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Abstract

Objective.—Retinal implants are designed to stimulate retinal ganglion cells (RGCs) in a way 

that restores sight to individuals blinded by photoreceptor degeneration. Reproducing high-acuity 

vision with these devices will likely require inferring the natural light responses of diverse RGC 

types in the implanted retina, without being able to measure them directly. Here we demonstrate 

an inference approach that exploits intrinsic electrophysiological features of primate RGCs.

Approach.—First, ON-parasol and OFF-parasol RGC types were identified using their intrinsic 

electrical features in large-scale multi-electrode recordings from macaque retina. Then, the 

electrically inferred somatic location, inferred cell type, and average linear-nonlinear-Poisson 

model parameters of each cell type were used to infer a light response model for each cell. The 

accuracy of the cell type classification and of reproducing measured light responses with the 

model were evaluated.

Main results.—A cell-type classifier trained on 246 large-scale multi-electrode recordings from 

148 retinas achieved 95% mean accuracy on 29 test retinas. In five retinas tested, the inferred 

models achieved an average correlation with measured firing rates of 0.49 for white noise visual 
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stimuli and 0.50 for natural scenes stimuli, compared to 0.65 and 0.58 respectively for models 

fitted to recorded light responses (an upper bound). Linear decoding of natural images from 

predicted RGC activity in one retina showed a mean correlation of 0.55 between decoded and true 

images, compared to an upper bound of 0.81 using models fitted to light response data.

Significance.—These results suggest that inference of RGC light response properties from 

intrinsic features of their electrical activity may be a useful approach for high-fidelity sight 

restoration. The overall strategy of first inferring cell type from electrical features and then 

exploiting cell type to help infer natural cell function may also prove broadly useful to neural 

interfaces.
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retinal implant

1. Introduction

Epiretinal implants are designed to provide artificial vision to patients blinded by 

photoreceptor degeneration, by electrically stimulating retinal ganglion cells (RGCs) to 

transmit useful visual information to the brain [1, 2], However, the primate RGC population 

consists of over 20 distinct, intermixed cell types, each of which conveys distinct visual 

information to distinct targets in the brain [3, 4]. In contrast with this diverse and 

specific neural circuitry, current epiretinal implants indiscriminately stimulate collections 

of nearby RGCs without regard to cell type, resulting in unnatural activation patterns (e.g. 

simultaneous activation of ON and OFF cells) and limited vision restoration. No device has 

been developed that harnesses the accumulated scientific knowledge of the distinct functions 

of the diverse RGC types to reproduce the neural code of the retina. The development 

of such a device could improve artificial vision, and could pave the way for leveraging 

scientific understanding in neural implants of many kinds.

An ideal device that replicates the neural code would first infer, for any given incident visual 

image, how each RGC would have fired in the healthy retina, and would then electrically 

stimulate each cell to fire in this predicted pattern. Recently, electrical stimulation of RGCs 

at single-spike, single-cell resolution has been achieved in the isolated retinas of rodents 

[5–7], macaques [8–10], and humans [11], supporting the possibility of this kind of precise 

RGC activation. However, inference of the desired RGC activity is a challenge in a retina 

that is no longer light-responsive. One possible approach is to identify the cell type of each 

RGC, and then develop a model of light response for the cell based on the known properties 

of that cell type and on the cell’s location determined from its recorded electrical activity. 

Unfortunately, the common approaches for cell type identification, based on morphological, 

molecular, or visual response properties [4, 12–14], cannot be applied easily or at all in the 

setting of a retinal implant. Recently, the feasibility of deducing the cell type from intrinsic 

electrical features alone has been demonstrated [15], but the approach has not been used to 

reliably identify cell types and predict their light responses.
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Here we use measured intrinsic electrical features of RGCs in macaque retina to infer a full 

quantitative model of their light responses, and then test the results using measured light 

responses in the same retina. The present analysis focuses on ON and OFF parasol cells, two 

of the five numerically dominant primate RGC types. As a preliminary step, the possibility 

of separating parasol cells, both ON and OFF, from all other cells using only intrinsic 

electrical features is first demonstrated. A method for inferring a light response model for 

each parasol cell is then detailed, with inference of cell type a crucial intermediate step. 

Finally, the accuracy of the inferred light response models is assessed by comparing their 

predictions to the measured light responses of each cell, and also by decoding images from 

predicted light responses of the full RGC population. The results suggest that the approach 

produces predictions that largely preserve visually meaningful information and thus may be 

useful in future high-fidelity retinal implants.

2. Methods

2.1. Experimental overview

Multielectrode array recordings from isolated macaque retina were obtained using 

previously-described procedures [9, 16–19]. Briefly, eyes were taken from macaques 

terminally anesthetized by other laboratories in the course of their experiments. The 

extracted eyes were hemisected and the vitreous removed in room lighting. The posterior 

portion of the eye was then kept in darkness in oxygenated Ames’ solution (Sigma) at 

33 °C. Small (~3 mm) segments of retina were then isolated under infrared illumination 

and mounted on a custom multielectrode array, RGC side down. The array consisted of 

512 electrodes, 8–10 μm diameter, arranged in an isosceles triangular lattice with 60 μm 

spacing between electrodes in each row and between rows. During a recording, voltages 

were simultaneously recorded from all 512 electrodes, bandpass filtered (43–5000 Hz), and 

digitized (20 kHz). During recording the retina was superfused with oxygenated Ames’ 

solution at 33 °C–35 °C.

2.2. Visual stimulation and determination of ground truth cell type and light response 
properties

During recordings, visual stimuli were presented on a computer display refreshing at 120 

Hz, as described previously [20]. The mean image intensity was low photopic (~500–

1000 photoisomerizations/photoreceptor/sec). The image was focused on the retina using 

a microscope objective. White noise visual stimuli consisted of a grid of pixels, each 44 

× 44 or 88 × 88 μm at the retina, updating at 30 or 60 Hz. At each spatial location, the 

intensity of each monitor primary was selected from a binary distribution (minimum or 

maximum intensity) over time, and these were either yoked (producing black-and-white 

spatial noise patterns) or independent (producing colored spatial noise patterns). Electrical 

activity recorded during white noise stimulation was analyzed against the known visual 

stimulus to determine the ground truth cell type and ground truth spatial, chromatic, and 

temporal light response properties of RGCs, as previously described [21–24], Electrical 

activity recorded during white noise stimulation was also analyzed without reference 

to the known visual stimulus to extract two intrinsic features of electrical activity, the 

autocorrelation functions (ACFs) and the electrical images (EIs), as described below. Natural 
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scenes visual stimuli consisted of images from the ImageNet database [25] converted to 

grayscale and downsampled to either 320 × 160 pixels, with each pixel 11 × 11 μm on the 

retina, or to 160 × 80 pixels, with each pixel 22 × 22 μm on the retina. For assessment of 

preservation of visually significant information (figure 5), each natural image was shown 

for 100 ms, followed by a uniform gray display at the global mean image intensity for 400 

ms, for a total of 500 ms per image [20]. For direct comparison of predicted and observed 

responses (figure 4), natural scenes images were shown for varying duration, without an 

interposing gray display, and with intermittent spatial jitter imposed to simulate fixational 

eye movements [20].

2.3. Extraction of ACFs and EIs

Spikes from distinct cells were identified and separated using techniques previously 

described [26]. The spiking behavior of each RGC during white noise stimulation was 

summarized by its ACF. The ACF of a cell was computed by counting the total number of 

spike pairs separated by a given time interval, for each of 30 evenly spaced intervals between 

0–300 ms. This vector of spike counts was then normalized (L2). The spikes from each cell 

were also used to compute its EI. The EI is the average spatiotemporal voltage waveform 

recorded across the electrode array during the spikes of a given cell [26]. EIs extracted from 

spikes recorded during white noise visual stimulation, but without any reference to the actual 

visual stimulus, were used in subsequent axon conduction velocity analysis and cell type and 

encoding model inference.

2.4. Distinguishing parasol cells from other cells by axon conduction velocity

Axon conduction velocity was used to demonstrate the feasibility of distinguishing parasol 

cells from all other recorded cell types without access to their light responses [11, 27]. 

To estimate the axon conduction velocity of a cell, the time of maximum negative voltage 

within the EI waveform was determined for each electrode, after upsampling tenfold in time. 

Then, for all pairs of electrodes recording an axonal signal, a conduction velocity estimate 

was computed by dividing the distance between the electrodes by the time difference. 

Axonal electrode pairs with negative peaks less than one original sample apart (0.05 ms) 

were excluded. The overall conduction velocity for the cell was computed as a weighted 

average of the conduction velocity estimates of all axonal electrode pairs, with the weighting 

given by the product of maximum amplitudes. The top ten weighted pairs were used in 

the average, and cells with fewer than six axonal electrodes were excluded from analysis. 

Cells with axonal electrodes more than 90° apart relative to the soma center were also 

excluded from axon conduction velocity estimation because they likely were polyaxonal 

amacrine cells [28]. Axon conduction velocity was then used to demonstrate the feasability 

of distinguishing parasol cells from other cell types (figure 1), and subsequent analysis 

focused only on parasol cells.

2.5. Classification of parasol cells as ON or OFF using electrical features

The first step in distinguishing ON-parasol vs. OFF-parasol cells in each recording using 

only their electrical features was to assign a preliminary label to each using a classifier 

operating on the EI voltage waveform on the maximum amplitude electrode. The classifier 

used logistic regression applied to selected features of the main spike waveform. To extract 
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these features, first the main spike waveform was upsampled in time by a factor of 10 to 

obtain a waveform f t , where f t  is the voltage at time t. Given that somatic waveforms 

tend to consist of a negative deflection followed by a positive deflection, temporal 

information was summarized by six time points: tn, time of minimum voltage, tp the time of 

maximum voltage, tn, left first time point before tn with voltage amplitude less than half that at 

tn, tn, right first time point after tn with voltage amplitude less than half that at tn, and analogously 

defined tp, left and tp, right. Then, using these six time points, the 11 waveform features were then 

computed as follows: f tn , f tp , f tp /f tn , tn, right − tn, left, tp, right − tp, left, ∑t = tn
tn, right f(t), ∑t = p,left

tp f(t), 
f tn ⋅ tn − tn, left , f tn ⋅ tn, right − tn , f tn / tn, right − tn, left , f tp / tp, right − tp, left . To reduce the effect 

of inter-retinal variability, values for each feature were normalized to zero mean and unit 

variance across all the parasol cells within each recording. Feature weights were learned by 

training on 246 recordings from 148 retinas with rapidly manually-generated (imperfect) cell 

type labels, and the classifier was tested on 29 recordings from 29 retinas with carefully 

curated cell type labels. Inclusion of the waveform on apparent dendritic electrodes was also 

considered as a potential feature but was found to not significantly improve performance 

(69% accuracy with these additional features and 68% without), therefore only the 11 

features of the main spike waveform described above were used for EI-based classification.

The moderately high accuracy obtained by EI-based classification was significantly 

improved by using the predictions of EI-based classification to label ACF-based clusterings. 

Two approaches were considered. In the simpler approach, cells of each recording were 

clustered using k-means (k = 2) clustering on projections onto the top two principal 

components of ACFs for each recording. The clusters were then labeled in the way that 

maximized agreement with the EI-based labels. In the second approach, projections of ACF 

onto a variable number of top principal components (1–10) of the ACFs of that recording 

along with a variable number of top principal components (1–10) of ACFs pooled across 

recordings were considered as possible clustering features. K-means (k = 2) was performed 

on each possible combination to generate a total of 100 candidate clusters per recording. 

Each candidate cluster was assigned cell type labels in the way that maximized agreement 

with the EI-based labels as with the first approach. The final clustering was chosen among 

the candidate clusterings, without knowledge of the true labels, as the candidate clustering 

that maximized agreement with the EI-based labels and that did not predict a cell type 

imbalance of greater than 0.05/0.95. This cutoff value (5%) and the relative weight of the 

penalty for violating this cutoff value were learned as hyperparameters from the training 

data.

2.6. Inferring receptive field centers from EIs

To build a model of light response (see below), receptive field locations were first inferred 

from EIs. The soma center location of each cell was taken to be at the electrode with the 

most negative voltage in the EI. Assuming that the receptive field of a cell tends to lie 

over its soma [29, 30], these soma centers were then mapped onto visual stimulus space to 

estimate the receptive field centers. Such a mapping was necessary because the soma centers 

were defined in terms of a physical location on the electrode array, whereas receptive field 

center locations were defined in the coordinate space of the visual stimulus. The mapping 
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from electrode space to visual stimulus space was the least squares affine mapping from the 

all the inferred soma centers to the all the true receptive field centers in a given recording. In 

principle, this mapping could have been estimated using the measured relationship between 

the visual stimulus image and retina. In practice, precise estimation of the mapping using 

this approach is difficult, particularly due to slight deformations of the photoreceptor layer 

when the retina is pressed against the electrode array. Determining the mapping from 

electrode space to visual stimulus space without access to the true receptive field centers 

presents a challenge for a future retinal implant. However, a single constant offset in the 

receptive field centers would likely be more tolerable in the setting of an implant.

2.7. Inferring a light response model

The cell type and the inferred receptive field center were combined to infer a linear-

nonlinear-Poisson (LNP) light response model for each parasol cell in five test retinas 

[21], In this simple model, the probability of a cell firing a spike is a nonlinear function 

of a linear integration of the visual stimulus over nearby space and recent time. The linear 

portion of the model was expressed as a filter that is separable in space and time. The 

overall model thus consisted of the following sequential components: a linear spatial filter, 

a linear temporal filter, a scalar nonlinearity, and an inhomogeneous Poisson process with 

an instantaneous spike rate given by the output of the nonlinearity. The nonlinearity was of 

the form f(x) = a*N(bx − c), where a, b, and c were parameters of the model, and N is the 

cumulative normal function. To infer the model parameters for a cell, the cell was assumed 

to have the average linear spatial filter shape, temporal filter, and nonlinearity for its cell 

type. Both the retina-specific cell type averages and the cell type averages across five retinas 

were considered for these components. The ground truth model parameters used for these 

averages were the parameters obtained by fitting the model to the white noise light responses 

of each cell independently as previously described [21]. The spatial filter was centered on 

the inferred receptive field location (see above).

To test the accuracy of the inferred encoding models, model predictions were compared to 

the observed responses for both white noise and natural scenes visual stimuli. The visual 

stimuli were of the form described above. Each test visual stimulus was repeated 30–60 

times to capture stochasticity in firing across trials. The similarity between the true and 

predicted responses was assessed using the correlation coefficient between the average 

measured and predicted firing rate across trials. For comparison, the similarity between the 

measured response and the predictions of an encoding model fitted to a separate white noise 

visual stimulus was assessed in the same way.

2.8. Natural scenes decoding

To assess the effectiveness of inferred models for conveying visual information, linear 

decoding from fitted model-predicted and inferred model-predicted natural scenes light 

responses was performed, utilizing previously described methods [20] as summarized below.

First, a linear decoder was trained using the simulated light responses to 10 000 natural 

images obtained with an encoding model fitted to white noise data. The predicted light 

response to each image was summarized by the expected number of spikes within 150 ms 
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of when the image was displayed, for each parasol cell. The linear decoding mapped the 

expected spike counts from all cells to each pixel of the visual stimulus. The weights of the 

linear mapping were selected to minimize the squared error between the decoded images 

and the images presented. The linear decoder was then applied to a distinct set of 150 test 

images. Both the predicted responses of an encoding model inferred from electrical features 

and the predicted responses of the fitted encoding model applied to the training images were 

considered. Similarity between images decoded from inferred model responses and images 

decoded from fitted model responses was assessed visually and by the correlation with the 

test images.

3. Results

To infer and test RGC light response models, electrical recordings from isolated macaque 

retina were performed ex vivo using a 512-electrode array system [22, 26]. For each cell, 

intrinsic features of the electrical activity recorded during white noise stimulation but 

without reference to the properties of the stimulus, were used to infer first the cell type 

and then a light response model. The accuracy of the inferred model was then assessed by 

comparing its predictions to observed responses to visual stimuli, and also by reconstruction 

of visual stimuli from responses.

3.1. Distinguishing parasol cells from other cell types

An epiretinal implant targeting certain cell types for stimulation must be able to distinguish 

them from all other recorded cells. Therefore, the feasibility of separating ON-parasol and 

OFF-parasol cells, two of the five numerically dominant cell types in the primate retina [31], 

from all other recorded types using only intrinsic features of electrical activity was tested. 

The axon conduction velocity of each cell, estimated from the propagation of spikes along 

the axon over the multi-electrode array, was effective for this purpose (figure 1): parasol 

cells exhibited a relatively higher axon conduction velocity, while ON-midget, OFF-midget, 

small bistratified cells, and unidentified cell types, had lower axon conduction velocities 

[27, 32], with minimal overlap between the parasol and non-parasol cell distributions. The 

remaining analysis focuses on the ON-parasol and OFF-parasol cells.

3.1.1. Cell type classification—Accurately inferring light response models for the 

ON-parasol and OFF-parasol cells requires separating the cells of the two types using only 

intrinsic features electrical activity (i.e., features extracted without reference to the incident 

visual stimulus). Two such features were examined.

The first feature was the ACF of the recorded spikes from each cell. The ACF indicates the 

firing probability of a cell as a function of time after the occurrence of a previous spike; its 

form reveals temporal patterns of spiking behavior and tends to be distinct in different RGC 

types (see section 2) [24, 33]. In any given retina, the ACFs of ON-parasol and OFF-parasol 

cells were usually distinct from one another figure 2(A) and (B). When each retina was 

analyzed individually, k-means (k = 2) clustering of the top two principal components of 

the ACFs resulted in an average 94% separation of ON-parasol and OFF-parasol cells (see 

section 2), with 100% separation achieved for 5 of the 29 recordings. However, due to 

inter-retina variability in the form of the ACFs, they were less useful for identification 
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of the two cell types across retinas (figure 2(C)). For example, cell type classification 

using machine learning based on ACFs (see section 2) yielded cross-validated classification 

accuracy of only 65% across 29 retinas. In sum, ACFs alone can be used to separate, but not 

reliably identify, ON-parasol vs. OFF-parasol cells.

The second intrinsic feature of electrical activity considered for distinguishing cell types 

was the recorded voltage waveform associated with the action potential, obtained on the 

electrode recording the largest amplitude spikes from the cell (figure 2(D)). Several features 

of this spike waveform were examined; among these, the maximum negative voltage of 

the waveform provided the most accurate segregation of ON-parasol and OFF-parasol cells. 

Although there was considerable inter-retinal variation in this quantity, ON-parasol cells 

had consistently higher mean waveform maximum than OFF-parasol cells from the same 

retina (figures 2(E)–(G)). The inter-retinal variation was accounted for by normalizing 

the waveform maxima of all parasol cells in each retina to have zero mean and unit 

variance. After training on data from 246 recordings from 148 retinas with rapidly generated 

(imperfect) cell type labels and testing on data from 29 recordings from 29 retinas with 

carefully curated cell type labels, classification with normalized spike waveform maxima 

alone achieved a mean accuracy of 63%. Inclusion of spike waveform features recorded 

from other electrodes did not significantly improve classification accuracy (see section 

2). Classification using logistic regression on normalized waveform maximum and 10 

additional, similarly normalized features of the waveform (see section 2) increased mean 

accuracy to 68% (figure 2(H)). Use of neural network-based classifiers, applied either to 

these normalized features or to the waveforms on multiple electrodes, increased accuracy 

(76%), but not in a way that influenced subsequent inference stages (see below). In sum, 

features of the spike waveform alone identify ON-parasol vs. OFF-parasol cells to some 

degree, but imperfectly.

These results suggest a combined approach to cell type identification: separate the ON-

parasol and OFF-parasol cells of each retina using their ACFs, and then identify the clusters 

using features of the spike waveform. Using k-means clustering on the top two principal 

components of the ACF and then identifying clusters by ‘voting’ using the spike waveform 

classifier predictions achieved 80% mean (93% median) accuracy on the training retinas 

and 93% mean (97% median) accuracy across the 29 test retinas (figure 2(J)). In sum, a 

combination of ACF and spike waveform information can reliably identify ON-parasol and 

OFF-parasol cells.

To further improve the accuracy of cell type classification, ACF based clustering was 

optimized. Although k-means clustering on the first two principal components (PCs) of 

ACFs was more accurate than any other fixed number of PCs, using different numbers of 

top PCs for different retinas was more accurate. Furthermore, despite inter-retina variability, 

the clustering accuracy of some retinas improved with including as clustering features 

projections onto the top PCs of the pooled ACFs of all retinas, termed global ACF PCs, 

in addition to projections onto the top PCs from the same retina, termed local ACF PCs. 

Therefore, in the optimized approach, varying numbers of top local ACF PCs and global 

ACF PCs were used to generate 100 candidate clusterings per retina. Without knowledge 

of true cell types, the optimal choice among the candidate clusterings was taken to be the 
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clustering that maximized agreement with the initial spike waveform classifier predictions 

while avoiding excessive imbalance in the predicted ratio of cell types (see section 2). With 

selected candidate clusters labeled according to spike waveform classifier votes as before, 

this optimized approach increased overall cell type prediction accuracy to 83% mean (95% 

median) accuracy on the rapidly labeled training data and to 95% mean (97% median) 

accuracy on the carefully labeled testing data (figure 2(K)), across the 29 test data sets. 

Although the impact of this classifier optimization for vision restoration is unclear, the 

achieved accuracy was sufficient to clearly reveal the mosaic organization of receptive fields 

for each cell type (figures 2(L) and (M)), and to accurately infer light responses (see below). 

Substituting a neural network based classifier utilizing the waveforms of multiple electrodes 

produced similar results: 79% mean (94% median) accuracy on training data and 93% mean 

(98% median) accuracy on test data.

3.2. Inferring a light response model for each cell

To infer the light response properties of each RGC, the inferred cell type was used to 

construct a LNP cascade light response model, and the accuracy of model predictions 

was assessed [21]. In the LNP model, the visual stimulus passes first through a linear 

spatiotemporal filter, which integrates across nearby space and recent time to produce 

a scalar generator signal over time. This generator signal passes through a nonlinear 

function to determine the time-varying firing probability, and spikes are generated from 

this probability according to an inhomogeneous Poisson process.

To estimate the model parameters for each cell using only its inferred type and intrinsic 

features of its electrical activity, a two-step procedure was used. First, the nonlinearity 

function of each RGC was assumed to be the average nonlinearity function for all cells of 

its inferred type within that retina. Second, the linear spatiotemporal filter of each RGC was 

assumed to have the average shape for its inferred type, but translated in space to an inferred 

receptive field center location. To infer the receptive field center of a cell, first its soma 

center was inferred from its EI, the spatiotemporal electrical footprint of the action potential 

on the array. The soma center was computed as the weighted average of the locations of the 

maximum spike amplitude electrode and its neighboring electrodes, with weight equal to the 

spike amplitude of that electrode. Exploiting the fact that the receptive field of a cell tends to 

lie over its soma [34, 35], soma locations were then mapped to visual input space to obtain 

estimates of receptive field centers (figure 3; figure 4 center). Taken together, these inferred 

model parameters constituted an inferred LNP model for each RGC.

3.3. Testing light response models

To assess the accuracy of the inferred light response model for each RGC, the measured 

response to a visual stimulus was compared to prediction generated by the inferred model. 

Both natural scenes and white noise stimuli were tested. To control for the stochasticity 

in RGC responses, each visual stimulus was repeated 30–60 times. The inferred and true 

responses were similar for most cells (figure 4), with an average Pearson correlation 

coefficient of 0.50 for white noise stimuli and 0.53 for natural scenes stimuli across five 

retinas (figure 4, bottom, blue).
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To distinguish errors in model predictions attributable to imperfectly inferring model 

parameters from errors attributable to limitations of the LNP model itself, for each RGC, 

observed light responses were also compared to the predictions of a model that was fitted 

to held-out data. Across the same five retinas as above, the true firing rate and fitted model 

prediction firing rate had an average Pearson correlation coefficient of 0.65 and 0.58, for 

white noise and natural scenes stimuli respectively (figure 4, bottom). These fitted model 

predictions establish an upper bound on the accuracy that can be achieved by inferring the 

LNP model as above.

To test the effect of inter-retina variability on prediction of light responses, the above 

analysis was repeated with the average spatiotemporal filter shape and nonlinearity per cell 

type averaged across multiple retinas, rather than across cells within the retina being tested. 

Across the same five retinas, this approach produced a mean correlation between inferred 

and true responses of 0.49 for white noise stimuli and 0.50 for natural scene stimuli (figure 

4, bottom, orange). Overall, these results indicate that cell type is highly predictive of light 

response properties, but that retina-specific information is also significant [36], a potential 

challenge for the development of high-fidelity implants (see section 4).

3.4. Testing for preservation of the visual signal

To test further how effectively the inference of light response models captures visual 

signaling by the retina, linear decoding of simulated natural scene stimuli was performed 

using the RGC activity predicted by both fitted and inferred encoding models. The linear 

decoder can be interpreted as a simple model of downstream visual processing by the 

brain, which must make inferences about the visual scene to drive behavior (see section 

4). The stimuli consisted of natural images (ImageNet database), presented for 100 ms, 

interleaved with a uniform gray background with intensity equal to the mean across images. 

The interval between image presentations was 400 ms, to ensure independence of the 

evoked responses to each image (see section 2). A collection of images and responses was 

designated as training data for the decoder, and other images and responses were designated 

as test data. The training data were used to learn a linear transformation that decoded the 

images from the combined responses of all recorded ON-parasol and OFF-parasol cells, 

with least squared error (see section 2 and [20]). This linear decoder was then applied to 

the test responses, and the resulting decoded images were compared to the original images. 

The similarity between each original image and its decoded version was measured by the 

correlation coefficient. Next, the light response model inference method presented above 

was used to infer RGC responses to the images, and the same linear decoder was applied to 

inferred model predictions.

Across 150 test images, the mean correlation between the true images and the images 

decoded from inferred RGC responses was 0.55, while the mean correlation between true 

images and images decoded from the fitted model RGC responses (an upper bound) was 

0.81. This mean correlation from the inferred responses increased to 0.69 if the true rather 

than inferred cell types were used in inferring RGC responses, indicating that improvements 

to cell type classification would be valuable. For comparison, the correlations obtained with 
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randomly permuted true images was <0.001. Thus, RGC response inference captures most 

of the visual information captured by a best fit encoding model, an upper bound (figure 5).

4. Discussion

A two-step approach was used to infer RGC light response models using only intrinsic 

features of electrical activity: first, electrical features were used to infer cell types, and 

second, cell type information was combined with additional information from electrical 

features to infer a light response model for each cell. Although the first step, cell 

type inference, has been attempted previously [15], the 95% accuracy on ON-parasol 

versus OFF-parasol cell discrimination achieved here using a new and more interpretable 

classification approach and much larger data set represents a substantial improvement. 

The second step, light response model inference, has not been attempted previously. The 

predictions made by the inferred light response models closely matched the predictions of 

models fitted to measured light responses, validating the approach. Decoding of natural 

stimuli from responses further indicated that the inferred models tend to capture the essential 

properties of normal visual signaling by the retina. More generally, these findings indicate 

that there can be enough information present in the intrinsic electrical features of a neuron 

to understand its cell type and build a detailed model of its function within a circuit, a 

conclusion with potential implications for many brain-machine interfaces.

These findings advance the possibility of a new generation of high-fidelity implants that 

replicate the neural code. Such devices would perform two tasks: first, use recorded 

spontaneous activity to infer the RGC firing that would have occurred in the intact retina, 

and second, precisely evoke that normal firing pattern using electrical stimulation. The 

present approach of inferring cell type and then light response properties from intrinsic 

features of RGC electrical activity represents a possible strategy for accomplishing the first 

task. Nevertheless, there are several caveats, both for light response inference and for its 

application to the design of retinal implants.

4.1. Caveats for inferring light responses from electrical features

The present approach is limited by inter-retina variability in RGC encoding properties. 

The analysis focused first on the inference problem in a single retina, by using the 

average spatial filter, temporal filter, and nonlinearity function of cells of that type in 

the same retina in order to model light responses. However, this is unrealistic in the 

clinical setting because retina-specific RGC encoding properties would not be obtainable 

from a retina that has undergone photoreceptor degeneration and is therefore no longer 

light responsive. A more realistic approach—using these features averaged across multiple 

retinas—resulted in less accurate model inference. However, recent work suggests a third 

approach. Specifically, it may be possible to infer retina-specific encoding properties using 

psychophysical discrimination tasks performed by the implant recipient as recently outlined 

by Shah et al [36]. In this approach, the visual percepts generated by electrical stimulation 

are used to efficiently determine RGC encoding properties in the subject’s retina [36]. 

Notably, this approach requires cell type classification, highlighting the importance of the 

cell type inference developed here.
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Most of the present analysis was limited to ON-parasol and OFF-parasol cells, two of the 

five numerically dominant cell types in the primate retina. A more complete approach will 

require expanding cell type classification and light response model inference to other cell 

types. In particular, identifying and targeting ON and OFF midget cells will be important, 

given their high density [37] and consequent importance for high-acuity vision. Identifying 

and targeting additional cell types maybe more challenging, in part because axon conduction 

velocity apparently does not distinguish them from midget cells (figure 1).

Errors in identifying the receptive field location of each cell from its EI contributed 

substantially to errors in light response inference (not shown). Therefore, future work will 

prioritize techniques to more accurately infer the receptive field location. For example, 

inferring the dendritic field extent of a cell from its EI, in addition to inferring the somatic 

center, may improve inference [35].

The current approach is also limited by the assumption that cells of the same type all have 

the same light response properties, except for receptive field location. Future work will 

explore whether light response model inference can be more tailored to individual cells. For 

example, the EI of a cell may contain cell-specific information about the shape or orientation 

of the receptive field. This may be particularly important for cell types with receptive fields 

that are not smooth and circularly symmetric [24].

Finally, the present analysis is limited by the exclusive use of the LNP model of light 

responses. The choice of encoding model, made here primarily for simplicity, places an 

upper bound on the accuracy of inferred model predictions, and the performance of LNP 

models fitted to measured responses was thus included for comparison. More complex 

models, such as those that incorporate the temporal structure of spike trains [38], cross-

correlations in cell firing [39], or nonlinear subunit structure in receptive fields [40], could 

potentially offer higher performance [41–43], but inferring the parameters of such models 

would likely require developing new methods that do not require access to light responses.

4.2. Caveats for application to a future bi-directional retinal implant

One caveat to applying this approach to the design of a retinal implant is that although 

intrinsic electrical features were extracted without reference to a visual stimulus, they were 

computed from electrical activity collected during visual stimulation with white noise. In 

a blind retina, this would have to be accomplished with spontaneous firing, which occurs 

at a lower rate [44] and could produce slightly different electrical features. Specifically, 

differences in the ACFs or EIs could complicate cell type classification or model inference. 

The higher firing rate observed during visual stimulation indicates that the ACFs must differ 

to some degree, but further work is needed to fully characterize these differences. A smaller 

difference is expected between the EIs obtained from spontaneous and visually-driven 

activity, since the action potential of a cell is generally highly stereo-typed. Nevertheless, 

small variations in recorded EIs with varying visual stimuli have been observed in certain 

RGC types in macaque [24] and other species [45, 46],

In addition, the electrical features of spontaneous recordings in the healthy retina may 

not accurately represent the electrical features of cells in the degenerated retina, the target 
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for retinal implants. For example, rodent models of retinitis pigmentosa have shown the 

emergence of periodic burst firing in RGCs during degeneration, which would affect the 

structure of ACFs [47–49]. Fortunately, the present approach to cell type classification only 

requires that the ACFs of different cell types in a given retina be distinct from each other: 

the exact nature of the ACFs does not affect inference because the EIs provide the final 

step of cell type identification. Interestingly, in a P23H rat model of retinitis pigmentosa, 

the ACFs of ON and OFF cells become more distinct with advancing retinal degeneration 

(⩽P100 vs P200–350 vs >P400; unpublished data). On the other hand, the present cell type 

classification approach does depend on the exact nature of EIs relative to the EIs on which 

the classifier has been trained. Since the EI of a RGC largely reflects its intrinsic properties, 

such as location and density of ion channels, it may be relatively preserved in diseases of 

photoreceptor degeneration, although there is some evidence to suggest otherwise [50–52]. 

Indeed, a recent study comparing the functional and electrical properties of RGCs in a 

rat retinitis pigmentosa model to those in wild-type controls found that certain differences 

in the EI waveforms of distinct RGC types are preserved in a consistent manner during 

degeneration ([53]). These findings support the possibility of utilizing EI-based information 

in cell-type classification in the degenerated retina.

An additional caveat to applying these findings to a future human implant is that they were 

obtained in macaque retina. Promising recent results obtained from human retina recordings 

ex vivo, and comparison to hundreds of macaque ex vivo recordings made in a similar 

experimental setting, reveal remarkable functional similarity between human and macaque 

retina, including in responses to light [36, 54, 55] and to electrical stimulation [11].

Finally, realization of the envisioned high-fidelity retinal implant will require development 

of novel hardware that can perform high-density, large-scale recording and stimulation, 

while maintaining the electrodes in close apposition with the retina, and communicating 

with an external controller, all in an encapsulated device that operates within a strict power 

budget to prevent overheating the retina. No present-day hardware can exploit the analytical 

methods presented here, but efforts are underway to develop such a device [56, 57].

4.3. Future work

One exciting possibility for improving cell type classification in a future implant is to 

employ psychophysical measurements. Psychophysical methods have previously been used 

to understand phosphenes elicited by axonal and somatic stimulation with the coarse 

electrode arrays of present-day epiretinal implants [58]. For cell type classification, an 

individual cell could be electrically stimulated using a high-fidelity implant, and the 

implanted person could report aspects of their perception to help determine the cell type. 

Alternatively, a group of unidentified cells that are believed to be of the same type based on 

ACF clustering could be simultaneously stimulated, generating a stronger visual percept for 

classification. This ACF-based clustering and psychophysics-based cluster labeling approach 

would be particularly useful if EIs change during degeneration but ACFs of different cell 

types remain distinct (see above).

The retina is an ideal first application of the present approach, because its neural code is well 

characterized and its accessibility permits electrical stimulation at cellular resolution. Even 
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so, the overall approach—inferring the natural function of neurons from intrinsic electrical 

features, in order to reproduce their natural function through electrical stimulation—could 

be applicable to other parts of the nervous system. For example, recent work [59] used the 

spike waveforms of cortical neurons to reveal greater cell type diversity than had previously 

been appreciated [60–62], a finding that could lead to more precise cell type targeting in 

cortical implants. These and related approaches could contribute to a new generation of 

neural interfaces that more closely mimic the natural neural code.
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Figure 1. 
Distinguishing parasol cells by axon conduction velocity. Histograms show axon conduction 

velocity estimates for 216 of the 946 cells in a single recording, including: 59 OFF-parasol 

and 40 ON-parasol cells (top); 83 OFF-midget and 18 ON-midget cells (middle); and 2 

small bistratified cells and 14 cells of other types (bottom). The remaining 730 cells were 

excluded on the basis of too few axonal electrodes for an accurate estimate, or a spatial 

pattern of axonal electrode locations suggestive of a polyaxonal cell [28]. ON-parasol cells 

and OFF-parasol cells tend to have higher axon conduction velocities than other cell types 

[27, 32].
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Figure 2. 
Cell-type identification among ON and OFF parasol cells. (A) and (B): Comparison of 

the autocorrelation functions (ACFs) of ON-parasol cells (red in (A), yellow in (B)) and 

those of OFF-parasol cells (blue in (A), green in (B)), for two retinas (A) and (B). Insets 

show projection of each ACF onto the top two principal components across all ON and 

OFF parasol cells within that retina. (C): ACFs from (A) and (B) plotted together and 

projected onto common principal components (inset). (D): Main somatic spike waveforms 

extracted from ON (red) and OFF (blue) parasol cells in one retina. (E)–(G): Overlaid 

histograms of the maximum negative value (the strongest electrode waveform feature, shown 

here as an example), for ON (red) and OFF (blue) parasol cells within a retina, shown 

for three separate retinas. (H): Histogram of classification accuracy across retinas achieved 

with spike waveform features alone. (J): Histogram of classification accuracy achieved 

using combined approach of ACF-based clustering using the top two principal components 

and spike waveform based labeling. (K): Histogram of classification accuracy achieved 

using an extension of the approach shown in (J) in which multiple candidate clusterings 

are considered. (L): Mosaic of receptive fields (1SD contours of Gaussian fits) of the 
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OFF-parasol cells of an example retina. Cells incorrectly labeled by the approach shown in 

(K) are indicated with gray dashed ovals. (M): same as (L), but the mosaic of ON-parasol 

cells for the same retina.
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Figure 3. 
Inferring receptive field centers from electrical images (EIs). Example EIs with color 

indicating the timing of propagation of the spike from the soma down the axon, and circle 

size indicating the spike amplitude, at each electrode. Receptive fields obtained using light 

responses (green ellipses with triangle centers) mapped into the plane of the electrode array 

demonstrate the tendency of receptive fields to lie over the soma.
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Figure 4. 
Encoding model inference. Top center: mosaic of true receptive fields (RFs), obtained by 

fitting to responses to white noise visual stimuli (fitted, green), overlaid with the mosaic of 

receptive fields inferred from electrical features (inferred, blue), for the OFF-parasol cells 

in one retina. Each receptive field is shown as 1 SD contour of the Gaussian fit to the 

corresponding linear spatial filter. For each cell, a gray bar connects its true and inferred 

receptive field center. Top left and Top right: sample firing rate and spike raster across 

trials for observed responses (data), fitted model predictions (fitted), and inferred model 

predictions (inferred) for two example cells. Bottom: average performance (correlation 

between predicted and observed firing rates) across parasol cells for white noise (left) and 

natural scene stimuli (right) for five retinas, using either the retina-specific cell type averages 

of RF shape, time course, and response nonlinearity for model inference (blue), or the 

across-retinas cell type averages (orange).
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Figure 5. 
Linear decoding of responses. Left: three example reconstructions from fitted model (fitted) 

and inferred model (inferred) responses compared to the test images used to elicit the 

responses (true). Performance scores (correlation with true image) is provided for each 

reconstruction (white inset text). Right: scatterplot of performance scores of inferred model 

reconstructions compared to fitted model reconstructions across 150 test images, with the 

three example images indicated (orange).
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