predictions or classifications [66]. ANNs have 
a wide range of applications, including speech recognition, image 
recognition, medical diagnosis and machine translation [67, 68]. 
One significant advantage of ANNs is their ability to gain knowl-
edge from example datasets. By training on labeled data, ANNs 
can learn to recognize patterns and make accurate predictions. 
Overall, ANNs offer a powerful approach to ML, enabling the 
discovery of complex patterns and relationships in data, leading 
to various applications across different domains. 

ANNs come in two main categories: Feedforward ANN and 
Feedback ANN. 

Feedforward neural network 
Feedforward ANNs have a unidirectional flow of information, 
where data move from the input layer to the hidden layer(s) and 
then to the output layer. These networks do not contain feedback 
loops, meaning that the output does not affect the input or previ-
ous layers. Feedforward ANNs are commonly used in supervised 
learning tasks such as classification and image recognition. They 
are suitable for non-sequential data [69, 70]. 

Feedback neural network 
Feedback ANNs, as the name suggests, incorporate feedback loops 
within the network. RNNs are an example of feedback ANNs that 
are particularly effective in tasks requiring memory retention. 
These networks are well-suited for applications where the data 
are sequential or time-dependent [71]. 

ANN in structural bioinformatics 
In the study conducted by Victor Seguritan et al. [72], they utilized 
ANNs to identify the structural protein sequences of phages. The 
primary goal was to achieve accurate predictions with low error 
rates. The researchers aimed to leverage these quantitative meth-
ods to gain insights into the functions of uncharacterized viral 
sequences. By employing ANNs, which are powerful ML models 
capable of learning complex patterns and relationships from data, 
the study aimed to enhance the understanding of phage struc-
tural proteins. The utilization of ANNs in this context allowed for 
the prediction and analysis of the structural protein sequences 
with improved accuracy. In the field of protein structure pre-
diction, ANNs have been widely employed for various tasks and 
have shown promising results. Fuchs et al. [73] developed a neu-
ral network method to predict helix–helix contacts in polytopic 
membrane proteins, achieving an accuracy of ∼26%. Plewczynski 
and colleagues [74] constructed a neural network approach for 
signal peptide detection in proteins, focusing on predicting signal 
peptides. An ANN-based mining approach was used to predict 
dihedral angles in enzyme loops, which are essential for determin-
ing the tertiary structure of proteins [75]. PhANNs (Phage ANNs) is 
a robust ANN-based technique used to classify phage structural 
proteins, particularly when homology-based alignments are not 
informative [76]. SCOPES (Structural Classification of Proteins— 
Extended) utilizes an ANN-based method to evaluate the energy 
profile of protein structures, showing improvements over tradi-
tional force-based methods for structural assessment [77]. 

Convolution neural network 
A CNN is a DL neural network designed for processing struc-
tured data arrays, particularly images. CNNs are widely used in 
computer vision applications, such as image classification, and 
have also shown success in NLP for text classification [78]. They
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Figure 1. Various DL applications in structural bioinformatics. (A) Prediction of different characteristics of Proteins, Chemical compounds using their 
sequence, and chemical structure, respectively. (B) Prediction of protein structure with a CNN. (C) Classification and structure prediction of protein 
using an RNN from their amino acid sequence. (D) A schematic diagram of a feed-forward neural network. (E) A schematic diagram of ANN. (F) Protein  
disorder prediction from protein sequence with a multilayer perceptron. (G) Study of protein sequences with an AE based on transformer architecture. 

excel at recognizing patterns in input images, including lines, 
gradients, circles, eyes and faces, making them highly effective for 
computer vision tasks [ 78]. Unlike older computer vision methods, 
CNNs can operate directly on raw images without the need for 
extensive preprocessing. A CNN typically consists of multiple 
layers, with up to 20 or 30 layers in a feed-forward configuration. 
The key component of a CNN is the convolution layer, which 
enables the network to recognize increasingly complex shapes 
as the layers stack on top of each other. For example, hand-
written digits can be recognized with just a few convolutional 
layers, while distinguishing human faces may require up to 25 
layers [79, 80]. The use of convolution layers in CNNs mirrors 

the organization of the human visual cortex, where multiple 
layers process input images and identify progressively detailed 
features. 

CNNs are a specific type of feed-forward neural network com-
monly used in AI applications, especially for image recognition 
[81, 82]. The input data for a CNN are represented as multidi-
mensional arrays and perform well when trained with labeled 
data. The network considers the entire receptive field, or input 
image, and assigns weights to each neuron based on their relative 
importance in distinguishing features [83]. The architecture of a 
CNN typically includes three types of layers: convolution, pooling 
and fully connected (Figure 1B).
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Table 1: Categorization of DL applied in structural bioinformatics 

DL types Research area References 

DNN Protein structure [62, 138] 
RNN Protein structure Protein classification [94, 95] 
Modified neural network Protein structure [139] 
Convolutional neural network Protein function Predicting DNA–Protein binding [84, 140] 
FNN Classification of amino acids [116] 
PNN Protein–Protein interaction Prediction [141] 
ANN Predicting protein subcellular location [142] 
Multilayer perceptron (NN) Protein disorder prediction [143] 
Radial Neural Network Protein Structure [101, 144] 
MNN Multitasking model for QSAR [106] 

CNN in structural bioinformatics 
Maya Hirohara et al. [84] used a CNN, based on the SMILES 
representation of molecules to detect protein-binding sites and 
other significant structures (motifs). CNN employs learned filters 
for motif identification and can recognize both known and 
undiscovered functional groups. DeepEM [85] technique utilizes 
a deep CNN for the detection of single particles in cryo-electron 
microscopy (Cryo-EM). It aims to automate particle extraction 
from experimental micrographs, which is a time-consuming step 
in cryo-EM analysis. Deep Pocket [86] employs 3D CNNs to identify 
cavities on the protein surface after initial pocket detection. It 
aims to improve the accuracy of identifying binding pockets on 
proteins. 

Recurrent neural network 
RNNs are ANNs that are designed to work with sequential or 
time series data. They are commonly used in tasks such as lan-
guage translation, speech recognition, image processing and NLP 
[87, 88]. RNNs differ from other neural network architectures 
such as feedforward and CNNs because they have a ‘memory’ 
that allows them to utilize information from previous inputs to 
influence the current input and output [89]. While traditional 
DNNs consider inputs and outputs as independent, RNNs estab-
lish dependencies between sequential data and base their out-
put on previous parts of the sequence. Unidirectional NNs are 
limited in their ability to incorporate future events in predic-
tions. However, RNNs can analyze sequential data by establishing 
dependencies between multiple time steps [90]. An RNN consists 
of consecutive recurrent layers that connect one sequence to 
another (Figure 1C). It can process sequences of any length and 
extract contextual information from the sequence. 

LSTM is an extension of RNN that addresses the vanishing gra-
dient problem and allows for capturing longer term dependencies 
in the data. It incorporates memory cells and gates to control 
the flow of information [91]. The gated recurrent unit (GRU) is 
another variation of RNN that simplifies the LSTM architecture 
while still addressing the vanishing gradient problem [92]. RNN 
node architecture typically includes weights and biases. LSTM has 
four sets of weights and biases, while the ordinary RNN node has 
one weight and bias [93]. 

RNN in structural bioinformatics 
RNNs are considered effective DL models for biological sequence 
analysis due to the variable length and the importance of sequen-
tial information [94]. RNNs have been utilized in protein classifi-
cation, protein structure prediction and gene expression regula-
tion tasks. Baldi et al. [95] employed Bidirectional RNNs (BRNNs) 

with a perceptron hidden layer to predict protein secondary struc-
tures. Sønderby et al. [96] used BRNNs with LSTM units and 
a 1D convolutional layer to identify and categorize subcellular 
locations of proteins based on amino acid sequences. LSTM units 
were chosen based on their superior performance. 

Radial-based neural network 
Radial-based neural networks (RBNNs) are a unique class of neu-
ral networks that consist of three layers: input layer, hidden layer 
and output layer. The primary connection between the network 
and its environment occurs through the input layer [97]. The 
hidden layer of an RBNN consists of nodes that employ radial 
basis functions (such as Gaussian functions or thin plate spline 
functions) to transform the input variables in a nonlinear manner 
[98]. The training process of an RBNN typically involves two 
phases. In the first phase, the network structure is determined 
using the k-means clustering technique to find the centers of the 
hidden layer nodes. In the second phase, the connection weights 
are determined through straightforward linear regression [99, 
100]. This trial-and-error approach of determining the network 
parameters, including the centers and connection weights, allows 
the RBNN to adapt and learn from the input data. 

RBNN in structural bioinformatics 
Some of the major works on the use of RBNNs in various protein-
related prediction tasks are the following. 

Prediction of protein–protein interaction sites 
A novel method utilizing an RBNN ensemble model was proposed 
for predicting protein interaction sites in heterocomplexes. The 
RBNNs were trained on different datasets, classifying protein sur-
face residues into interaction sites or non-interaction sites. The 
final prediction was made based on the outputs of the ensemble 
model [101]. 

Discrimination of beta-barrel membrane proteins 
RBNNs, combined with PSSM profiles, were used for distinguishing 
beta-barrel membrane proteins from other folding types. The 
researchers developed a prediction server called TMBETADISC-
RBF, which utilizes this approach [102]. 

Prediction of protein interaction sites: 
An integrated RBNN was used in a novel method for predicting 
protein interaction sites. This technique utilizes an ensemble of 
RBNN to improve prediction accuracy [103].
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Prediction of protein secondary structure 
The radial basis function method was employed for the prediction 
of protein secondary structure. This approach utilizes the RBNN 
to classify amino acid residues into secondary structure classes 
[104]. 

Classification of transporters 
RBNNs, combined with position-specific score matrices and 
biological characteristics, were utilized for the classification 
of transporter proteins into different families and classes 
[105]. These studies demonstrate the effectiveness of RBNNs in 
various protein-related prediction tasks, such as protein–protein 
interaction site prediction, membrane protein discrimination, 
protein interaction site prediction, protein secondary structure 
prediction (PSSP) and protein classification. 

Modular neural network 
MNNs have been extensively studied and explored as a means to 
improve the capabilities and performance of basic neural network 
systems. The concept of ensemble learning, where a group of weak 
or basic learners work together to outperform a single DL model, 
is closely related to MNN. The principle of ‘divide and conquer’ is 
often applied in MNNs, where complex problems are divided into 
smaller, more manageable pieces. Additionally, diversity promo-
tion is another important aspect where different types of neural 
networks collaborate, with each network specializing in a specific 
role or function. This biologically inspired approach enhances the 
performance and robustness of the MNN system. 

MNN in structural bioinformatics 
One example in the field of structural bioinformatics, where 
MNNs have been applied is drug discovery and toxicity prediction. 
MNNs, combined with multitarget/tasking methodologies such 
as mt-QSAR/mtk-QSAR, enable the simultaneous prediction of 
multiple biological activities against various targets and exper-
imental conditions, contributing to the rational design of drugs 
[106]. In the context of modeling and prediction, modular neural 
networks (MNNs) have also been used for multitasking, combining 
regression and classification tasks. This approach allows for more 
comprehensive modeling and prediction capabilities, leading to 
improved performance and accuracy in various applications [107]. 

Fuzzy neural network 
Fuzzy neural network (FNN) is a hybrid technique that combines 
the noise-handling ability of fuzzy logic (FL) with the learning 
capacity of neural networks. They have been developed to incor-
porate fuzzy inference and human-like thought processes into 
NN architectures. In its basic form, FNN can be seen as a three-
layer feedforward network (Figure 1C). It consists of a fuzzy input 
layer (fuzzification), a hidden layer that contains fuzzy rules and a 
fuzzy output layer (defuzzification) [108]. However, there are cases 
where a five-layer network with sets contained in the second and 
fourth layers can be found [109, 110]. Fuzzy sets are established 
within the connections between layers, representing the fuzzy 
membership functions. In FNN, when there is sufficient input, a 
rule in the hidden layer is activated. The input layer defines the 
membership functions for the fuzzy rules. The relative weights 
across the layers determine membership in each fuzzy set, which 
can be adjusted through specific training procedures similar to a 
traditional neural network. During the activation of fuzzy rules in 
the hidden layer, continuous transfer functions are typically used 
to propagate actual values through the network to the output 

layer. These values are then interpreted as degrees of membership 
in fuzzy sets. 

FNNs in structural bioinformatics 
Bill C. H. developed a statistical method that uses FL for pro-
tein motif extraction. The algorithm aims to extract consen-
sus patterns from a class of associated protein sequences [111]. 
Schlosshauer and Ohlsson [112] proposed a novel method for 
assigning a reliability index to pairs of residues in the best align-
ment of two protein sequences, including gapped areas. 

A fuzzy k-nearest neighbors’ approach has been used to esti-
mate protein subcellular sites from their dipeptide composition 
[113]. Fuzzy alignment methods or a generalized radial basis func-
tion neural network model can be employed to identify functional 
and lineage links between proteins [114]. Kato et al. [115] proposed  
the use of FNN in combination with high-throughput screening as 
a new approach for protein extraction. Bandyopadhyay developed 
effective methods for superfamily classification of amino acid 
sequences using fuzzy clustering, feature extraction and proto-
type selection [116]. These studies highlight the application of FL, 
FNNs and fuzzy clustering in various aspects of protein analysis, 
including motif extraction, alignment, subcellular localization, 
functional classification and superfamily classification. 

Probabilistic neural network 
Probabilistic neural network (PNN) is a type of neural network 
structure that utilizes the statistical algorithm called kernel dis-
criminant analysis. The PNN is organized as a multilayered feed-
forward network with four layers: input, pattern, summation and 
output layer [117]. One characteristic of PNN models is that they 
can have a large number of neurons in the hidden layer (pattern 
layer). This is because there is typically one neuron for each 
training instance, which can lead to a high number of hidden 
nodes. A notable advantage of PNN models is their fast-training 
speed compared with multilayer Perceptron networks [118]. PNNs 
can be trained more efficiently due to their architecture and the 
specific algorithms used in the training process. In summary, 
the PNN is a multilayered feed-forward network (Figure 1F) that  
utilizes kernel discriminant analysis. It has a larger number of 
neurons in the hidden layer but offers faster training compared 
with MLP networks. 

PNN in structural bioinformatics 
The use of probabilistic models and PNN algorithms has been 
applied to various protein-related tasks in bioinformatics. Mikael 
Boden et al. employed probabilistic models based on NMR-solved 
structures to predict the secondary structure of proteins, provid-
ing probabilities on the different conformational states of residues 
[119]. This approach takes into account the inherent nature of 
protein regions that can trigger structural changes. Swati Vipsita 
et al. [120] developed a method to predict the functionality family 
of unique protein sequences using features derived solely from 
the protein’s sequence. They utilized PNN algorithms for the 
classification of protein superfamilies [121]. PSSP is a challeng-
ing task in bioinformatics, and various approaches have been 
proposed to improve prediction accuracy. One study employed 
PNN algorithms to predict the secondary structure of proteins, 
addressing the protein folding problem [122]. 

Transformer neural networks 
Transformer architecture is based on the encoder–decoder model. 
A probability distribution over every vocabulary item for every
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place in the output sequence is produced by the model. Trans-
formers just use attention as its foundation. It has no convolu-
tional or RNN aspects of any type. The transformer computes 
the input and output sequence patterns via self-attention [123]. 
Self-attention estimates sequence representations by comparing 
various elements of a single sequence to other elements. One 
notable example of a transformer model is BERT (Bidirectional 
Encoder Representations from Transformers), which was intro-
duced by Google AI Language researchers in 2018 [124]. The key 
technical breakthrough of BERT lies in its use of the Transformer 
model, particularly its attention mechanism, to model language. 
The Transformer’s self-attention algorithm addresses certain lim-
itations of recurrent and convolutional sequence-to-sequence 
[125] techniques by allowing the model to focus on important 
information within the input sequence. 

In the transformer architecture, self-attention is used to iden-
tify the most relevant information related to the encoding of 
the current token, enabling the model to retain only the essen-
tial information from subsequent tokens [126] (Figure 1G). This 
modified attention mechanism determines the latent space rep-
resentation for both the encoder and decoder. However, to pre-
serve positional information that would otherwise be lost without 
recurrence, positional encoding is combined with the inputs and 
outputs. This allows the transformer system to account for the 
sequential order of the input and output sequences, similar to 
how recurrent models handle time steps [93]. The encoding layer 
of the transformer consists of two components: multi-head self-
attention and a feed-forward layer. The attention mechanism 
establishes a one-to-one relationship between specific moments 
in the sequence, inspired by aspects of human attention. However, 
at its core, the attention mechanism involves weighted mean 
reduction. Overall, the transformer architecture, with its attention 
mechanism and positional encoding, has proven to be a power-
ful tool in various NLP tasks, enabling models such as BERT to 
achieve state-of-the-art performance in tasks such as language 
understanding and generation [127]. 

In the transformer architecture, the attention layer takes three 
inputs: values, queries and keys. These inputs are used to cal-
culate the attention weights, which determine how much impor-
tance should be given to each value based on its relevance to the 
query. 

Unlike traditional sequence-to-sequence models that often 
rely on recurrent networks such as GRU or LSTM, the transformer 
architecture eliminates the need for recurrence and instead relies 
on self-attention mechanisms [128, 129]. This enables paralleliza-
tion and improves efficiency in processing long sequences. Over-
all, the transformer architecture has demonstrated its effective-
ness in various NLP tasks, including machine translation, lan-
guage understanding and text generation. Its attention mecha-
nism and avoidance of recurrent networks have made it a popular 
choice for many modern DL models. 

TNN in structural bioinformatics 
Transformer Learning is Contributing to solving many unsolved 
problems in today’s modern era in structural bioinformatics. 
A new deep language model for protein sequences called 
Protein BERT was created to naturally capture local and global 
representations of proteins [130]. An algorithm SAResNet for 
predicting DNA–protein binding uses the self-attention residual 
network [131]. In ToxDL, for using the primary structure and 
domain embeddings, DL is used to evaluate protein toxicity 
[132]. IMSE, which stands for interaction information attention 
and extraction of drug–drug interactions based on molecular 

structure [133], also uses the transformer neural networks 
(TNN) model. Using a multi-view DL architecture, the PSSP-
MVIRT [134] predicts the secondary structure of peptides. For 
RNA secondary structure prediction using LTPConstraint [135], a 
transfer learning-based end-to-end approach is used. Through 
unified recurrent and convolutional neural networks, Deep 
Affinity [136] provides interpretable DL of compound-protein 
affinity. Double-Channel-Siamese-Ensemble model [137] uses  
TNN for predicting protein–protein interactions. 

CONCLUSION 
DL is being used more and more in biology to create models of the 
underlying biological processes, thanks to the growing scale and 
inherent complexity of biological data. Our goal is to give readers 
a gentle introduction to a few important DL techniques, such 
as the most popular and recently discovered transformer neural 
network. In addition to discussing some best practices and things 
to think about when starting DL experiments, we have explained 
how DL algorithms might be appropriate for particular kinds of 
biological data. Discussions are also held regarding certain new 
developments in DL techniques. In this study, we first examined 
the accomplishments of DL to further encourage the use of DL in 
structural bioinformatics with the advent of the big data era in 
biology and healthcare. Subsequently, we provided a concise and 
comprehensible overview, moving from shallow neural networks 
to renowned RNNs, CNNs, ANNs and transformer neural net-
works. To aid researchers in implementing and creating their DL-
based methodologies, we have additionally furnished comprehen-
sive examples with implementations in structural bioinformatics. 
In conclusion, we highlighted the typical challenges with DL and 
offered solutions. We hope that this review will provide insight 
into the future advancement and use of DL in bioinformatics. 

Key Points 
• Artificial Intelligence/Machine Learning (ML) applica-

tions in structural bioinformatics 
• Data-Driven Drug Discovery 
• Modern advancements in structural bioinformatics 
• Big Data and Modern ML approaches in structural bioin-

formatics 
• ML approaches toward computational drug discovery 
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