
Guihong Wan, PhD, is a computer scientist and an Instructor of Dermatology at Massachusetts General Hospital and Harvard Medical School. Her research 
focuses on the development of computational methodologies for multimodal analyses and explainable machine learning models of biomedical data. 
Zoltan Maliga, PhD, is a cell biologist and immunologist who co-leads the tissue imaging platform at the Laboratory of Systems Pharmacology at Harvard Medical 
School. His research interests are in the mechanisms of melanoma progression and the adverse reactions to immunotherapy. 
Boshen Yan has completed his master’s degree in Biomedical Informatics at Harvard Medical School and his bachelor’s degree in Computational Biology at the 
National University of Singapore. His research interests include the development of machine learning models and multimodal integration methods to analyze 
disease progression. 
Tuulia Vallius, MD, PhD, is a postdoctoral fellow in the Laboratory of Systems Pharmacology at the Department of Systems Biology, Harvard Medical School. Her 
research focuses on early melanoma progression and cell-to-cell interactions in the melanoma tumor microenvironment using cyclic immunofluorescence 
Imaging and spatial transcriptomics. 
Yingxiao Shi (TK) is a PhD candidate studying in the Biological and Biomedical Sciences program at Harvard University, co-mentored by Dr David Liu and Dr 
Eliezer Van Allen. His PhD research, in collaboration with Dr Peter Sorger’s lab, mainly focuses on the biological mechanism of cancer progression in melanoma 
patients via multimodal analysis. 
Sara Khattab is receiving her doctorate in medicine from the Chobanian and Avedisian Boston University School of Medicine and is currently a research fellow at 
Massachusetts General Hospital, working with Dr Yevgeniy Semenov studying melanoma and immune-related adverse events to immunotherapy. 
Crystal Chang is receiving her doctorate in medicine from the Kaiser Permanente School of Medicine and is currently completing a master’s degree at Stanford 
University in the clinical informatics and management program. Her research interests include genetic predictors of melanoma treatment response. 
Ajit J. Nirmal, PhD, is an assistant professor in the Department of Dermatology at Brigham and Women’s Hospital, Harvard Medical School, and the Director of 
Next Generation Tissue Analysis and Imaging Core. His research focuses on advancing cancer treatments by developing innovative methods and analyzing 
complex datasets. 
Kun-Hsing Yu, MD, PhD, is an assistant professor in the Department of Biomedical Informatics at Harvard Medical School. His lab develops machine learning 
methods for integrating digital pathology imaging and multi-omics profiles to predict patients’ clinical phenotypes. 
David Liu, MD, is a medical oncologist at Dana-Farber Cancer Institute and Brigham and Women’s Hospital and an Assistant Professor of Medicine at Harvard 
Medical School. His research interests include the leveraging of computational biology to explore treatment resistance and response to chemotherapeutic agents 
and immunotherapy. 
Christine G. Lian, MD, is a practicing dermatopathologist at Mass General Brigham and an Associate Professor of Pathology at Harvard Medical School. Her 
laboratory focuses on understanding the epigenetic regulation of melanoma and other skin disorders. 
Mia S. DeSimone, MD, is a dermatopathologist at Brigham and Women’s Hospital and an Instructor in Pathology at Harvard Medical School. She also serves as the 
Medical Director of Quality and Safety in Pathology. Her broad research interests span from clinical translational research investigating melanoma and other rare 
cutaneous tumors to quality and safety. 
Peter K. Sorger, PhD, is a systems and cancer biologist and an Otto Krayer Professor of Systems Pharmacology at the Department of Systems Biology at Harvard 
Medical School. He is the founding head of the Harvard Program in Therapeutic Science and the director of its Laboratory of Systems Pharmacology. His research 
focuses on understanding the signal transduction and cell survival networks whose mutation causes cancer and determines responsiveness to therapy. 
Yevgeniy R. Semenov, MD, MA, is a practicing dermatologist and an Assistant Professor of Dermatology at Massachusetts General Hospital and Harvard Medical 
School. He is also the Co-Director of the Oncodermatology Program. His primary areas of clinical and research interest are in oncodermatology and cutaneous 
oncology. He received his MD degree from Johns Hopkins University School of Medicine and completed residency training in Dermatology at the Washington 
University in Saint Louis. He has additional training in Applied Mathematics & Statistics and Applied Economics. 
Received: December 4, 2023. Revised: March 1, 2024. Accepted: April 12, 2024. 
© The Author(s) 2024. Published by Oxford University Press. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/ 
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 
For commercial re-use, please contact journals.permissions@oup.com

Briefings in Bioinformatics, 2024, 25(3), bbae189

https://doi.org/10.1093/bib/bbae189

Problem Solving Protocol

SpatialCells: automated profiling of tumor 
microenvironments with spatially resolved multiplexed 
single-cell data 
Guihong Wan †, Zoltan Maliga†, Boshen Yan†, Tuulia Vallius, Yingxiao Shi, Sara Khattab, Crystal Chang , Ajit J. Nirmal, 

Kun-Hsing Yu , David Liu, Christine G. Lian, Mia S. DeSimone, Peter K. Sorger‡ and Yevgeniy R. Semenov ‡ 

Corresponding author. Yevgeniy R. Semenov, Department of Dermatology, Massachusetts General Hospital, Harvard Medical School, 40 Blossom Street, Bartlett  
Hall 6R, Room 626, Boston, MA 02114, USA. Tel.: 617-724-6973; Fax: 617-724-2745; E-mail: ysemenov@mgh.harvard.edu 
†Guihong Wan, Zoltan Maliga, and Boshen Yan contributed equally to this work. 
‡This work was jointly supervised by Peter K. Sorger and Yevgeniy R. Semenov. 

Abstract 
Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the 
tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution 
have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for 
automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. 
This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive
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characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/ 
SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process 
samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, 
making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.

Keywords: spatial analysis; region-based profiling; multiplexed single-cell data; spatial omics; tumor immune infiltration; tumor 
microenvironment 

INTRODUCTION 
Cancer presents an intricate cellular ecosystem, which plays a 
critical role in tumor development, progression and therapeutic 
outcomes. The spatial organization of cells and their interac-
tions within the tumor microenvironment (TME) contain essential 
insights into the course of tumor growth and progression. Charac-
terizing molecular, cellular and spatial properties of TMEs across 
diverse malignancies has gained substantial attention [1, 2]. 

Recent technological breakthroughs in spatially resolved mul-
tiplexed imaging at single-cell resolution, such as CODEX and 
CyCIF, are highly effective in studying TMEs and intratumoral 
heterogeneity within solid tumors [3–6]. However, the lack of 
systematic computational methodologies to leverage the large 
volume of data generated by these technologies poses a signifi-
cant challenge for their scalable deployment in clinical settings. 

Currently, the available tools for handling multiplexed imaging 
data are designed to address specific aspects of multiplexed 
imaging data analysis. Some tools focus on converting multi-
channel whole-slide images into single-cell data (e.g. MCMICRO 
[7]), while others prioritize preprocessing, cell type phenotyping 
and visualizing the obtained single-cell data (e.g. SCIMAP [8]). 
Spatial analysis of single-cell data represents only a small portion 
of the functions in HALO [9] and often demands manual anno-
tation. Furthermore, this platform is proprietary and not freely 
available for public use. Another toolkit, Squidpy, specializes in 
neighborhood graph construction and analysis [10]. Consequently, 
the capability of these tools to effectively conduct comprehensive 
spatial analysis remains limited. 

Furthermore, the considerable progress in leveraging machine 
learning for predictive tasks presents a critical consideration for 
clinical outcomes. However, these algorithms often require sub-
stantial sample sizes to achieve robust performance. Overall, the 
high-dimensional, heterogeneous and complicated dependency 
structures inherent in multiplexed single-cell data, coupled with 
the need for large sample sizes in machine learning algorithms, 
present challenges to conventional manual annotation and sta-
tistical techniques. Thus, there is an urgent need to develop com-
putational methodologies to analyze multiplexed single-cell data 
in a scalable manner and enable the development of forecasting 
models that would inform clinical decision-making and enhance 
our understanding of disease progression. 

In this study, we introduce SpatialCells, an open-source soft-
ware package designed to perform region-based exploratory anal-
ysis and characterization of TMEs using multiplexed single-cell 
data. This tool is equipped to efficiently analyze tissue samples 
containing millions of cells and automatically extract quanti-
tative features, enabling subsequent association analyses and 
machine learning predictions at scale. 

IMPLEMENTATION 
Overview 
This study is grounded in existing literature on tumor and 
immune parameters associated with cancer progression and 

patient survival. Our primary goal is to develop automated 
methodologies for quantifying these parameters with spatially 
resolved single-cell data. By integrating clinicopathologic features 
extracted from electronic medical records, we will be equipped to 
perform comprehensive association analyses or make predictions 
about patient outcomes, as illustrated in Figure 1A and B. We have  
provided detailed tutorials on data exploration, tumor cell-centric 
analysis, immune cell-oriented analysis and others. 

SpatialCells is featured by its capability to define regions of 
interest (ROIs) based on any group of cells and subsequently con-
duct region-based analyses. Figure 1C presents the main modules 
incorporated into SpatialCells. Our workflow starts with devel-
oping a Spatial module, including functions to establish regional 
boundaries and annotate each cell with the corresponding region 
in which it is located. The Measurements module contains func-
tions to extract properties of tumor cells and tumor-immune cell 
interactions, including tumor proliferation index, immune infil-
tration score and tumor-immune cell distance. These properties 
can be assessed for the whole tissue or local regions. Importantly, 
our methods can efficiently process datasets containing millions 
of cells. 

Spatially resolved single-cell data 
SpatialCells takes spatially resolved multiplexed data at single-
cell resolution as input (Figure 1B). Our collaborators commonly 
utilize cyclic immunofluorescence imaging (CyCIF) [4] to generate 
such data. Supplementary Figure 1 outlines the data generation 
process and the data format. For each tissue specimen, multi-
channel images are first generated by CyCIF. This procedure is 
followed by cell segmentation and quantification using MCMICRO 
[7]. Based on relative protein expression levels of cells, most cells 
can be assigned to specific cell types [11]. This process produces 
data that include spatial coordinates, marker intensity values and 
cell types for up to 107 cells. 

While our experiments primarily focus on CyCIF data, Spatial-
Cells can be applied to analyzing other spatially resolved omics 
data, such as 10X Genomics Visium data and iterative indirect 
immunofluorescence imaging (4i) data [12, 13]. 

Data exploration 
In the data exploration, we have incorporated measurement and 
visualization tools that can provide initial insights into samples. 
These include: 

• Whole-slide-level cell composition. This involves assessing 
the percentages of different cell types present in the samples, 
such as tumor cells and immune cells. 

• ROI-level cell composition. Whole-slide tissues often have a 
significant amount of blank background. SpatialCells com-
putationally defines ROIs and removes background in a stan-
dardized manner across all tissues in the study cohort. This 
is accomplished by initially calculating the tumor boundary 
and then extending this boundary by a specified distance (a 
user-defined parameter). 

https://semenovlab.github.io/SpatialCells
https://semenovlab.github.io/SpatialCells
https://semenovlab.github.io/SpatialCells
https://semenovlab.github.io/SpatialCells
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https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae189#supplementary-data
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Figure 1. Overview of the framework. (A) The role of SpatialCells within downstream analyses. In this context, ‘p1, p2, . . . ’ represent patient IDs, and 
CoxPH (Cox proportional hazards) modeling is one of the association analysis methods. (B) The input and output of SpatialCells. It takes the spatially 
resolved multiplexed single-cell data as input and provides quantified features along with the corresponding visualizations as output. Tutorials for data 
exploration, tumor cell–centric analysis, immune cell-oriented analysis and others have been provided. (C) Key modules in SpatialCells. SpatialCells 
incorporates several main modules to facilitate its functionality, such as tumor proliferation index, immune infiltration score and tumor-immune 
distance. 

• Region-based cell composition. SpatialCells provides the 
capability for the geometric partition of tissues in various 
ways. For instance, it can divide the tumor region into 
subregions based on distance from the centroid or angle 
from the zero degree. Following the partitioning, SpatialCells 
can enumerate cell types within each tissue subregion for 
detailed compositional analysis. 

• Region-based clustering. Similarly, after partitioning, Spatial-
Cells provides the ability to cluster cells within a specific 
region. 

Tumor cell-centric analysis 
Tumor cell-centric analysis focuses on the characterization and 
study of tumor cells to gain insights into their biology, hetero-
geneity and behavior within the TME. Specifically, the Amer-
ican Joint Committee on Cancer/Union for International Can-
cer Control (AJCC/UICC) staging system provides guidelines for 
classifying the extent of cancer spread, considering factors such 
as tumor size and depth of invasion [14–16]. Additionally, the 
mitotic rate of various tumors is highly relevant in predicting 
patient outcomes [17–19]. In this analysis, we have emphasized 
the following tumor characteristics that may be linked to patient 
prognosis: 

• Tumor area and tumor cell density. SpatialCells offers func-
tions for defining regions based on user-specified markers 
and calculating the area of a region and the density of any 
cell type within the region. 

• Tumor multivariate proliferation index (MPI). Gaglia et al. 
demonstrated the effectiveness of an MPI in differentiating 
proliferating from non-proliferating tumor cells [20]. Building 
on this work, SpatialCells provides a function for calculating 

an MPI of a given cell type, including tumor cells. The input 
of this function includes two marker lists of interest: (1) 
mitosis/proliferation markers (e.g. Serine-10 phosphorylated 
histone H3, Ki67, PCNA and MCM2) and (2) cell cycle arrest 
markers (e.g. p21 and p27). Adapted from the definition in the 
work by Gaglia et al. [20], the MPI is defined as follows: 

MPI = 

⎧⎪⎨ 

⎪⎩ 

−1 if (max (arrest)) > thresharrest; 
1 else if

(
max

(
prolif

))
> threshprolif ; 

0 otherwise. 

The threshold values for proliferation and arrest are data 
dependent. For normalized markers of expression levels from 
0 to 1, the values are set to 0.5 by default. The thresharrest 

can be tuned based on a commonly used proliferation marker, 
such as Ki67. Instead of computing a single MPI for the whole 
tissue, SpatialCells enables calculating MPI for subregions of 
interest within the tissue sample. We demonstrate this method 
by applying a sliding window of a user-defined size over the tissue 
and computing the MPI for each subregion. 

• Tumor isolation index. Categorizing tumors into immune 
hot, immune suppressed and immune cold/isolated groups 
has considerable prognostic value in various malignancies 
[21, 22]. Here, we focus on defining a tumor isolation 
index, which is the fraction of tumor cells in the region 
without immune cells over all tumor cells. This index is 
accomplished by dividing the overall ROI (whole-slide tissue 
with background removed) into two subregions: immune-rich 
region and region with almost no tumor-infiltrating immune 
cells. 
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Figure 2. Macro-regions, micro-regions and cell-to-cell distance. (A) The background defined based on a user-specified distance from the tumor boundary 
is removed from the whole-slide image. The remaining ROI is partitioned into tumor region, tumor border, stroma border and stroma region (macro-
regions). (B) Within the tumor region, there are small regions of interest, defined as micro-regions, which allow fine-grained analyses. (C) The distance 
of a cell (e.g. a tumor cell) to another cell type (e.g. immune cells) is defined as the distance between the cell and its nearest neighbor of another cell 
type. 

Immune cell-oriented analysis 
The TME is a spatially organized landscape characterized by 
the presence of lymphocytes, macrophages and other cell types 
located both within the central region and at the invasive margin 
of the tumor. Understanding the TME composition is essential 
for developing effective cancer therapies and predicting patient 
prognosis. Here, we have conducted macro-region and micro-
region analyses, along with cell-to-cell interactions: 

• Macro-region analysis. The overall ROI, which encompasses 
the whole-slide tissue with the background removed, is 
divided into four subregions: tumor, tumor border, stroma 
border and stroma, as illustrated in Figure 2A. We subse-
quently evaluate the cell compositions within each region, 
with a particular focus on immune cells. 

• Micro-region analysis. This analysis focuses on small regions, 
defined as micro-regions, within the tumor area, as illus-
trated in Figure 2B. By identifying these micro-regions, we 
can perform detailed characterizations of cells within them, 
enabling a finer-grained understanding of the cellular land-
scape. 

• Cell-to-cell interactions. An important aspect of our analy-
sis involves investigating the interactions between various 
cell types within the TME. For instance, SpatialCells can be 
applied to quantify the interactions between tumor cells and 
immune cells. As shown in Figure 2C, we assess the degree 
of tumor immune infiltration by measuring the distance 
between a tumor cell and its nearest immune cell. This infor-
mation provides valuable insights into the interplay between 
different cell populations within the TME. 

Compatibility with other software 
SpatialCells is built on top of Anndata, Shapely and Scanpy frame-
works, making it easy to integrate with other commonly used 
toolkits [23–25]. In tutorials, we have provided examples of inte-
grating SpatialCells with SCIMAP, Squidpy and Scanpy [8, 10, 25]. 

RESULTS 
In this section, we demonstrate the functionality of SpatialCells by 
presenting results in data exploration, tumor cell–centric analysis 
and immune cell-oriented analysis. Additional analyses can be 

found in tutorials, providing researchers with a comprehensive 
toolkit for in-depth investigations. 

Our analyses involve publicly available multiplexed imaging 
data of a cutaneous melanoma sample (MEL1) consisting of 
1 110 585 cells [26]. MEL1 was imaged using CyCIF [4] with  
30 antibody markers (e.g. SOX10, Keratin, CD31, CD3D, CD8A, 
CD11C, MITF and Ki67) and preprocessed using MCMICRO [7], 
which transforms multi-channel whole-slide images into single-
cell data. The output of MCMICRO is the input of SpatialCells. 
Additional details of this sample can be found in the provided 
reference [26]. 

Data exploration 
SpatialCells is a versatile tool for region-based data exploration, 
particularly for assessing cell composition or clustering within 
whole-slide images or specific regions of interest. Figure 3 illus-
trates how SpatialCells can be applied to compute cell composi-
tions for three different types of regions within the MEL1 sample. 

The principal tumor (T) category for invasive melanoma is 
defined as the maximum tumor thickness measured with a cali-
brated ocular micrometer at a right angle to the adjacent normal 
skin to the deepest point of tumor invasion [16, 27]. In this case, 
the MEL1 section shows fragmentation artifacts at the deep aspect 
of the invasive front. To ensure accurate measurements of the dis-
tance from the centroid or the epidermis to the tumor boundary, 
we excluded the fragmented area with SOX10+ cells and focused 
on the main tumor area. If we included these separate fragments 
of SOX10+ cells along with the intervening empty spaces, the 
measurements would have been artificially increased. 

Figure 3A and B presents the expression levels of related mark-
ers, including keratin, SOX10, MITF and CD3D, within the imaging 
data. SOX10 expression is a sensitive and specific marker for 
melanoma tumor cells. MITF is an important melanoma oncogene 
and plays a role in determining therapeutic resistance [28, 29]. 
CD3D is a marker commonly associated with immune cells, par-
ticularly T lymphocytes (or T cells). Figure 3C shows the boundary 
of the main tumor area as identified by SpatialCells. In Figure 3D, 
the subregions are defined based on the distance from the cen-
troid of the main tumor area. In Figure 3E, the subregions are 
based on their angles from the zero-degree reference. The percent-
age of MITF+SOX10+ cells within each subregion is computed. 
The two barplots in Figure 3D and E demonstrate the gradient of
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Figure 3. Cell composition in regions of interest. (A) Gradient of MITF on CyCIF imaging data. (B) Keratin, SOX10 and CD3D expressions on CyCIF imaging 
data. (C) Boundary of the main tumor area. (D) Cell type composition in subregions based on distance from the centroid. (E) Cell type composition in 
subregions based on the angle from the zero-degree reference. (F) Cell type composition in subregions based on distance from the epidermis. 

MITF+ tumor cells. Figure 3F provides cell composition within 
subregions, which are defined based on their distance from the 
epidermis. The centroid (start point) and the epidermis (start 
line) are computationally determined. It is worth noting that 
SpatialCells offers support for user-defined start points and lines, 
allowing users to tailor analyses that align with specific require-
ments. 

Tumor isolation index and MPI 
SpatialCells also facilitates tumor-cell-centric analyses. Figure 4 
showcases the tumor isolation index and the MPI. These analyses 
are part of our dedicated tumor-cell-centric tutorial. 

Figure 4A shows the expression of CD3D+ cells in the MEL1 
sample. In Figure 4B, the overall ROI is divided into two distinct 
subregions based on the presence of CD3D+ cells: (1) immune-
isolated region, characterized by minimal immune cell presence, 
and (2) immune-rich region, characterized by a higher presence 
of immune cells. Figure 4C shows the expression of SOX10+ cells 
in the MEL1 sample. Figure 4D visually contrasts tumor cells 
in the immune-isolated and immune-rich regions. The tumor 
isolation index for this sample is quantified as 46.9%, which is 
the percentage of tumor cells in the immune-isolated region. 

Figure 4E displays Ki67+ and Ki67- tumor cells. Ki67 is a marker 
of cell proliferation. The overall percentage of proliferating tumor 
cells (MPI = 1) in the MEL1 sample is 7.4%. Figure 4F shows the 
percentage of tumor cells with MPI = 1 in a sliding window of 300 
× 300 microns. In this example, the MPI is computed using Ki67 
due to the availability of markers. Zoomed-in CyCIF images are 

provided to visualize areas with varying levels of Ki67+ tumor 
cells. In Figure 4E and F, a greater proportion of Ki67+/SOX10+ 
cells are along the periphery of the main tumor area and, most 
prominently, at the advancing edge of the invasive front. The 
region with the greatest proportion of SOX10+ cells with MPI = 1 
is within an immune-rich region, as seen in Figure 4D. 

Macro-region and micro-region analyses 
The immune context within the TME plays an important role in 
cancer prognosis and therapeutic efficacy [22]. Figure 5 provides 
an overview of macro-region (A, B and C) and micro-region (D, 
E, F, G and H) analyses, empowering users to comprehensively 
characterize the immune and cellular landscape within the TME. 

Tumor margins are exposed to cell infiltration, physical contact 
and diffusible chemotactic gradients from the stromal regions 
and vice versa. Therefore, defining tumor and stromal bound-
aries allows us to more specifically assess the complex interplay 
between invasive melanoma tumor cells and the microenviron-
ment and to identify novel markers [26, 30]. In Figure 5A, the  over-
all ROI is divided into four distinct subregions: Tumor (T), which 
represents the core tumor region; Tumor border (Tb), which is 
the transitional area immediately adjacent to the tumor; Stroma 
border (Sb), marking the border between tumor and stroma; and 
Stroma (S), situated farther from the tumor. These subregions are 
defined based on specific distances from the tumor boundary, 
with the tumor region boundary set at 100 microns, the stroma 
border region boundary at 200 microns and the boundary for 
the overall ROI at 800 microns away from the tumor boundary.
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Figure 4. Tumor isolation index (A–D) and tumor MPI (E, F). (A) Expression level of CD3D+ cells in the MEL1 sample. (B) Division of the overall ROI into 
two subregions based on CD3D+ cells: (1) immune-isolated region, which has almost no immune cells; (2) immune-rich region. (C) Expression level of 
tumor (SOX10+) cells in the MEL1 sample. (D) Visualization of tumor cells in the immune-isolated region and immune-rich region, respectively. The 
tumor isolation index for this sample is 46.9%, which quantifies the percentage of tumor cells in the immune-isolated region. (E) Display of Ki67+ and 
Ki67− tumor cells. Ki67 is a proliferative marker. The overall percentage of proliferative tumor cells (MPI = 1) in the MEL1 sample is 7.4%. (F) Percentage 
of tumor cells with MPI = 1 in subregions and the zoomed-in CyCIF images. A sliding window of 300 × 300 microns is applied over the ROI to compute 
the percentage of tumor cells with MPI = 1. In this example, the MPI is computed using Ki67 due to the availability of markers. Additionally, zoomed-in 
CyCIF images are provided to visualize areas with varying levels of Ki67+ tumor cells. 

Importantly, users have the flexibility to customize these dis-
tances. In Figure 5B, the corresponding counts of tumor cells, T 
cells and other cells are presented for each of the four defined 
regions. Figure 5C further provides insights by illustrating the cell 
fraction among all cells within each defined region. Figure 5D 
displays micro-regions within the tumor area. Each micro-region 
is indexed, enabling users to pinpoint specific micro-regions of 
interest. Figure 5E offers a closer look at these micro-regions. 
In Figure 5F, every micro-region boundary is extended and con-
tracted (offset = 30 microns) to define ‘In’, ‘Border inside’ and ‘Bor-
der outside’ subregions, as visually demonstrated in Figure 5H. 
The cell compositions within these three subregions for each 
micro-region are presented in Figure 5G. 

The Stroma region in Figure 5A includes some SOX10+ tumor 
cells on the right side of the image. This is due to the presence of 
fragmentation artifacts in this sample [26]. In practice, users may 
need to analyze the data separately for each area, as was the case 
in the provided reference [26]. In our tutorials, we include detailed 
instructions on how to perform these analyses. 

Experimental results on spatial omics data 
To demonstrate the broad utility of SpatialCells for analyzing 
other spatial omics data modalities, we further conducted exper-
iments on a public Visium dataset of a human lymph node 
sample [31]. The data were deconvoluted following the standard 
Cell2location protocol and analyzed with SpatialCells [31]. The 
details are available in our tutorials, with results presented in 
Supplementary Figure 2. SpatialCells can automate the identifica-
tion of all germinal centers and delineate their region boundaries 
that are consistent with the authors’ manual annotation, elimi-
nating the necessity of manual annotation that could introduce 
significant bias. 

DISCUSSION AND FUTURE DIRECTIONS 
SpatialCells represents a significant advance in the field of spatial 
analysis for multiplexed single-cell image data, enabling the com-
putational quantification and standardized analyses of critical 

features within the TME. Its functionalities encompass various 
aspects of TME analysis, such as region-based cell composition, 
tumor proliferation index, tumor isolation index, immune cell 
infiltration and tumor-immune distance. By providing these ana-
lytical tools, SpatialCells empowers researchers to gain deeper 
insights into the intricate spatial relationships and characteristics 
of cells within the TME. 

One of the limitations of the SpatialCells software is that the 
cell segmentation provided by upstream imaging data prepro-
cessing tools, such as MCMICRO [7], may introduce errors in the 
cell counts. However, SpatialCells is a customizable software that 
can analyze multiple samples within a study in a consistent and 
standardized manner. This capability involves applying similar 
settings and parameters across all samples, thus mitigating some 
of the variability introduced by cell segmentation. Another limi-
tation of the SpatialCells software is the reliance on the quality 
of gating and calling cell types, which involve converting contin-
uous marker expression levels into binary variables. This binary 
conversion introduces subjectivity, leading to variability in cell 
count. Finally, the adaptability of SpatialCells, with its support for 
user-defined parameters, affords users the freedom to configure 
settings based on their specific needs. However, this flexibility can 
also be a source of errors, as suboptimal parameter choices may 
impact the accuracy of the analysis. 

In the future, we will continue to improve this software and 
provide clear guidelines to users on best practices for parameter 
selection. We will include more functions as well as tutorials, 
particularly for multimodal analyses within the field of spatial 
biology. For example, we will provide functions for migrating ROIs 
from other modalities, such as hematoxylin and eosin stain imag-
ing and spatial transcriptomics, to multiplexed imaging, allowing 
integrative analyses across different modality data. 

CONCLUSIONS 
In summary, SpatialCells is a novel software solution for spatially 
analyzing the TME using multiplexed imaging data in a stream-
lined fashion with the capacity to process samples containing

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae189#supplementary-data
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Figure 5. Macro-region analysis (A–C) and micro-region analysis (D–H). (A) The overall ROI is divided into four subregions: Tumor (T), Tumor border (Tb), 
Stroma border (Sb) and Stroma (S). The tumor region boundary is 100 microns away from the tumor boundary; the stroma border region boundary is 
200 microns away from the tumor boundary; the boundary for the overall ROI is 800 microns away from the tumor boundary. Users can specify these 
distances. (B) The corresponding counts of tumor cells, T cells and other cells in the four regions. (C) The cell fraction among all cells within each region. 
(D) The micro-regions within the tumor area. (E) The zoomed-in micro-regions. Each micro-region is indexed, allowing users to pick the ones of interest. 
(F) Each micro-region boundary is extended and shrunk (offset = 30 microns) to get the ‘In’, ‘Border inside’ and ‘Border outside’ subregions, as shown in 
(H). (G) Cell compositions within the three subregions for each micro-region. 

millions of cells. This software is of critical importance in the 
analysis of the TME and in furthering our understanding of the 
factors leading to tumor progression as it facilitates subsequent 
association analyses and machine learning predictions. 

Key Points 
• SpatialCells is a software package for spatially analyzing 

multiplexed single-cell imaging data, which is featured 
by its capability to define regions of interest based on any 
group of cells and subsequently conduct region-based 
analyses. 

• Functionalities of SpatialCells encompass various 
aspects of tumor microenvironment analyses, such 
as region-based cell composition, tumor proliferation 

index, tumor isolation index, immune cell infiltration 
and tumor-immune distance. 

• SpatialCells allows preprocessing and analyzing data in 
a standardized manner with user-defined parameters 
and can process samples containing millions of cells. 

• Detailed tutorials on data exploration, tumor cell-centric 
analysis and immune cell-oriented analysis and docu-
mentation of SpatialCells have been provided. 

SUPPLEMENTARY DATA 
Supplementary data are available online at http://bib.oxford 
journals.org/.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbae189#supplementary-data
http://bib.oxfordjournals.org/
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