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Abstract

Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery

of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal
role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug
resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy,
and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance
mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair,
apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Addition-

ally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance

in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer
drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent
drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers
insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method
to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient
outcomes.
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Introduction
Cancer poses a significant public health challenge glob-
ally, being the first or second leading cause of death in
112 countries [1, 2]. Normal cell growth is controlled by
stringent regulatory mechanisms; however, alterations in
specific cell components can lead to dysfunction in these
mechanisms, resulting in cancer [3]. Cancer treatments
are tailored based on the type and stage of cancer, as well
as the patient’s overall health, including surgical resec-
tion, chemotherapy, radiation therapy, targeted therapy,
and the burgeoning field of immunotherapy [4]. Despite
advancements in molecular and tumor biology that have
significantly transformed the cancer treatment landscape
and substantially enhanced therapeutic outcomes over
the last decades, resistance to treatment continues to
be a formidable challenge, particularly in patients with
advanced or metastatic disease [5, 6]. Drug resistance,
a primary cause of reduced treatment efficacy, is influ-
enced by varied mechanisms [7]. Previous study outlines
the key factors of drug resistance, proposing a concep-
tual framework that encompasses tumor heterogeneity,
physical barriers, tumor burden and growth kinetics,
undruggable cancer drivers, the immune system and the
microenvironment, along with the many consequences of
applying therapeutic pressures [8]. Although researches
are ongoing to find new drugs and combinations to
address drug resistance, the complex molecular mecha-
nisms behind drug resistance remain largely elusive [9].
The identification of new drug resistance biomarkers and
a deeper understanding of drug resistance mechanisms
are crucial endeavors that will significantly advance per-
sonalized precision medicine for cancer treatment [10].
Post-translational modification (PTM) of proteins is a
critical mechanism for modulating protein structure and
function in both physiological and pathological condi-
tions, encompassing ubiquitination, phosphorylation,
methylation, acetylation, glycosylation, SUMOylation,
among others [11]. Ubiquitination, a prevalent form of
PTM, involves an ATP-dependent process that attaches
ubiquitin to specific proteins. This attachment, involv-
ing the 76-amino acid peptide, ubiquitin, initiates pro-
tein degradation by the 26S proteasome complex [12].
In recent years, it has become increasingly evident that
ubiquitination plays a pivotal role in controlling a broad
range of cellular processes beyond protein degradation
via the ubiquitin-proteasome system (UPS) (Fig. 1A).
Ubiquitin modification acts as a versatile signaling
mechanism, regulating protein stability, translocation,
signaling activation/inactivation, and even influenc-
ing the organization of cellular structures such as orga-
nelle membranes and chromatin [13]. The dynamic and
precise control of these diverse processes is achieved
through the concerted action of a hierarchical enzymatic
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cascade involving E1 activating enzymes, E2 conjugating
enzymes, and E3 ligases. The ubiquitination sequence
begins with ubiquitin-activating enzyme E1 binding and
activating ubiquitin, followed by the transfer of activated
ubiquitin to ubiquitin-conjugating enzyme E2. Then
ubiquitin ligase E3 recognizes the substrate and facilitates
the transfer of ubiquitin from E2, leading to substrate
degradation [14]. E3 ligases, known for their substrate
specificity, are crucial in the ubiquitination pathway. The
human genome contains approximately 1000 E3 ligases,
categorized into RING-between-RING (RBR) family E3s,
homology to E6AP C terminus (HECT) domain-contain-
ing E3s, and extremely fascinating novel gene (RING)
finger domain-containing E3s [15]. These enzymes work
together to recognize specific target proteins, trans-
fer ubiquitin molecules, and generate distinct ubiquitin
codes, including (i) mono-ubiquitination, where a single
ubiquitin molecule is connected; (ii) poly-ubiquitination,
forming polyubiquitin chains; (iii) multi-ubiquitination
or poly-mono-ubiquitination, with multiple ubiquitin
molecules bound [16] (Fig. 1B). In polyubiquitination,
ubiquitin is often joined through seven Lysine residues
(K6, K11, K27, K29, K33, K48, and K63) and the initial
methionine (M1) [17]. These different types of ubiquitin
modifications confer specific functional consequences,
directing proteins to degradation, influencing protein
localization and trafficking, and modulating the acti-
vation or inactivation of signaling pathways (Fig. 1C).
Moreover, emerging studies have revealed the involve-
ment of ubiquitination in shaping organelle dynamics,
regulating membrane fusion events, modulating chro-
matin structure and DNA repair processes [17]. These
findings highlight the multifaceted and intricate roles of
ubiquitin in cellular physiology, underscoring its signifi-
cance as a crucial PTM.

Like other PTMs, ubiquitination is reversible. Deu-
biquitinating enzymes (DUBs), a type of peptidase, can
accurately cleave the C-terminal isopeptide bond of ubiq-
uitin and detach the substrate protein from ubiquitin,
thus reversing the ubiquitination process, a phenomenon
known as deubiquitination [18]. Ubiquitination and deu-
biquitination together constitute the complex UPS, which
regulates the balance of misfolded proteins in eukaryotic
cells. To date, approximately 100 DUB species have been
identified in humans, divided into seven subfamilies:
ubiquitin-specific proteases (USPs), ubiquitin C-terminal
hydrolases (UCHs), ovarian tumor proteases (OTUs),
Machado-Joseph disease protein proteases (MJDs), Jabl/
Mov34/MPN+ proteases (JAMMs), Zinc Finger ubiqui-
tin-specific proteases (ZUP/ZUFSPs), and motif interact-
ing with ubiquitins (MIUs)-containing novel DUB family
members (MINDYs) [19]. The USP family, with over 50
members, is the largest and most diverse, accounting for
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Fig. 1 Overview of the ubiquitination and deubiquitination process and their functional implications. A The mechanism of the ubiquitin
proteasome system. B Different types of ubiquitination: monoubiquitination, multiubiquitination, and polyubiquitination. C Different substrate fates
result from diverse mechanisms of polyubiquitination through the M1 methionine residue or through the seven distinct lysine residues of ubiquitin,

K6, K11, K27, K29, K33, K48, and K63. D The specific features of USPs involved in biological processes

about 60% of DUBs. USPs are a class of cysteine-depend-
ent proteases, an analogous mechanism of action of the
cysteine protease papain, which features three highly
conserved subdomains resembling the fingers, thumb,
and palm of the right hand [19, 20]. USPs are charac-
terized by the presence of a conserved catalytic domain
known as the USP domain, which exhibits protease activ-
ity and enables the cleavage of ubiquitin from target
proteins. In addition to the USP domain, various USPs
possess additional domains or motifs, such as ubiquitin-
like (UBL) domain, zinc finger ubiquitin-binding (ZnF-
UBP) domain, and domains specific to USP (DUSP),

ubiquitin-interacting motifs (UIM) and ubiquitin-associ-
ated (UBA), among others [19]. These additional domains
influence substrate recognition, protein-protein inter-
actions, and subcellular localization, further augment-
ing the functional repertoire of USPs. Notably, USPs
exhibit diverse substrate specificities, allowing them to
target specific ubiquitinated proteins or substrates and
regulate distinct signaling pathways and cellular func-
tions [19]. Furthermore, USPs display differential cellular
localization, with some USPs predominantly localized
in the nucleus, while others are primarily cytoplasmic.
This subcellular distribution of USPs contributes to their
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spatial regulation of protein deubiquitination events
[20] (Fig. 1D). USPs control a range of cell processes
that are significant in the setting of cancer, including the
cell cycle, DNA damage repair mechanisms, chromatin
remodeling, and several signaling pathways [17, 18].

In recent years, there has been growing interest in
USPs as potential targets for inhibiting tumor formation
and cancer progression. So far, over 40 USPs have been
connected, either directly or indirectly, to pertinent can-
cer processes and anti-cancer therapies. The link between
USPs and cancer drug resistance is increasingly being
substantiated [21]. USPs contribute to drug resistance by
catalyzing specific substrate proteins, promoting DNA
damage, inducing cancer stem cells (CSCs) characteris-
tics, interfering with cell apoptosis, and regulating tran-
scription factors and key signaling pathways [22]. Gene
editing and pharmacological inhibitors targeting USPs
could mitigate drug resistance and render cancer cells
more vulnerable to anticancer therapies. Current trials
investigating the anti-cancer efficacy of USP inhibitors
underscore the therapeutic potential of targeting USP-
mediated deubiquitination in cancer patients [23, 24].
This review systematically concludes, for the first time,
the intricate mechanisms of USP-mediated anticancer
resistance across varied treatment modalities, such as
chemotherapy, molecular targeted therapy, immunother-
apy, and specific radiotherapy. It also explores current
potential small molecule USP inhibitors and effective
strategies for combining these inhibitors with other anti-
cancer means, to modulate drug resistance, aiming to
offer innovative approaches and insights for enhancing
future cancer treatments.

Chemotherapy resistance mediated by USPs
Platinum

After its approval in 1978, cisplatin became a cornerstone
in clinical practice as a foundational platinum anticancer
drug. A decade later, carboplatin emerged as the sec-
ond platinum-based drug to be clinically utilized. Then,
in 2002, oxaliplatin also successfully entered in Europe
and the United States [25]. Despite the advent of preci-
sion medicine and immunotherapy, platinum-based
treatments, especially cisplatin, remain a mainstay in the
treatment of many cancers, serving as the gold standard
[26].

Cisplatin

USPs and DNA damage response (DDR) in cisplatin
resistance 'The DDR is a highly conserved mechanism
that protects cells against DNA damage caused by exter-
nal and internal factors. It consists of a network of mul-
tiple signaling pathways designed to detect and relay
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damage signals, facilitate damage identification and
repair, and ensure the continuation of the normal cell
cycle. Unrestricted cyclic DNA replication contributes
to unlimited growth and reproduction of cancer cells,
and cisplatin exerts its cytotoxic effect by inducing DNA
damage and disrupting the protective DDR mechanisms
[27]. YH2AX, the phosphorylated form of histone H2AX
at Ser139, marks an early cellular response to DNA dou-
ble-strand breaks (DSBs), initiating and activating the
DDR system [28]. In lung cancer patients with cisplatin
resistance, the upregulation of USP51 diminishes yH2AX
formation and increases checkpoint kinase 1 (CHK1)
phosphorylation, thereby ensuring an effective cell cycle
[29]. USP22, a crucial regulator that enhances H2AX
phosphorylation through its deubiquitinating activity, has
been shown to contribute to robust DDR mechanisms in
lung adenocarcinoma [30]. Notably, USP22 enhances the
repair of DSBs by interacting with the partner and local-
izer of BRCA2 (PALB2), facilitating the recruitment of
the PALB2-BRCA2-Rad51 complex during DDR, ulti-
mately leading to cisplatin resistance [31].

USP7, a typical researched USP member, plays a pivotal
role in regulating several key components of DDR path-
ways, including the MRN-MDC1 complex [32], CHK1
[33], Rad18 [34], RNF168 [35], CDC25A, and p53 [36].
Through its interactions with these proteins, USP7 influ-
ences the recruitment of downstream factors involved
in DNA damage, modulates the overall functionality of
DDR, and confers cellular resistance against genotoxic
insults. In the research conducted by Liu et al., USP7 was
shown to interact with SAMHD]I, a crucial ANTP hydro-
lase, deubiquitinating it at K421 [37]. This action stabi-
lizes SAMHDI, activating DDR by facilitating further
interaction between USP7 and the C-terminal binding
protein-interacting protein (CtIP), a key initiator of DSB
repair, thus leading to cisplatin resistance [37]. Another
significant member, USP1, is regulated at the transla-
tional level in cisplatin-resistant non-small cell lung
cancer (NSCLC) cell lines [38]. USP1, in a complex with
USP1 associated factor 1 (UAF1), removes monoubiqui-
tin from target proteins, FANCD2 and PCNA, which are
essential for DDR and chromatin recruitment [39, 40].
Moreover, USP1 can prevent K48-linked polyubiquitina-
tion of MAST1, whose overexpression is correlated with
increased cisplatin resistance [41, 42]. The loss of USP1
enhances cisplatin-induced DNA damage, evidenced by
larger YH2AX foci formation, and diminishes MAST1-
mediated activation of phosphorylated MEK/ERK [43].
Zinc finger E-box binding homeobox 1 (ZEB1) is a
key promoter of cisplatin resistance. While ZEB1’s role
in epithelial-mesenchymal transformation (EMT) and
dedifferentiation is well-documented, recent findings
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also highlight its involvement in enhancing DNA repair
and clearance of DSBs [44]. ZEB1 acts as a DNA repair
regulator by directly interacting with USP7, thereby aug-
menting USP7’s deubiquitinating activity on CHK1 [45].
Additionally, USP51 can interact with ZEBI1, and the
reduction of USP51 levels increases ZEB1 ubiquitination,
significantly lowering cisplatin resistance in lung cancer
cells [46]. On the contrary, overexpression of USP17, a
potential downstream target of ZEB1, renders cancer
cells more susceptible to cisplatin-induced DNA damage
[47] (Fig. 2A).
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USPs and cell apoptosis in cisplatin resistance During
the DDR, cells may initiate apoptosis to eliminate those
with irreparable damage, thereby preventing the prolif-
eration of cells harboring severe errors. Dysregulated
apoptosis or evasion of apoptosis constitutes a pivotal
mechanism by which cancer cells develop cisplatin resist-
ance [48, 49]. Elevated expression of USP8 in cisplatin-
resistant ovarian cancer (OC) cells has been documented.
USP8 silencing markedly diminishes the levels of FLIP|,
Claspin, and survivin, critical regulators of anti-apoptotic
pathways [50]. Additionally, USP14’s interaction with
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Fig. 2 USPs regulate platinum drugs resistance. A USPs contribute to cisplatin resistance by regulating DNA damage response, inhibiting apoptosis
and enhancing epithelial to mesenchymal transition. B Detailed mechanisms of USPs involve in oxaliplatin resistance
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BCL6, a transcriptional repressor and proto-oncogene,
plays a role in anti-apoptotic processes. Inhibition of
USP14 effectively mitigates cisplatin resistance in OC
cells, enhancing the proteasomal degradation of BCL6
[51]. Furthermore, reduced expression of USP46 contrib-
utes to cisplatin resistance by suppressing the apoptotic
mediators Caspase3, Bax, and poly-ADP ribose polymer-
ase (PARP), while concurrently activating BCL2. And this
process is potentially under the regulation of PUM2, a
Pumilio RNA-binding protein family member [52].

USP39’s association with the augmented migratory
and invasive capacities of esophageal squamous cell
carcinoma (ESCC) cells fosters tumor progression and
metastasis. USP39 overexpression impedes PARP and
Caspase3 activation, diminishing the apoptotic rate in
ESCC cells treated with cisplatin [53]. Beyond ESCC,
additional research indicates USP39’s regulatory influ-
ence on cisplatin-induced apoptosis in colon cancer
cells, a process contingent upon the tumor suppres-
sor protein p53. USP39 knockdown escalates p53 lev-
els, enhancing apoptosis and promoting G2/M arrest
[54]. Moreover, USP35 stabilizes BIRC3, an apopto-
sis inhibitor protein (IAP) family member, by averting
Lys48-mediated polyubiquitination, impacting PARP
and Caspase3 expression in NSCLC cells [55]. Notably,
acetylation of USP31 at Lys1264 fosters cervical cancer
cell survival and resistance to cisplatin-induced apop-
tosis. The deacetylase sirtuin 1 (SIRT1) counteracts
USP31’s oncogenic traits and bolsters cisplatin-induced
apoptosis through deacetylation [56] (Fig. 2A).

USPs, EMT, and stemness in cisplatin resistance EMT
is a complex biological process transforming epithelial
cells into mesenchymal-like cells [57]. CSCs are a subset
of tumor cells characterized by pronounced self-renewal
capabilities [58]. EMT-induced stemness facilitates the
migration of cancer cells from the primary tumor, pro-
motes distant metastasis, and enhances resistance to plat-
inum-based therapies [59]. In triple-negative breast can-
cer (TNBC) cells, a positive correlation exists between
USP22 expression and cisplatin resistance. USP22 over-
expression significantly boosts the extracellular acidifi-
cation rate and spheroid formation while upregulating
expression of stemness genes and EMT markers. These
unique cellular effects are mediated through USP22’s
interaction with c-Myc which enhances c-Myc deubiqui-
tination and reduces intracellular glycolysis [60]. In lung
adenocarcinoma, USP22 inhibition decreases ALDH1A3
expression, heightens the sensitivity of tumor cells to cis-
platin, particularly CD133+ cancer-initiating cells, and
attenuates their stem cell-like properties [61].
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TWIST and Snail, crucial EMT transcription factors,
diminish the chemotherapy sensitivity of cancer cells
[62]. USP29-mediated TWIST1 deubiquitination induces
cisplatin resistance in TNBC, stabilizing TWIST1 and
promoting EMT and CSC activities. CDK1, a USP29
activator, facilitates this process through USP29 phos-
phorylation, enhancing the TWIST1-driven malignant
phenotype [63]. Additionally, USP1, phosphorylated by
DDR kinases ATM and ATR, initiates Snail deubiquitina-
tion, fostering cisplatin resistance, metastatic potential,
and stemness in OC cells [64]. Subsequent studies reveal
that, USP45, recruited by MYH9 and MYH10, deubiquit-
inates Snail in serous ovarian cancer (SOC) [65]. Further-
more, USP27X and Snail expressions are positively linked
in breast and pancreatic cancers. During EMT, TGEp-
induced USP27X upregulation stabilizes Snaill expres-
sion in epithelial cells and cancer-associated fibroblasts
(CAFs), reducing cisplatin sensitivity [66]. Given TGFP'’s
role in EMT induction, the regulation of SMAD?2, a criti-
cal TGEP pathway component, by USPs is notable [67].
USP32 overexpression in gastric cancer (GC) enhances
SMAD?2 deubiquitination, correlating with advanced
tumor stages, increased cisplatin resistance, and poorer
survival [68]. Moreover, in cisplatin-resistant laryngeal
squamous cell carcinoma (LSCC) cells, USP34’s inter-
action with SOX2, a key CSC- and EMT-related tran-
scription factor, decreases SOX2 polyubiquitination and
augments LSCC cell sensitivity to cisplatin [69] (Fig. 2A).

Oxaliplatin

Oxaliplatin is a fundamental component of FOLFOX, the
standardized first-line treatment regimen for gastrointes-
tinal cancers, which also includes 5-fluorouracil (5-Fu)
and leucovorin [70]. Recent studies have underscored
the pivotal roles of long non-coding RNAs (IncRNAs) in
oxaliplatin resistance [71]. The influence of USPs in mod-
ulating IncRNAs, and their ensuing effects on oxaliplatin
resistance, should not be overlooked.

A recently discovered IncRNA, lnc-RP11-536 K7.3, has
been found to be associated with oxaliplatin resistance
and indicates a poor prognosis in colorectal cancer (CRC)
patients. Functionally, lnc-RP11-536 K7.3 interacts with
SOX2, initiating the transcriptional activation of USP7
mRNA. This activation of USP7 facilitates the deubiq-
uitination of hypoxia-inducible factor (HIF-1a), thereby
bestowing resistance to oxaliplatin in cancer cells [72].
Conversely, another IncRNA, AC092894.1, was found to
be significantly downregulated in oxaliplatin-resistant
CRC cells. AC092894.1 serves as a scaffold molecule,
enabling the deubiquitination of the androgen receptor
(AR) by USP3, fostering the transcription of RASGRP3,
and subsequently activating the MAPK signaling path-
way, which augments oxaliplatin-induced apoptosis [73].
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Moreover, the expression of IncRNA HULC, regulated by
miR-6825-5p, miR-6845-5p, and miR-6886-3p, elevates
the deubiquitination effect of USP22 on SIRT1, making
hepatocellular carcinoma (HCC) cells resistant to oxalipl-
atin and inducing protective autophagy in HCC cells [74].

Given the clinical practice of oxaliplatin combined with
5-Fu, USP-mediated dual resistance to oxaliplatin and
5-Fu has been thoroughly investigated in numerous stud-
ies. Upregulation of USP35 promotes CRC cell prolifera-
tion and imparts resistance to both oxaliplatin and 5-Fu.
Further investigations demonstrated that USP35 directly
targets a-L-fucosidase 1 (FUCA1) for deubiquitination,
and the USP35-FUCA1 axis elevates nucleotide exci-
sion repair (NER) components, culminating in platinum
resistance [75]. In contrast, a decrease in USP38 expres-
sion was noted in clinical CRC samples, which signifi-
cantly enhanced the sensitivity of CRC cells to oxaliplatin
and 5-Fu. Notably, USP38 plays a crucial role in amplify-
ing oxaliplatin and 5-Fu resistance by removing Lysine 63
ubiquitin chains from histone deacetylase 3 (HDACS3) in
CRC cells, accompanied by an increase in H3K27 acetyla-
tion [76] (Fig. 2B).

Carboplatin

Carboplatin, which is structurally akin to cisplatin,
exhibits lower toxicity and fewer side effects than cispl-
atin; however, resistance remains a challenge [77]. Stud-
ies have shown that USP39 protein is overexpressed in
carboplatin-resistant OC samples. Mechanistic analyses
indicate that USP39 promotes the phosphorylation of
AKT, EGER, and cyclin B1, while it deters the activation
of PARP and Caspase-3, thereby enhancing cell prolifera-
tion, migration, and invasion, and curbing apoptosis [78].
Additionally, USP48 exhibits high expression in carbo-
platin-resistant OC cells, too. The reduction of USP48
markedly mitigates chemoresistance to carboplatin and
curtails the metastasis of OC cells [79].

Doxorubicin (adriamycin, dox)

Dox, a member of the anthracycline class, is a prevalent
anticancer agent employed in treating various cancers. It
exerts its therapeutic effects by intercalating into DNA
strands, inducing DNA damage and disrupting DNA rep-
lication [80, 81].

USPs, cell cycle, and cell apoptosis in Dox resistance

USP7 has been identified as a critical regulator of Dox
resistance across several cancer types, including HCC
[82], pancreatic ductal adenocarcinoma (PDAC) [83],
and neuroblastoma (NB) [84]. In Dox-resistant HCC
cells, the disruption of USP7 not only amplifies Dox-
induced apoptosis but also impedes cell proliferation via
the prolonged activation of the pro-apoptotic protein
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Bax [82]. In PDAC cells, inhibition of USP7 boosts sen-
sitivity to Dox, correlating with a notable rise in Dox
nuclear localization [83]. Additionally, the inhibition of
USP7 intensifies the cytotoxic effects of Dox on NB cells,
particularly those with an operational USP7-HDM2-
p53 axis, increasing their susceptibility to Dox-induced
p53-mediated apoptosis [84]. Also in NB, cell viability is
influenced by USP14 expression. A synergistic antitumor
response is observed when USP14 inhibition is paired
with Dox treatment [85].

Bioinformatics analysis has revealed a notable positive
correlation between USP37 expression and Dox resist-
ance in BC. The combined approach of USP37 knock-
down and Dox treatment significantly increases cleaved
Caspase 3 and Bax levels while suppressing BCL2 expres-
sion, resulting in cell cycle arrest and enhanced apop-
tosis [86]. Furthermore, numerous studies have shown
that p-transducin repeat-containing protein (B-Trcp)’s
regulation of cell cycle depends on its capacity to target
Cdc25A [87, 88]. B-Trcp as an E3 ligase engages in spe-
cific binding with USP47, and mutations in B-Trcp can
impair this interaction. Crucially, disrupting USP47 leads
to Cdc25A accumulation, which diminishes cell survival
and elevates cellular sensitivity to Dox-induced apop-
tosis [89]. Additionally, USP8 has been identified as an
inhibitor of Dox-induced cell cycle arrest and apoptosis
by modulating various receptor tyrosine kinases (RTKs)
in HCC, including EGFR, c-Met, p-AKT, p-STAT3, and
p-Raf [90].

USPs, stemness, and metastasis in Dox resistance

The role of ATP-binding cassette (ABC) transporter-
mediated drug efflux is critically examined in TNBC
[91]. An increased expression of ABC transporters
correlates with resistance to taxanes and anthracy-
clines, as these drugs, including Dox and paclitaxel,
are substrates of p-glycoprotein (Pgp), encoded by the
ABCB1 gene [92]. USP7, acting as a specific regula-
tor of ABCB1, engages directly with ABCBI, reduc-
ing K48-linked polyubiquitination. Inhibition of USP7
significantly counters resistance to Dox and pacli-
taxel in TNBC cells, thus diminishing tumorigenesis
and distant metastasis in an orthotopic BC mouse
model [93]. Additionally, a rise in USP29 expression
enhances resistance of NSCLC cells to Dox and pacli-
taxel by deubiquitinating Snaill via USP29 [94]. Co-IP
assays confirmed that USP45 binds directly to MYC,
selectively removing K48-linked ubiquitin chains from
MYC, thereby intensifying Dox resistance in cancer
cells. The USP45/MYC axis elevates the expression of
MYC-targeted downstream factors and CSC-associated
proteins, leading to an increase in tumorsphere forma-
tion and CD133+ cell populations [95]. Conversely,
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a notable decrease in USP16 expression was observed
in HCC cells. USP16 levels are associated with the
carboxyl-terminal truncated form of the Hepatitis B
virus X protein (Ct-HBx)-induced upregulation of CSC
markers, colony formation, and augmented resistance
of HCC cells to Dox [96].

Cell adhesion is integral to the EMT process, and cell
adhesion-mediated drug resistance (CAM-DR) is identi-
fied as a pivotal mechanism in drug resistance in multiple
myeloma (MM) [97]. USP14 is implicated in CAM-DR in
MM, where it fosters Dox resistance by inhibiting apop-
tosis and altering the Wnt signaling pathway [98].

Paclitaxel

Paclitaxel, a member of the taxane class, influences vari-
ous cellular oncogenic processes, including mitosis,
apoptosis, angiogenesis, inflammatory response, CSC
formation, and reactive oxygen species (ROS) production
[99, 100]. Notably, as paclitaxel is often used in conjunc-
tion with cisplatin or Dox, certain USP-mediated resist-
ance mechanisms previously mentioned may be relevant
to paclitaxel resistance as well [63, 93, 94].

USPs, cell mitosis, and cell apoptosis in paclitaxel resistance
PLK1 is pivotal in regulating mitosis and orchestrating
G2/M cell cycle transition [101, 102]. Recent findings dis-
close a direct interaction between USP7 and PLK1, with
both showing overexpression in paclitaxel-resistant can-
cer cells. The dual knockdown of USP7 and PLK1 mark-
edly enhances the susceptibility of paclitaxel-resistant
cells to apoptosis by influencing chromosome alignment
during mitosis [103]. Following this research, targeting
USP7 prompts the formation of multiple spindle poles,
triggering mitotic catastrophe and apoptosis in lung,
prostate, and cervical cancer cells. Synergistic antican-
cer outcomes are achieved by combining USP7 and PLK1
inhibitors, chiefly through the suppression of MDR/
ABCBI expression [104].

USP33 overexpression impedes paclitaxel-triggered
apoptosis in resistant prostate cancer cells. It interacts
with DUSP1, preventing its Lys48-linked polyubiquitina-
tion and the subsequent activation of JNK [105]. Intrigu-
ingly, Skp1-CUL1-F-box (SCF) E3 ubiquitin ligase system
targets procaspase-3, modulating the apoptotic threshold
to shield cells from apoptosis [106]. A notable decrease
in USP15 expression has been identified in paclitaxel-
resistant OC samples. Restoring USP15 expression in
paclitaxel-treated cells enhances procaspase-3 deubiqui-
tination, detaches it from the SCF complex, and induces
apoptosis, thereby counteracting OC cell resistance to
paclitaxel [107] (Fig. 3A).
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USPs, ROS, and oxidative stress (0S) in paclitaxel resistance
An imbalance between ROS production and antioxidant
defense mechanisms triggers OS responses. Paclitaxel
promotes ROS generation, which in turn increases OS
levels, inducing DNA damage and mutations that con-
tribute to genomic instability and the development of
drug-resistant clones [99]. Previously discussed, USP29
upregulation in response to OS stabilizes Snaill expres-
sion, enhancing stemness and resistance to paclitaxel
and Dox in NSCLC cells [94]. Crucially, USP2a overex-
pression in prostate cancer cells reduces ROS produc-
tion and stabilizes mitochondrial membranes, granting
resistance to OS induced by prooxidants like cisplatin,
Dox, and paclitaxel [108]. This protective mechanism of
USP2a involves regulating c-Myc through miR-34b/c to
boost intracellular antioxidant glutathione (GSH) lev-
els, thereby mitigating the oxidative cascade initiated by
these chemotherapy agents [108].

NF-E2-related factor 2 (Nrf2) is a transcription fac-
tor that preserves cellular redox balance by upregulat-
ing genes associated with antioxidant response elements
(AREs) [109-111]. Zhang et al’s research demonstrated
that USP15 deubiquitinates Keapl, enhancing its E3
ligase activity and prolonging Nrf2 ubiquitination, thus
suppressing the Nrf2-dependent antioxidant response.
A decrease in USP15 expression elevates Nrf2 levels via
a Keapl-dependent pathway, leading to increased pacli-
taxel resistance [112].

CAFs promote cancer cell growth and drug resistance
by releasing various bioactive compounds, including
exosomes [113-115]. An intricate study revealed that
cisplatin and paclitaxel activate USP7, prompting CAFs
to emit exosomal miR-522. USP7 then reduces ALOX15
expression by deubiquitinating and stabilizing het-
erogeneous nuclear ribonucleoprotein Al (hnRNPA1),
diminishing lipid-ROS accumulation and decreasing fer-
roptosis, ultimately reducing chemotherapy sensitivity in
GC cells [113] (Fig. 3A).

5-Fu

5-Fu is a pyrimidine analog classified as an antime-
tabolite, frequently used alongside other chemotherapy
agents. Its primary anticancer action is the noncompeti-
tive inhibition of thymidylate synthase (TS), essential for
RNA and DNA synthesis [116].

USPs and stemness in 5-Fu resistance

Emerging research indicates that enhanced stemness
characteristics mediate 5-Fu resistance in cancer cells.
The aforementioned USP16 and USP38 in HCC and
CRC also influence 5-Fu resistance by modulating
stemness and the expression of related stem cell markers
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[94, 96]. In recurrent and chemoresistant CRC cells,
USP22 expression is elevated, with miR-305p identified
as an upstream regulator [117]. Inhibiting USP22 expres-
sion can adversely affect the Wnt/B-catenin pathway,
thus reducing CRC stemness and the cells’ resistance to
5-Fu [118]. Furthermore, BMI1, part of the polycomb
group (PcG) proteins crucial for stem cell renewal [119],
is targeted alongside cisplatin to synergistically sup-
press growth in head and neck squamous cell carcinoma
(HNSCC) cells [120]. It is posited that increased USP22

expression contributes to 5-Fu resistance in HCC cells
by elevating BMI1 expression. In a mouse model injected
with a 5-Fu-resistant HCC cell line, targeting USP22 led
to a significant tumor size reduction post 5-Fu treatment
[121] (Fig. 3B).

USPs and SIRT1 in 5-Fu resistance

SIRT1, a class III histone deacetylase, serves as an acet-
ylation mediator within the USP22 and SAGA coacti-
vator complex [122, 123]. Studies have demonstrated
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that USP22 directly interacts with SIRT1, activating the
AKT/GSK-3B/multidrug resistance-associated protein
1 (MRP1) pathway, thereby enhancing 5-Fu efflux and
reducing 5-Fu-induced apoptosis in HCC cells [124].
Furthermore, a positive feedback loop exists between
¢-MYC and SIRT1, where USP22 increases SIRT1 sta-
bility through MYC mediation, concurrently decreasing
p53 levels [125]. Through SIRT1 deubiquitination, USP22
potentially triggers autophagy, diminishing HCC cell sen-
sitivity to chemotherapeutic agents, including 5-Fu [74]
(Fig. 3B).

Temozolomide (TMZ)

TMZ, an orally administered chemotherapy drug, is
predominantly used to treat glioblastoma (GBM), an
extremely aggressive brain cancer. As an alkylating agent,
TMZ induces DNA damage and inhibits cell division
[126, 127]. Recent findings indicate that USP4, upregu-
lated in TMZ-resistant GBM cells, inhibits apoptosis in
a p53-dependent manner, and this resistance is further
amplified by p53-specific inhibitors [103].

Glioma stem cells (GSCs) are a unique population
among GBM characterized by their remarkable self-
renewal ability and the acquisition of TMZ resistance
[128]. USP 6 N-terminal-like protein (USP6NL) is a
GTPase-activating protein that plays a regulatory role
in EGFR endocytosis [129]. In GBM-resistant cells,
the expression levels of USP6NL, as well as CSC mark-
ers (CD44 and CD133), transcription factors (Nanog
and SOX2), and the efflux transporter ABCG2, were
significantly upregulated. Notably, USP6NL was found
to interact with EGFR and deubiquitinate it to enhance
TMZ-induced autophagy [130]. Additionally, USP36
interacts with and upregulates ALKBH5, an m6A dem-
ethylase. Depleting USP36 diminishes GSC self-renewal
and increases their sensitivity to TMZ in vitro and in vivo
[131]. Significantly, TRAF4, a scaffold protein with E3
ligase activity, binds to Caveolin-1 (CAV1) to inhibit
ZNRF1-mediated ubiquitination and facilitate USP7-
mediated deubiquitination, thus enhancing CAV1 sta-
bility, promoting stemness, and increasing GBM cell
resistance to TMZ [132] (Fig. 3C).

Molecular targeted drug resistance mediated

by USPs

PARP inhibitors

PARP is a critical component of the DDR system, recog-
nizing and binding to DNA single-strand breaks (SSBs),
thereby facilitating SSBs repair. Repair of DSBs primarily
occurs through two pathways: nonhomologous end-join-
ing (NHE]) and homologous recombination (HR) [133].
When genes, typically BRCA, responsible for HR at DSBs
are mutated, DSB repair is impeded, increasing reliance

Page 10 of 41

on PARP-mediated SSBs repair. At the same time, if a
PARP inhibitor impedes PARP activity at SSBs, DNA
damage cannot be rectified through either SSB or DSB
repair mechanisms, leading to cancer cell death. This
elucidates why PARP inhibitors are particularly effective
in tumor patients with BRCA mutations. Furthermore,
PARP inhibitors can be synergistically combined with
chemotherapy or radiotherapy to enhance DNA damage
in cancer cells [134].

USPs and BRCA in olaparib resistance

BRCAL1 is pivotal in facilitating HR and is recruited to
DSBs through a series of signaling events [135]. Recep-
tor-associated protein 80 (RAP80) plays an essential role
in this recruitment, acting through a scaffolding protein
to form a complex with BRCA1, thereby promoting the
DDR [136]. Recent research indicates that ATM phos-
phorylation of USP13, following DNA damage, enables
USP13 to deubiquitinate RAP80. This action renders OC
cells resistant to olaparib by removing K63-linked ubiq-
uitin chains from RAP80 [137]. Additionally, USP15,
recruited to DSBs by MDC1, deubiquitinates BARD1
[138, 139], a BRCA1 binding partner, facilitating the
interaction between BARDI1 and HP1ly at DSBs, thus
enhancing olaparib resistance in cancer cells [140].

CtIP as the key initiator of DDR, also collaborates with
BRCAL to influence olaparib resistance [141]. USP52 can
directly deubiquitinate CtIP and facilitate its phospho-
rylation at Thr-847 [142]. Moreover, in BRCA1-deficient
cells, USP1 expression is elevated, leading to its interac-
tion with the essential cell cycle protein PCNA at the
replication fork. This interaction prevents PCNA’s ubiq-
uitin-mediated degradation by E3 ligase RAD18. In the
absence of USP1, persistent loading of the translesion
synthesis (TLS) polymerase and the build-up of ubiq-
uitinated PCNA induce replication fork instability, sig-
nificantly increasing the susceptibility of cancer cells to
olaparib [143] (Fig. 4A).

USP7 and CCDCé6 in Olaparib resistance

USP7 plays a significant role in mediating cancer cell
resistance to PARP inhibitors [93, 144-148]. In pan-
creatic cancer, USP7 deubiquitinates fructose-1,6-bi-
sphosphatase 1 (FBP1) at K206, hindering its nuclear
translocation. By preventing FBP1’s association with
DNA (cytosine-5)-methyltransferase 1 (DNMT1), USP7
inhibits PARP1 entrapment in chromatin, contributing to
olaparib resistance [144].

The interaction between USP7 and CCDCE6 is crucial
in conferring resistance to PARP inhibitors. CCDC6, an
ATM substrate, can dephosphorylate yH2AX at S139,
maintaining stable DNA damage checkpoints [145].
Studies have identified a positive association between
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USP7 and CCDC6 expression levels. While the E3 ligase
FBXW?7 targets CCDC6 for ubiquitination and destabili-
zation, leading to mitotic arrest, USP7’s deubiquitination
of CCDC6 counters this effect, enhancing its stability and
influencing CCDC6 turnover [146]. Inhibiting USP7 pro-
motes CCDC6 degradation, diminishes YH2AX levels,
and markedly increases cell sensitivity to PARP inhibitors
in various cancer types, including NSCLC [146], prostate
cancer [145], lung neuroendocrine cancer [147], bladder
cancer [93], and SOC [148] (Fig. 4A).

Protein kinase inhibitors
Tyrosine kinase inhibitors (TKls)

USPs mediate Imatinib (IM) resistance in chronic myeloid
leukemia (CML) IM, a quintessential TKI, is primarily

used for treating CML and gastrointestinal stromal
tumors (GISTs). CML is a clonal disorder of pluripo-
tent hematopoietic cells, characterized by the presence
of a gene, BCR-ABL, that encodes a constitutively active
tyrosine kinase fusion protein [149]. IM specifically tar-
gets this BCR-ABL protein, significantly inhibiting CML
progression [150].

In CML cell lines and peripheral blood mononuclear
cells (PBMCs) from CML patients, a reduction in USP15
expression was noted. This decrease in USP15 is due to
the upregulation of STAT5A and the direct activation of
miR-202-5p, which specifically targets and downregulates
USP15 mRNA, causing inhibitory deubiquitination of
Caspase6 and apoptosis [151]. Furthermore, research has
verified an increase in USP6 expression in IM-resistant



Gao et al. Molecular Cancer (2024) 23:88

CML cells [152]. Elevated USP6 levels facilitate the deu-
biquitination of glutaminase-1 (GLS1), enhancing the
conversion of glutamine to glutamate and ammonia, thus
impeding IM-induced apoptosis [153]. This pivotal deu-
biquitination step can be targeted for inhibition by miR-
146a-5p contained in exosomes from human umbilical
cord mesenchymal stem cells (hucMSCs) [152]. Addi-
tionally, USP47 is overexpressed in primary CML cells,
where it deubiquitinates Y-box binding protein 1 (YB-1).
Targeting USP47 presents a promising strategy to coun-
ter IM resistance and effectively eradicate leukemia stem/
progenitor cells in CML [154] (Fig. 4B).

USPs mediate IM resistance in GISTs GISTs are the
predominant malignant mesenchymal tumors of gastro-
intestinal tract. The c-KIT protein, a common tyrosine
kinase in GISTs, is the primary target of IM, particularly
the hyperactive mutant form of the c-KIT protein [155].
IM has proven effective in controlling the disease in
70-85% of patients with advanced c-KIT-positive GISTs
[156].

The regulation of autophagy-related protein 5 (ATG5)
is vital for autophagic activity and IM resistance [157].
USP13 has been shown to deubiquitinate ATG5, thereby
enhancing autophagy and increasing IM resistance in
GIST cells, a process dependent on serine/threonine-
protein kinase PAK1 [158]. The stabilization of USP13
mRNA is facilitated by N6-methyladenosine methyl-
transferase-like 3 (METTL3) with the aid of the m6A
reader IGF2BP2 [158].

Tumor-derived exosomes also play a significant role in
mediating IM resistance [159, 160]. Aligning with previ-
ous findings, exosomes from hucMSCs and USP6 con-
tribute to IM resistance in CML [152]. Recent studies
have indicated that exosomes from IM-resistant GIST
cells can confer resistance to IM-sensitive cells, facilitated
by Ras-related protein 35 (Rab35). In this context, the
transcription factor ETV1 upregulates USP32 expression,
which then interacts with Rab35, reducing its K48-ubiq-
uitination and maintaining its stability, thus promoting
the resistant mechanism [161] (Fig. 4B).

Multiple targeted RTK inhibitors

Sorafenib, a multi-kinase inhibitor, is a recommended
treatment for patients with advanced HCC [162].
USP22 plays a role in mediating sorafenib resistance
in HCC cells through a complex series of mecha-
nisms. Under normoxic conditions, HIFl« is degraded
by the UPS system. However, under hypoxic condi-
tions, HIFla is stabilized and forms a complex with
HIF1p, triggering the transcription of downstream
genes [163, 164]. USP22 can enhance hypoxia-induced
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HCC stemness and glycolysis by deubiquitinating and
stabilizing HIF1a. Moreover, USP22 can be transcrip-
tionally upregulated by HIF1a, creating a positive feed-
back loop that amplifies stemness characteristics and
reduces the sensitivity of HCC cells to sorafenib [165].
Notably, a self-activated cascade-responsive nanoplat-
form, galactose-decorated lipopolyplex (Gal-SLP), has
been developed for targeted HCC therapy, facilitating
the co-delivery of sorafenib and shUSP22 to achieve
a synergistic effect. Sorafenib, encapsulated within
Gal-SLPs, initiates a ROS cascade, enabling the rapid
release of shUSP22, which inhibits downstream SIRT1/
AKT/MRP1 and ABCCI1 pathways, increases intracel-
lular sorafenib accumulation, and disrupts glycolysis
in HCC cells. This approach demonstrates significant
antitumor efficacy and excellent biosafety in a patient-
derived xenograft (PDX) model [166, 167].

In addition of USP22, USP29 also deubiquitinates
HIFla, contributing to sorafenib resistance in HCC
cells by promoting the transcriptional activation of tar-
get genes, especially hexokinase 2 (HK2), a key enzyme
in glycolytic pathway [168]. Furthermore, ENKUR, a
crucial adaptor protein involved in the localization of
a Ca2+-permeable ion channel in sperm [169], is noted
for its inhibitory effects on tumor proliferation, metas-
tasis, and sorafenib resistance in HCC. Detailed studies
reveal that ENKUR can interact with B-catenin, inhib-
iting its nuclear translocation and subsequently reduc-
ing c-Jun and MYHO levels. The decreased expression
of MYH9 impairs the recruitment of USP7 and the
deubiquitination of c-Myc, enhancing the sensitivity of
HCC cells to sorafenib treatment [170].

Bruton’s tyrosine kinase (BTK) inhibitors

Ibrutinib, a prototypical BTK inhibitor, is predomi-
nantly employed in treating blood cancers. It targets
BTK, an essential component of the B-cell receptor
(BCR) signaling pathway, thus impeding B-cell activa-
tion, proliferation, and survival [171]. In chronic lym-
phocytic leukemia (CLL), USP7 is overexpressed and
interferes with HR pathways, leading to an accumula-
tion of unrepaired DSBs. Inhibiting USP7 significantly
enhances the sensitivity of ibrutinib-resistant CLL
cells to clinically achievable doses of chemotherapeu-
tic agents [172]. Additionally, USP14 is implicated in
inhibiting tumor-specific apoptosis in ibrutinib-resist-
ant Waldenstrom macroglobulinemia (WM) cells. The
inhibition of USP14 results in the downregulation of
BCR-associated elements, disruption of mitochondrial
membrane integrity and endoplasmic reticulum stress
mechanisms, culminating in increased apoptosis in
resistant WM cells [173].
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Receptor inhibitors

AR inhibitors

Prostate cancer progression is predominantly driven by
AR signaling [174]. Consequently, androgen deprivation
therapy (ADT), which diminishes circulating testoster-
one levels and blocks cellular AR signaling via surgical
or chemical castration, remains the cornerstone of treat-
ment for prostate cancer. Based on the response to ADT
[175], prostate cancer is classified into hormone-sensitive
prostate cancer (HSPC) and castration-resistant prostate
cancer (CRPC). Although enzalutamide effectively inhib-
its AR signaling in CRPC treatment, some CRPC cells
evolve to resist enzalutamide by upregulating AR or its
splice variant AR-V7 [176].

USP22 is overexpressed in CRPC tumor samples,
where it deubiquitinates AR/AR-V7, thereby increas-
ing their accumulation [177]. The IncRNA PCBPI-ASI
amplifies USP22’s deubiquitination effect. Inhibiting
PCBPI-AS1 markedly restores the sensitivity of resist-
ant cells to enzalutamide [178]. Similarly, USP14 deubiq-
uitinates AR/AR-V7 and can outcompete the E3 ligase
MDM2, preventing AR’s ubiquitination by MDM2 [179].
Kinesin family member 15 (KIF15) facilitates the interac-
tion between USP14 and AR/AR-V7, promoting enzalu-
tamide resistance in prostate cancer cells [180]. Research
has identified that nobiletin, a polymethoxylated flavo-
noid from citrus fruit peels, possesses significant anti-
cancer properties. It induces GO/G1 phase arrest and
heightens the sensitivity of AR-V7+ cells to enzalutamide
by selectively inhibiting the interactions between AR-V7
and USP14/USP22 [181]. Additionally, glucose-regulated
protein 75 (GRP75) hinders the degradation of sinusoi-
dal eye homeobox homolog 1 (SIX1) by facilitating its
deubiquitination by USP1. Inhibiting the GRP75-USP1-
SIX1 protein complex formation in preclinical models
has been shown to delay tumor progression and augment
enzalutamide efficacy [182].

Estrogen receptor (ER) inhibitors/Endocrine therapy

ER is present in about 70% of breast cancers (BC) and is
a pivotal therapeutic target [183]. Patients with ER+ BC
benefit from anti-estrogen endocrine therapies, includ-
ing tamoxifen, an ER antagonist; fulvestrant, an ER
modulator; and letrozole, an aromatase inhibitor [184].
Elevated USP22 levels can deubiquitinate ERa, enhanc-
ing its transactivation to cis-regulatory elements of
ERa target genes, thereby increasing BC cell resistance
to tamoxifen [185]. USP15, identified as a novel factor
in protecting against ERa degradation, when knocked
down, enhances K48-linked ERa ubiquitination, sig-
nificantly boosting the efficacy of tamoxifen against BC
cells [186]. Furthermore, as a crucial component of the
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PI3K pathway, AKT phosphorylates USP35 at Ser613.
The activated USP35 interacts with ERa, boosting its
transcriptional activity, which diminishes the effective-
ness of tamoxifen and fulvestrant treatments [187].

EGFR inhibitors

EGFR-RTK activation plays an important role in the
progression of NSCLC. To address this, a series of
EGFR-TKI inhibitors, including gefitinib, erlotinib,
afatinib, and osimertinib, have been developed specifi-
cally for NSCLC patients harboring EGFR mutations
[188]. USP8 has emerged as a novel target to counter-
act gefitinib resistance, with its inhibition leading to
the downregulation of multiple RTKs and the induction
of cell death in gefitinib-resistant NSCLC cells, while
sparing normal cells [189]. In addition to USP8, USP13
inhibits the ubiquitin-mediated degradation of EGFR
by the Cbl family of E3 ubiquitin ligases, thereby selec-
tively stabilizing mutant EGFR through a peptidase-
independent mechanism [190]. Concurrently, USP22
deubiquitinates EGFR on late endosomes, enhancing its
recycling and the sustained activation of various down-
stream signaling pathways upon EGF stimulation [191].
Moreover, microRNA-124a is identified as a tumor
suppressor that targets USP14, reducing stemness and
increasing the sensitivity of NSCLC cells to gefitinib
[192]. Nonetheless, the precise mechanisms underly-
ing these interactions remain largely unexplored and
necessitate further investigation.

HER2/ERBB2 inhibitors

HER2-targeted therapies are developed to counteract
the overexpression or amplification of HER2 protein in
cancers, particularly BC. Trastuzumab, a monoclonal
antibody targeting the HER2 receptor, stands out as the
most prevalent HER2-targeted treatment. Additional
therapies, such as pertuzumab, ado-trastuzumab emtan-
sine (T-DM1), and lapatinib, impede the HER2 path-
way through various mechanisms [193]. In the study by
Shamshad et al., USP27X was found to be overexpressed
in HER2+ resistant BC cells, where it deubiquitinates
the CCND1 protein. The ablation of USP27X markedly
reduces CCNDL1 levels and enhances the sensitivity of BC
cells to lapatinib [194]. Persistent HER2 protein expres-
sion represents a critical resistance mechanism against
HER2-targeted therapies. USP2 has been identified as a
key regulator of HER2 stability, binding to internalized
HER?2 to avert its lysosomal degradation. Targeting USP2
reduces HER?2 levels by promoting its ubiquitination and
degradation [195], offering a potential strategy to over-
come resistance in HER2-targeted BC therapies.
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Proteasome inhibitors

Bortezomib (BTZ), a seminal proteasome inhibitor (PI),
is extensively employed in the treatment of MM, where
it notably impedes NF-kB activation and augments IxBa
stability [196]. USP7’s role involves deubiquitinating
NEK?2, thereby stabilizing its expression. Elevated NEK2
levels lead to the binding and phosphorylation of PP1la,
initiating the canonical NF-kB pathway and engendering
BTZ resistance in MM cells [197]. The ablation of USP7
markedly diminishes colony formation and mitigates
BTZ resistance in MM cells by fortifying IkBa expression
and obstructing the NF-kB pathway [198-200].

Research consistently shows that autophagy inhibi-
tion can significantly slow MM cell growth and induce
apoptosis [201]. USP12 emerges as a critical regula-
tor in this context, interacting with and deubiquitinat-
ing the autophagy mediator, high mobility group box-1
(HMGB1). The knockdown of USP12 decreases HMGB1
levels, curtails autophagy, and consequently boosts MM
cell susceptibility to BTZ [202].

Table 1 encapsulates the described drug resistance
mechanisms in cancers, as mediated by the deubiquitina-
tion activities of USPs.

Immunotherapy resistance mediated by USPs
Cancer immunotherapy seeks to mobilize the human
immune system, utilizing the body’s innate ability to
eliminate cancer cells [203]. Despite the approval of tar-
geted antibodies against key immune checkpoints, such
as programmed death protein-1 (PD-1), programmed
death-ligand 1 (PD-L1), and cytotoxic T lymphocyte-
associated antigen-4 (CTLA-4) for various cancers, a
significant subset of patients encounters resistance and
treatment failure [204]. Emerging researches suggest that
modulating USP-mediated deubiquitination of proteins
in antitumor immune responses may offer a strategy to
circumvent immunotherapy resistance [205].

Extensive researches indicate the involvement of vari-
ous USPs in the deubiquitination of PD1/PD-L1 proteins.
For instance, USP8, upregulated in pancreatic cancer,
can deubiquitinate PD-L1. Targeting USP8 reduces PD-
L1’s level, stimulating cytotoxic T-cells, and bolstering
the anti-tumor immune response, which enhances the
efficacy of PD-L1-targeted immunotherapy [206]. How-
ever, a more nuanced study yielded contrary results,
indicating that targeting USP8 elevates PD-L1 expres-
sion. This increase is primarily due to the intensifica-
tion of K63 ubiquitination, facilitated by the E3 ligase
TRAF6, which counteracts K48 ubiquitination, thereby
averting PD-L1 degradation. In this context, USP8 inhibi-
tion initiates innate immune responses, boosts IFN type
I signaling, and increases MHC-1 production through
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TRAF6-NF-kB signaling [207]. A similar dichotomy is
observed with USP7’s influence on PD-L1. In gastric
tumors, USP7 suppression diminishes PD-L1 levels,
increases the susceptibility of GC cells to T-cell-mediated
destruction, and enhances the immune response [208].
Conversely, research by Dai et al. in lung cancer dem-
onstrated that USP7 inhibition might actually intensify
PD-L1 expression, associated with greater infiltration of
M1 macrophages and IFN-y+CD8+ T cells, culminat-
ing in a robust anti-tumor effect [209]. These disparate
findings underscore the complex and context-dependent
nature of USP7/USP8’s impact on PD-L1. Nevertheless,
combining USP8/USP7 inhibitors with PD-1/PD-L1
blockade appears to significantly bolster anti-tumor effi-
cacy (Fig. 5A).

USP22 has been found to interact directly with the C
terminus of PD-L1 protein, facilitating its deubiquitina-
tion. In a liver cancer mouse model, USP22 knockdown
significantly enhanced the efficacy of combined PD-L1
targeted immunotherapy and cisplatin by boosting tumor
immunogenicity [210]. In pancreatic cancer, USP22
knockout amplified the response to concurrent anti-PD1
and anti-CTLAA4 therapy, notably by diminishing myeloid
cell infiltration and encouraging T cell and NK cell pres-
ence, thus converting “cold” tumors into “hot” tumors
[211] (Fig. 5A). Conversely, melanoma studies indicate
that USP22 loss does not enhance immunotherapy effec-
tiveness but rather induces resistance to T cell-mediated
cytotoxicity. USP22’s ability to deubiquitinate STAT1
and activate the JAK-STAT pathway is crucial; without
USP22, STAT1 degradation escalates, inhibiting IFNy
from engaging with its receptors IFNGR1 and IFNGR?2,
and thus disrupting T cell-mediated cytotoxic signaling
[212]. Moreover, IFN-y activation leads to STAT1 phos-
phorylation, which triggers its nuclear migration and the
subsequent activation of IncRNA TINCR transcription.
TINCR then associates with DNMT1, promoting the
methylation of miR-199a-5p loci and diminishing miR-
199a-5p’s suppressive effect on USP20, thereby stabiliz-
ing USP20 mRNA. Consequently, USP20 deubiquitinates
PD-L1, increasing BC cell resistance to PD-L1 inhibi-
tors [213]. Additionally, ERK phosphorylation of PD-1
at Thr234 enables USP5-mediated deubiquitination.
Inhibiting USP5 in T cells reduces PD-1 levels, augments
effector cytokine production, and decelerates tumor pro-
gression in mice, significantly enhancing the response to
anti-CTLA-4 or trametinib therapy [214] (Fig. 5B).

Pyroptosis is a distinct form of programmed cell death,
differing from apoptosis, characterized as a regula-
tory necrosis mechanism in inflammatory cells under
stress or infection conditions [215]. Researches have
shown that pyroptosis plays a crucial role in modulat-
ing immunotherapy responses [216, 217]. USP18, by
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Fig. 5 USPs regulate significant cancer immunotherapy resistance. A Targeting USP8, USP7, and USP22 affects PD-L1 protein stability, alters
immune cells infiltration in tumor microenvironment, and enhances cancer cell sensitivity to immunotherapy. B USPs modulate critical IFN signaling
pathways to affect cell pyroptosis, MHC-I receptor expression, and cytokine release

interacting with IFNa receptors and STAT2, diminishes
the binding of STAT2-mediated transcription complexes
to IEN response elements, thus attenuating type I IFN
signaling [218]. Inhibiting USP18 enhances the expres-
sion of canonical IFN-stimulated genes (ISGs) and acti-
vates a subset of non-traditional ISGs and NF-«B target
genes, such as PLK2, leading to the induction of cancer
pyroptosis [216]. Gasdermin family member Gasder-
min E (GSDME), is activated by Caspase 3, transitioning

apoptosis to pyroptosis [219]. USP48 facilitates pyrop-
tosis by binding with GSDME, stripping its K48-linked
ubiquitin, and thereby augmenting the functions of T
cells and tumor-associated macrophages (TAMs) within
the tumor microenvironment (TME), significantly boost-
ing the efficacy of PD-1 inhibitors [218] (Fig. 5B).

Several seminal studies have significantly advanced
the understanding of intricate roles of USPs in modu-
lating immunotherapy responses. First, the TET2 DNA
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dioxygenase is monoubiquitylated at K1299, which aug-
ments its enzymatic function and promotes lympho-
cytes infiltration into tumors [220]. USP15, by removing
this monoubiquitin, negatively impacts TET2 activity.
Its absence in melanoma cells leads to enhanced IFNy-
induced chemokine production and lymphocytes
recruitment, thereby augmenting the immunotherapy
responsiveness [221]. Second, the advent of immu-
nomodulatory medicines (IMiDs) like lenalidomide, tha-
lidomide, and pomalidomide has transformed treatment
approaches for MM [222]. IMiDs act by binding to cer-
eblon (CRBN), a substrate receptor of the CUL4-RBX1-
DDBI1-CRBN (CRL4“®EN) E3 ligase complex, thereby
recruiting neosubstrates as the drug target for ongoing
degradation [223]. This study found that USP15 coun-
teracts the CRL4“RBN-mediated ubiquitylation of these
neosubstrates. Inhibiting USP15 promotes the degra-
dation of these substrates, enhancing the sensitivity of
IMiD-resistant MM cells to treatment, and offering a
new avenue for CRBN-based PROTACs therapies [224].
Moreover, oncogenic KRAS activation fosters pro-tum-
origenic microenvironment [225]. In Kras®'?P-driven
lung cancer, USP12 suppression, triggered by AKT-
mTOR signaling, leads to inadequate deubiquitination
of PPM1B, resulting in NF-«B signaling hyperactivation
and the creation of an immune-suppressive milieu. This
environment, characterized by increased macrophage
presence, vascularization, and reduced T-cell activity,
diminishes the efficacy of anti-PD-1 immunotherapy
[226]. Furthermore, the essential amino acid tryptophan’s
depletion and the rise of kynurenine, catalyzed by IDO1,
are crucial for immune evasion [227]. In CRC, USP14
directly deubiquitinates IDO1, shielding it from K48
ubiquitination by TRIM21. USP14 inhibition decreases
IDOL1 levels, disrupts CD8+ cell activation, alters CD4+
T cell differentiation into Treg cells, boosts the immune
response against tumors, and increases the effectiveness
of anti-PD-1 treatment [228].

Bioinformatics analysis has demonstrated a significant
association between USP35 and an immunosuppressive
TME, as indicated by the negative correlation between
USP35 levels and CD8+ T cell infiltration in skin cuta-
neous melanoma [229, 230]. Patients exhibiting high
USP35 expression show reduced benefits from immuno-
therapy compared to those with lower expression levels.
A comparable predictive trend is noted for USP51 in GC
patients, where increased USP51 expression correlates
with decreased immunotherapy efficacy [231]. How-
ever, the specific mechanisms through which USP35 and
USP51 affect immunotherapy success remain unclear and
warrant further experimental investigation.

Table 2 summarizes the resistance mechanisms to can-
cer immunotherapy mediated by USPs.

Page 21 of 41

Radiotherapy resistance mediated by USPs
Radiotherapy, a prevalent cancer treatment modality,
employs radiation to induce DNA damage and inhibit
cell replication in cancer cells [232]. A key strategy to
counteract tumor radioresistance involves disrupting
the protective DDR mechanisms. In NSCLC, USP14
modulates DSB repair in response to ionizing radiation
(IR) by influencing both NHE] and HR pathways. Inhib-
iting USP14 enhances NHE] efficiency, facilitates the
recruitment of essential NHE] proteins to chromatin,
and increases the formation of IR-induced BRCA1 foci
[233]. Moreover, radiation triggers the phosphorylation
of DGCR8 by the kinase ATM, enhancing DGCR8’s
deubiquitination by USP51. This enhances the assem-
bly of activated DGCR8 and RNF168 at DSB sites via
MDC1, promoting DSB repair and contributing to radi-
oresistance in cancer cells [234].

Histone methylation and acetylation by various
enzymes, are crucial in DDR and radioresistance
[235]. USP7 facilitates the deubiquitination of histone
demethylase PHEFS, elevating cyclin A2 levels, which
attracts more BLM and KU70 to DSBs, thereby enhanc-
ing cellular resistance to radiation [236]. Additionally,
USP38 associates with histone deacetylase HDACI,
removes its K63-linked ubiquitin chains, and bolsters
the deacetylase activity of HDAC1 on histone H3K56.
The absence of USP38 diminishes NHE] efficiency and
heightens cell vulnerability to IR [237].

The CHK family plays a crucial role in regulating
cell cycle and mitosis, significantly impacting radio-
therapy resistance. In BC cells, USP7 collaborates with
LINC02582 to deubiquitinate and stabilize CHK1, tar-
geting miR-200c and enhancing radioresistance [238].
Similarly, USP39 maintains CHK2 stability through
deubiquitination. However, its depletion leads to
increasing radiation resistance, accompanied with
CHK?2 dysfunction, impairing the G2/M checkpoint
activation after DNA damage and reducing apoptosis
[239].

Radiotherapy is a primary treatment modality for
GBM, yet resistance to it is common in GBM patients
[240]. USP1, highly expressed in GBM and particularly
in cells positive for GSC-enrichment markers (CD133 or
CD15), modulates the stability of ID1 and CHEK1, which
are critical for DDR and stem cell maintenance. Inhibit-
ing USP1 enhances GBM cell radiosensitivity and curtails
GSC clonogenic growth and survival [241]. Moreover,
USP44’s interaction with histone H2B is disrupted by
lincRA1, which binds to H2B and maintains H2Bubl
levels, impeding USP44’s binding, inhibiting autophagy,
and fostering radioresistance in GBM [242]. Addition-
ally, the UCH domain of USP3 interacts with the N-ter-
minus of Claspin, stabilizing it against ubiquitination
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and consequently activating ATR-CHK]1 signaling, which
contributes to the radioresistance in GBM cells [243].

In addition to the above studies, USPs also play piv-
otal roles in various pathways, modulating the activity of
essential proteins in radioresistance. For instance, USP9X
influences apoptosis by targeting MCL-1 [244, 245] or
regulates TGEP signaling via KDM4C [246], while USP7
and USP24 target p53 [247, 248], USP13 targets PTEN
[249], USP53 interacts with DNA damage binding pro-
tein 2 (DDB2) [250], and USP28 modulates HIF-1a [251].
Due to space constraints, an in-depth discussion of these
mechanisms is beyond the scope of this review. For refer-
ence, Table 3 succinctly summarizes these mechanisms.

Overcome anti-cancer drug resistance by USP
inhibitors

Recent advances in USP inhibitors as therapeutic agents
have demonstrated significant anti-cancer potential, with
extensive reviews covering their development and clini-
cal applications [14, 252, 253]. This section highlights
USP inhibitors crucial for overcoming drug resistance in
cancer treatment (Table 4).

USP7 inhibitors

Among USP inhibitors, USP7 inhibitors are the most
varied and thoroughly researched. The thiophenyl com-
pound P22077, a notable USP7 inhibitor, induces apop-
tosis by targeting USP7 and enhancing intracellular ROS
production [260]. It stabilizes p53 and degrades HDM2,
augmenting the cytotoxic effects of Dox and etoposide
on NB cells [84]. In HCC and PDAC, P22077 lessens the
cells’ sensitivity to Dox [82, 83]. Additionally, P22077 dis-
rupts the USP7-CHK1 interaction, aiding in overcoming
cytarabine resistance in AML [254]. The combination of
P22077 with the PLK1 inhibitor volasertib shows syner-
gistic efficacy in paclitaxel-resistant lung cancer [104].
Interestingly, P22077 not only targets USP7 but also
addresses IM resistance in CML by inhibiting USP47,
enhancing the effectiveness against TKI-resistant CML
cells and reducing Lin~Scal™c-Kit" CML stem/progeni-
tor cell numbers in CML models [154].

Through high-throughput screening, scientists identi-
fied another novel USP7 inhibitor, the thiophenyl com-
pound P5091, which induces apoptosis in BTZ-resistant
MM cells. When combined with lenalidomide, dexa-
methasone, or SAHA (an HDAC inhibitor), P5091 dem-
onstrates synergistic therapeutic effects [177]. In MM
cells, the concurrent use of the NEK2 inhibitor INH1
and P5091 markedly impedes cell growth and overcomes
NEK2-related and inherent BTZ resistance by modulat-
ing the NF-kB and PP1a/AKT pathways [175]. Moreover,
the hypoxia-selective epigenetic agent RRx-001 triggers
MM cell apoptosis through Caspase activation, increased
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ROS release, and reduced global methylation, exhibiting
synergistic anti-MM effects with P5091 in overcoming
BTZ resistance [255]. P5091 also enhances the sensitiv-
ity of lung neuroendocrine tumor cells to PARP inhibi-
tors by diminishing CCDC6 levels and hampering HR
repair, showing combined efficacy against lung neuroen-
docrine and CRPC [145, 147]. As for immunotherapy,
P5091 escalates PD-L1 expression, while it blocks PD-1
and reprograms TAMs in TME, facilitating an effective
antitumor response in Lewis lung carcinoma [209].

GNE-6776, another prominent USP7 inhibitor, exhibits
significant inhibitory activity against the USP7 catalytic
domain [261], markedly increasing apoptosis in chem-
oresistant TNBC cells [93]. HBX19818, which covalently
binds to USP7’s active site, enhances the sensitivity of
chemoresistant and p53-deficient CLL cells to chemo-
therapy [172]. Notably, RAPT Therapeutics, Inc. has
developed a unique USP7 inhibitor, compound 41 [262],
which re-sensitizes MYCN-amplified chemoresistant
tumors to cisplatin and etoposide by reducing N-MYC
levels and increasing cleaved Caspase 3 [256].

USP1 inhibitors

Given the functional role of USP1 as part of the USP1/
UAF1 complex, extensive researches have been con-
ducted to develop inhibitors targeting this complex.
In 2011, the first USP1/UAF1 inhibitor was identified
through a high-throughput screening using Ub-Rho110
[40]. After that, pimozide and GW7647, identified as the
most effective compounds, demonstrate noncompeti-
tive and reversible inhibition of USP1/UAF1. In NSCLC
cells, they increase the monoubiquitylation of PCNA
and FANCD2 [40]. The combination of pimozide and
the MAST1 inhibitor lestaurtinib markedly decreases
MAST1 expression and the phosphorylation of MEK1
and ERK in cancer cells, enhancing their sensitivity to cis-
platin [43]. In a model of rituximab/chemotherapy-resist-
ant diffuse large B-cell lymphoma, pimozide synergizes
with etoposide, destabilizing MAX, thereby inhibiting
cell proliferation and inducing apoptosis, autophagy, and
cell cycle arrest [257]. However, the interaction of pimoz-
ide and GW7647 with other proteins, independent of
their DUB activity, may restrict their application in cer-
tain contexts.

The discovery of C527 and its more potent derivatives
in 2013 marked a significant advancement, although their
selectivity remains limited [263]. SJB3-019A, a deriva-
tive of C527, diminishes MM cell viability and mitigates
resistance to BTZ. Its combinatory application with the
HDAC inhibitor ACY-1215, BTZ, lenalidomide, or poma-
lidomide shows synergistic cytotoxic effects on MM cells
[258]. Additionally, a new compound, ML323, surpasses
GW7647 in terms of potency. With excellent selectivity
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Table 3 USPs mediate radiotherapy resistance in cancers
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USPs  Cancer types Expression Substrate proteins Functional mechanisms to regulate radiotherapy efficacy Reference
levels

USP14  NSCLC Up - Inhibition USP14 enhances NHEJ efficiency by recruiting [233]
of key NHEJ proteins to chromatin, and increasing formation
of IR-induced BRCA1 foci, indicating HR deficiency.

USP51  Breast cancer - DGCR8 ATM phosphorylates DGCR8 at Ser 677, facilitating the deu- [234]
biquitination of DGCR8 by USP51, leading to the recruitment
of DGCR8 and RNF168 to MDC1 enabling DSB repair.

USP7  Breast cancer - PHF8 The USP7-mediated PHF8 stabilization confers radiotherapy [236]
resistance by recruiting BLM and KU70 to DSB repair.

UsP38 - - HDAC1 USP38 deubiquitnates HDACT to maintain NHEJ efficiency [237]
and increased resistance to IR.

USP7  Breast cancer - CHK1 LINC02582 interacts with USP7 to deubiquitinate CHKT, [238]
and target miR-200c, thus promoting radioresistance.

USP39  Lung cancer - CHK2 USP39 deubiquitinates CHK2, repairing DNA damage-induced  [239]
G2/M checkpoint, increasing apoptosis, and suppressing
resistance to radiation treatment.

USP1  Glioblastoma Up - USP1 promotes radioresistance through maintaining DDR [241]
and stem cell maintenance.

USP44  Glioblastoma - H2Bub1 Linc-RA1 inhibits autophagy and promotes radioresistance [242]
by preventing H2Bub1/USP44 interaction.

USP3  Glioblastoma - Claspin Smoothened promotes radiation resistance via activating [243]
USP3-mediated claspin deubiquitination and ATR-CHK1
signaling.

USP9X  Lung cancer - KDM4C USP9X-mediated KDM4C deubiquitination promotes radi- [246]
oresistance by epigenetically inducing TGF-2 transcription
and activating Smad/ATM/Chk2 signaling.

UsP24 - - P53 USP24 is a p53 deubiquitinase, and promotes PUMA activa- [248]
tion and inhibits cell resistant to apoptosis after UV damage.

USP13  Oral squamous cell carcinoma - PTEN Bergenin upregulates the PTEN protein by enhancing [249]
the interaction between PTEN and USP13, thus inhibiting
glycolysis and overcoming radioresistance.

USP28 Esophageal cancer Up c-Myc Knockdown of USP28 enhances the radiosensitivity [251]

of via destabilizing c-Myc and enhancing the accumulation
of HIF-1a.

against human DUBs, deSUMOylases, deneddylases, and
unrelated proteases, ML323 boosts cytotoxicity in cispl-
atin-resistant NSCLC by blocking PCNA and FANCD2
deubiquitination [38, 264]. Moreover, ML323 selectively
targets a subgroup of BRCA1-deficient cells that have
developed resistance to PARP inhibitors through replica-
tion fork stabilization [143].

USP13 inhibitors

USP13 inhibitors play a critical role in modulating DNA
repair mechanisms. USP13 can deubiquitinate DNA
topoisomerase 2 binding protein 1 (TopBP1), influenc-
ing DNA chain breakage and repair processes. Deplet-
ing USP13 enhances cellular sensitivity to replication
stress inducers such as hydroxyurea (HU), camptothecin
(CPT), ultraviolet (UV) radiation, and 5-Fu [265]. An
imaging-based screening method led to the identifica-
tion of spautin-1, a potent autophagy inhibitor that tar-
gets both USP10 and USP13 [266]. Spautin-1 disrupts

RAP80-BRCA1 complex formation, impeding the DDR
and enhancing the sensitivity of OC cells to olaparib.
Combining spautin-1 with olaparib offers a superior syn-
ergistic therapeutic effect compared to olaparib alone
[137]. In addition, spautin-1, when used with the EGFR
inhibitor afatinib, significantly reduces the viability of
NSCLC cells [197]. In a GIST cell-derived mouse xeno-
graft model, spautin-1 triggers ATG5 degradation, and
its use with 3-methyladenine notably enhances the thera-
peutic impact of IM [158].

USP14 inhibitors

Compound b-AP15 is recognized for inducing apoptosis
by targeting USP14 and UCHL5 [267]. It is particularly
effective in inducing apoptosis in cells overexpressing
BCL-2 or lacking functional p53, positioning it as a via-
ble therapeutic approach for BTZ-resistant WM patients
[259]. In 2015, the development of VX1570 improved the
physicochemical properties of b-AP15 [268]. VX1570
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prompts rapid, tumor-specific apoptosis in WM cells
resistant to BTZ or ibrutinib, diminishing tumor load
and extending survival in WM xenograft models [173].
A subsequent screening of 63,052 compounds identified
a novel USP14 inhibitor, IU1, which specifically binds to
the active form of USP14, inhibiting its association with
the proteasome while sparing other DUBs [269]. When
paired with anti-PD-1 therapy, IUl markedly reduced
tumor mass and extended survival in mouse models
[228].

USP8 inhibitors

DUBs-IN-2 is an effective USP8 inhibitor with potential
in countering various types of immunotherapy resist-
ance. Its application leads to PD-L1 upregulation, which
stimulates immune responses and antigen presenta-
tion, thus transforming the TME into a more inflamed
state. This alteration in TME bolsters the effectiveness of
anti-PD-1/PD-L1 immunotherapy across several mouse
tumor models [207]. In pancreatic cancer, the combi-
nation of DUBs-IN-2 and anti-PD-L1 therapy activates
cytotoxic T cells, significantly inhibiting tumor growth
[206]. Moreover, a synthesized USP8 inhibitor, 9-Ethylox-
yimino-9H-indeno [1,2-b] pyrazine2,3-dicarbonitrile, has
been shown to suppress multiple RTKs in gefitinib-resist-
ant NSCLC cells. This inhibitor promotes the colocaliza-
tion of ubiquitin and target RTKs, effectively overcoming
gefitinib resistance in lung cancer [196]. Additionally, in
HCC cells and mouse models, 9-Ethyloxyimino-9H-in-
deno [1,2-b] pyrazine2,3-dicarbonitrile significantly
boosts the effectiveness of Dox or sorafenib by reducing
RTK expression by approximately 90% [90].

Conclusions and perspectives

In this review, we have thoroughly discussed the intricate
mechanisms of USP-mediated drug resistance proceed-
ing from the perspectives of various treatment strategies
and specific drugs, and suggested that targeting USPs
may offer novel insights into overcoming drug resistance
in cancer therapy. Undoubtedly, USP inhibitors have the
potential to counteract drug resistance and enhance the
responsiveness of cancer cells to anti-cancer treatments,
including chemotherapy, molecular targeted therapy,
immunotherapy, and radiotherapy. Although the primary
focus of our review is to provide insights and perspectives
for clinical treatment by exploring USP-mediated cancer
therapy resistance within the context of different clinical
approaches, it is important to note the inherent intercon-
nectedness between different USPs and drug resistance
mechanisms. For instance, USP7 has been implicated
in promoting DDR, thus mediating resistance to DNA-
damaging chemotherapeutic agents and also radiation
therapy. Furthermore, as one of the most extensively

Page 30 of 41

studied USPs, USP7 is not only involved in DDR but
also participate in EMT, CSC generation, anti-apoptosis,
hypoxia, angiogenesis, and modulation of immune cell
infiltration within the TME. These biological functions
collectively contribute to the development of resistance
mechanisms in cancer therapy. Therefore, USP7 mediates
resistance to a wide range of chemotherapeutic agents,
radiation therapy, and immunotherapy. Another notable
example is USP22, which significantly impacts the effi-
cacy of chemotherapy drugs and immunotherapy due to
its involvement in EMT, CSC formation, and modula-
tion of TME. The overarching framework of this review
focuses on the interaction between USPs and drugs, with
a specific emphasis on USP vs. cellular pathway/func-
tional signaling within each particular drug category.
Different drug action mechanisms determine the spe-
cific resistance signaling mechanisms mediated by USPs,
while the USP-mediated signaling pathways, in turn, con-
tribute to varied drug resistance profiles. These relation-
ships exhibit overlapping and reciprocal influences.

Therefore, expanding on these aspects not only deep-
ens the understanding of the complex dynamics underly-
ing USP-mediated resistance but also sheds light on the
challenges faced by researchers aiming to unravel these
intricate networks and optimize therapeutic outcomes.
Given the complexity of USP regulatory network, the
exact mechanisms by which USP inhibition can be lever-
aged to surmount resistance to anti-cancer drugs remain
incompletely elucidated. While USPs have demonstrated
potential in mediating cancer drug resistance, several
challenges and considerations must be addressed.

Firstly, we catalogued the USPs implicated in cancer
drug resistance across various cancer types, as illustrated
in Fig. 6A. The expression patterns of USPs across dif-
ferent cancer types reflect specific molecular alterations
and signaling pathways of each cancer. The presence
of multiple USPs within a particular cancer type or the
expression and variation of same USP (e.g., USP7, USP14,
and USP22) across different cancers suggest functional
redundancy. This implies that different USPs may sub-
stitute for one another’s functions and substrates, adding
to their role complexity in cancer and complicating the
targeting of a singular USP for treatment. Tumors consist
of a heterogeneous mix of cancer cells, each with unique
genetic and phenotypic characteristics. Within a tumor,
cancer cells can have diverse molecular signatures,
including USP expression variations. The impact of USPs
on drug resistance is context-dependent, shaped by the
specific cellular environment, TME, and genetic land-
scape, which can also shift in response to external stim-
uli, such as environmental changes or treatment. This
variability introduces further complexity in pinpointing
the precise USPs responsible for cancer drug resistance.
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Fig. 6 USPs exhibit overlapping expressions and functional mechanisms in mediating drug resistance during cancer treatment. A The expression
and variability of USPs contribute to drug resistance across various cancer types. B Different USPs orchestrate drug resistance through intricate

functional mechanisms

Overcoming these challenges necessitates extensive pro-
filing of USP expressions and activities across a range of
cancer types and stages to track USP dynamics and com-
prehend their roles. Traditional methods for USP activity
assessment, like biochemical assays, may not suit clinical
samples or lack necessary sensitivity and specificity. Thus,

developing precise and reliable assays for measuring USP
activity in patient-derived samples is crucial for identify-
ing USPs pivotal in drug resistance. This endeavor often
requires merging multi-omics data, including genomics,
transcriptomics, proteomics, and epigenomics to pin-
point USPs linked to drug resistance in particular cancer
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scenarios. Fostering interdisciplinary collaboration,
employing advanced technologies, and analyzing exten-
sive patient cohorts could lead to personalized treatment
strategies targeting specific USPs involved in drug resist-
ance for each cancer type.

Secondly, the USP family consists of numerous mem-
bers with overlapping function in drug resistance
(Fig. 6B). Abovementioned USP7 and USP22 has been
implicated in mediating drug resistance through a vari-
ety of molecular mechanisms, thus USP7 and USP22 can
affect the efficacy of multiple drugs, not just one specific
drug (Fig. 7A). In addition, USP2a and USP29 have been
shown to influence the therapeutic resistance to pacli-
taxel, platinum, and Dox. The overlapping functions of
different USPs in cancer drug resistance pose challenges
for achieving functional specificity and avoiding cross-
influence. While some USPs may confer “drug-resistance”
roles by stabilizing crucial signaling proteins, others
may function as suppressors through deubiquitinating
and activating proteins in various molecular pathways.
Although multiple USPs may participate in the same cel-
lular processes or drug strategies, they often have unique
substrates or regulatory networks that bestow specific
resistant functions. Identifying the precise molecular
mechanisms that underpin the drug resistance-asso-
ciated functions of individual USPs is crucial, neces-
sitating a blend of experimental and computational
methods. Functional studies, such as RNA interference
and CRISPR/Cas9-mediated gene knockout, can modu-
late the expression of specific USPs in cancer cells or
animal models during drug treatment. High-throughput
screening can identify downstream substrates or binding
partners of USPs relevant to drug resistance. Biochemical
assays, like in vitro deubiquitination assays using recom-
binant USPs and targets, can elucidate specific protein
targets and deubiquitination events. These assays, com-
bined with drug treatments, assess the impact of USPs
on drug responses. Importantly, computational mode-
ling, including molecular dynamics simulations, docking
studies, or network analysis, can predict and elucidate
interactions between USPs, their substrates, and drug
resistance molecules. Network-based approaches can
identify crucial nodes or modules within signaling net-
works affected by USPs in the context of drug resistance.

Thirdly, although the identification and creation of
strong and specific USP inhibitors is an exciting field
with promise for improving cancer outcomes, the chal-
lenge of targeting USPs persists. USPs possess conserved
catalytic domains, with the active site of USPs featuring a
catalytic triad in the Cys and His domains, comprising a
cysteine residue, a histidine residue, and an aspartate res-
idue. These residues are essential for the deubiquitinating
activity of USPs. The task of designing inhibitors that can
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specifically target the active site and hinder the catalytic
activity of USPs is daunting due to the high conservation
of the catalytic triad across various USPs. Additionally,
the catalytic domain of USPs can demonstrate structural
flexibility, enabling the accommodation of a wide range
of substrates. This adaptability presents obstacles in
developing small molecule inhibitors that can selectively
target individual USPs without impacting other USPs
with similar structures. Consequently, many existing USP
inhibitors may exhibit off-target effects, affecting cellular
processes unrelated to drug resistance, and limiting the
therapeutic potential of USP inhibitors. We posit that
researchers are pursuing various strategies to address the
challenges of targeting USPs (Fig. 7B). 1) Covalent inhibi-
tors: The development of covalent inhibitors that form
irreversible bonds with the USP active site can enhance
both selectivity and potency. These inhibitors target
unique reactive residues within the USP active site for
more effective and specific inhibition. 2) Allosteric inhib-
itors: Instead of the catalytic site, allosteric inhibitors
attach to different sites on the USP protein, altering its
activity. This method aims to achieve selectivity by focus-
ing on distinctive conformational states or regulatory
regions of the USP. 3) Peptide-based or protein-protein
interaction inhibitors: Inhibitors derived from USP sub-
strates or interacting proteins can disrupt USP’s interac-
tions with its substrates or regulatory proteins, thereby
inhibiting its activity. 4) PROTACs and molecular glues:
These innovative strategies employ bifunctional mol-
ecules to direct USPs towards an E3 ubiquitin ligase or a
target protein for ubiquitination and subsequent degra-
dation. This leverages the proteasomal degradation path-
way to indirectly diminish USP levels and their activity. 5)
Combination therapies: To address potential resistance to
USP inhibitors, similar to other targeted therapies, their
combination with other treatments could enhance thera-
peutic efficacy and potentially forestall or delay resist-
ance development. Furthermore, with advancements in
science and technology, increasingly sophisticated drug
design strategies are being applied (Fig. 7B). It’s critical to
acknowledge that these strategies are in active research
phases, and their success may vary by the specific USP
and disease context. Ongoing research in these fields is
promising for surmounting USP targeting challenges
and improving therapeutic outcomes. We maintain that
through the integration of computational modeling and
synthesis, USP inhibitors can be identified and optimized
to achieve enhanced potency, selectivity, drug-like char-
acteristics, and minimized off-target effects.

Lastly, despite the existence of over 1,000 E3 ligases,
there are fewer than 100 DUBs, with USPs constituting
a significant subgroup. This discrepancy in numbers sug-
gests that USPs perform multiple roles and participate
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in various cellular processes critical for overcom-
ing drug resistance. The interactions and competition
between E3 ligases and USPs represent a pivotal area
of research (Fig. 7C). E3 ligases facilitate ubiquitination
and protein degradation, whereas USPs reverse this by

deubiquitinating the same substrates, allowing for pre-
cise regulation of ubiquitylation status, which affects the
stability, localization, and activity of substrate proteins in
cancer therapy. Beyond targeting the same protein sub-
strates for their antagonistic effects, USPs and E3 ligases
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can interact directly, acting as substrates for each other’s
ubiquitination or deubiquitination activities. Notably,
many USPs are linked with E3 ligases, such as USP7 and
MDM2, USP15 and Keapl, USP47 and B-Trcp, which are
prone to self-ubiquitylate or even to enhance the ubig-
uitination activities of E3 ligases through deubiquitinat-
ing them. Hence, the stabilization of E3 ligases through
deubiquitination underscores a key aspect of USP func-
tion, while E3 ligases may destabilize their correspond-
ing USPs via ubiquitination. This raises the question of
whether specific research strategies could modulate the
interaction and competitive dynamics between USPs
and E3 ligases to improve the targeting of USPs in drug
resistance. Investigating potential reciprocal regulatory
networks and biomarkers between USPs and E3 ligases
related to drug resistance, are critical initial steps. These
efforts can inform drug design and targeted therapy. By
precisely mapping interaction sites and employing com-
putational methods, novel drugs could be developed to
either simultaneously sensitize E3 ligase and inhibit USP
or co-inhibit both, enabling dual or multiple substrate
protein degradation for augmented anti-cancer effects.
However, strategies to regulate USP and E3 ligase inter-
actions are still nascent, necessitating further research to
confirm their efficacy and safety. Sensitizing or inhibiting
specific E3 ligases might also trigger unintended degra-
dation of unknown substrate proteins, highlighting the
need for additional investigation and consideration.

It is crucial to emphasize that, while detailed mecha-
nistic roles have shown promise in preclinical studies, the
clinical validation of USP inhibitors for overcoming drug
resistance remains nascent, necessitating further investi-
gation into their safety, efficacy, and long-term impacts.
Executing well-designed clinical trials with meticulous
patient selection and rigorous outcome measures is vital
to ascertain the clinical utility of USP inhibitors in com-
bating drug resistance. The identification and validation
of predictive biomarkers that can categorize patients
based on their likelihood of responding to USP inhibitors
will enhance patient selection and facilitate monitoring
of treatment responses.

In conclusion, this review advances current under-
standing of USPs’ complex roles, suggesting that target-
ing USPs could be a strategic approach to tackling tumor
resistance. It may also uncover new clinical applications
and provide a framework for the future improvement
of USP inhibitors. However, comprehensive research is
required to elucidate the complex mechanisms by which
USPs influence drug resistance. This includes additional
studies to decipher the USP family’s complexity and
redundancy, develop personalized treatment modali-
ties based on tissue-specific USP profiling, enhance the
selectivity and specificity of USP inhibitors, investigate
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combination therapies to circumvent resistance, and
implement rigorous clinical trials with strategic patient
selection and biomarker validation. By confronting these
challenges, the potential of USPs as therapeutic targets
for countering drug resistance in cancer can be more
fully realized.
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