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mRNA translation and decay are tightly interconnected processes both in the context of mRNA quality-control pathways

and for the degradation of functional mRNAs. Cotranslational mRNA degradation through codon usage, ribosome colli-

sions, and the recruitment of specific proteins to ribosomes is an important determinant of mRNA turnover. However, the

extent to which translation-dependent mRNA decay (TDD) and translation-independent mRNA decay (TID) pathways par-

ticipate in the degradation of mRNAs has not been studied yet. Here we describe a comprehensive analysis of basal and

signal-induced TDD and TID in mouse primary CD4+ T cells. Our results indicate that most cellular transcripts are decayed

to some extent in a translation-dependent manner. Our analysis further identifies the length of untranslated regions, the

density of ribosomes, and GC3 content as important determinants of TDD magnitude. Consistently, all transcripts that un-

dergo changes in ribosome density within their coding sequence upon T cell activation display a corresponding change in

their TDD level. Moreover, we reveal a dynamic modulation in the relationship between GC3 content and TDD upon T cell

activation, with a reversal in the impact of GC3- and AU3-rich codons. Altogether, our data show a strong and dynamic

interconnection between mRNA translation and decay in mammalian primary cells.

[Supplemental material is available for this article.]

mRNA degradation contributes to the definition of steady-state
transcript levels, removing aberrant mRNAs through surveillance
pathways, as well as to the dynamic regulation of mRNA abun-
dance in response to cellular cues. mRNA degradation involves a
wide variety of effectors and regulatory factors, which for the
most part correspond to RNA-binding proteins that are able to rec-
ognize specific sequences or structural motifs in the targetmRNAs.
Similar tomost other steps in the gene expression pathway,mRNA
degradation is often coordinated with upstream and downstream
steps. For example,mRNA translation and decay are strongly inter-
connected in the context of mRNA surveillance pathways
(Bicknell and Ricci 2017; Morris et al. 2021). Translation-depen-
dent decay (TDD) pathways were originally identified and studied
as the means by which cells rid themselves of aberrant mRNAs
(e.g., those containing premature termination codons in the case
of nonsense mediated decay [NMD] and truncated or prematurely
polyadenylated mRNAs in the case of nonstop decay [NSD]).
However, it is now widely recognized that NMD is also a key
post-transcriptional regulatory mechanism for physiologically

functional mRNAs (Nasif et al. 2018). Furthermore, other TDD
pathways have been discovered that regulate the stability of phys-
iologically functional transcripts bearing binding sites for specific
RNA-binding proteins (Kim et al. 2005; Mino et al. 2015; Hia et al.
2019), through specific codon usage (Presnyak et al. 2015; Bazzini
et al. 2016; Mishima and Tomari 2016; Radhakrishnan et al. 2016;
Hanson and Coller 2018; Hia et al. 2019; Narula et al. 2019; Wu
et al. 2019; Forrest et al. 2020;Medina-Muñoz et al. 2021), through
the nascent peptide amino acid composition (Forrest et al. 2020;
Burke et al. 2022), or as a consequence of ribosome collisions
(Garzia et al. 2017; Sundaramoorthy et al. 2017; Juszkiewicz
et al. 2018; Tuck et al. 2020). Cotranslational mRNA degradation
(Hu et al. 2009; Pelechano et al. 2015; Ibrahim et al. 2018; Wu
et al. 2019; Tuck et al. 2020; Medina-Muñoz et al. 2021; Bae and
Coller 2022; Dave et al. 2023) has therefore emerged as a major de-
cay pathway for functional mRNAs in eukaryotic cells. However,
the extent to which TDD is a general mechanism for limiting the
number of protein molecules made per mRNA molecule, both ba-
sally and in response to signaling, is currently unknown.
Furthermore, the relationship between TDD and translation-inde-
pendent mRNA decay (TID) pathways has not yet been evaluated
in a global manner.5These authors contributed equally to this work.

6Present address: Moderna, Inc., Cambridge, MA 02139, USA
Corresponding authors: emiliano.ricci@ens-lyon.org,
melissa.moore@umassmed.edu
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.277863.123.
Freely available online through the Genome Research Open Access option.

© 2024Mercier et al. This article, published inGenome Research, is available un-
der a Creative Commons License (Attribution-NonCommercial 4.0 International),
as described at http://creativecommons.org/licenses/by-nc/4.0/.

Research

394 Genome Research 34:394–409 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/24; www.genome.org
www.genome.org

mailto:emiliano.ricci@ens-lyon.org
mailto:melissa.moore@umassmed.edu
https://www.genome.org/cgi/doi/10.1101/gr.277863.123
https://www.genome.org/cgi/doi/10.1101/gr.277863.123
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml


Here we describe a comprehensive
analysis of basal and signal-dependent
gene expression in primary resting and
activated mouse CD4+ T lymphocytes.
These cells represent an interesting mod-
el as they transition from quiescence to a
proliferative state that requires profound
changes in their gene expression profile
and metabolism (Nicolet et al. 2021).
Here, using a combination of transcrip-
tion and translation inhibitors together
with RNA-seq, ribosome profiling, and
poly(A)-site sequencing, we aimed at dis-
criminating between TDD and TID in a
transcriptome-wide manner and identify
features associated with each degrada-
tion pathway in both resting and activat-
ed cells.

Results

Inhibition of translation stabilizes

numerous transcripts in T cells

Purified primary mouse CD4+ T lympho-
cytes (>90% CD3+ CD4+) (Fig. 1A) were
obtained by negative selection from
C57BL/6J mouse spleens and lymph
nodes. To monitor mRNA decay rates in
the presence and absence of translation,
we used a transcription inhibition strat-
egy (Fig. 1A) in order to avoid any poten-
tial bias introduced by a possible coupling
between translation and RNA transcrip-
tion (Timmers and Tora 2018). For this,
we tested the efficiency of two different
transcription inhibitors, 5,6-dichloro-1-
β-D-ribofuranosylbenzimidazole (DRB),
which inhibits RNA polymerase II elonga-
tion (Dubois et al. 1994), and triptolide,
which irreversibly blocks transcription
from RNA polymerase II through target-
ing of the general transcription factor
TFIIH (Titov et al. 2011). We did not use
metabolic labeling with 4-thiouridine
to monitor mRNA stability because
overnight incubation of cells with the
modified nucleotide led to cell toxicity
(Supplemental Fig. S1) and has been
shown to inhibit rRNA synthesis, causing
nucleolar stress (Burger et al. 2013). Cells
exposed to each of the transcription in-
hibitors were collected after 1 and 3 h,
and total RNA was extracted to prepare
the RNA-seq libraries (Fig. 1A; Supple-
mental Fig. S2A). Comparison of the deg-
radation fold observed at 3 h for both
drugs indicated an overall good correla-
tion (r=0.77, Pearson), although it
skewed in favorof increased observed deg-
radation for the triptolide condition (Sup-
plemental Fig. S2B). This difference could
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Figure 1. Monitoring translation-dependent and -independent mRNA decay in CD4+ T lymphocytes.
(A) Schematic representation of the procedure to monitor overall and translation-dependent mRNA deg-
radation. Purified CD4+ T lymphocytes, as shown by flow cytometry analysis of CD3 and CD4 surface ex-
pression in cells obtained from spleen and lymph nodes before and after purification by negative
selection, are incubated with transcription inhibitors (triptolide or DRB). Fifteen minutes following addi-
tion of transcription inhibitors, translation inhibitors (cycloheximide or harringtonine) are added to cells.
Cells are collected at 0, 1, and 3 h following transcription inhibition to monitor transcript expression by
RNA-seq. Ribosome profiling and poly(A)-site sequence (PAS-seq) were also performed at the time 0 h in
absence of transcription inhibitors. (B) Fold-change in transcript abundance (comparedwith the 0-h time
point) upon blocking transcription only or when blocking both transcription and translation with differ-
ent drug combinations. (C) Details of the calculation of the TDD and TID indexes illustrated by the ex-
pression dynamics of the transcript coding for CCT3 (ENSMUSG00000001416) upon incubation with
transcription and translation inhibitors. (D) mRNA half-life measurement of TDD and TID targets by
quantitative PCR in resting T cells incubated with triptolide or triptolide + cycloheximide. (E)
Comparison of the TDDindex (left) or TIDindex (right), obtained using triptolide and cycloheximide,
for protein-coding transcripts (mRNAs), long intergenic noncoding RNAs (lincRNAs), and UPF2-regulat-
ed transcripts in resting T cells. Displayed P-values correspond to themean P-value of aWilcoxon test per-
formed 1000 independent times on samples of the same size for each compared group. (F) Distribution
of the TDDindex and TIDindex calculated from resting T cells incubated for 3 h in the presence of trip-
tolide and cycloheximide.
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be owing to a difference in the speed at which each inhibitor effec-
tively blocks transcription.

To assess the extent to which mRNA decay is dependent on
translation, we inhibited translation using cycloheximide, which
blocks elongating ribosomes on the coding sequence, or using
harringtonine, which blocks the late steps of translation initiation,
resulting in the run-off of elongating ribosomes and the accumu-
lation of initiating 80S ribosomes at translation start sites (Fig.
1A; Supplemental Fig. S2C). Briefly, T cells were incubated with
the above-mentioned combinations of inhibitors for different
time points (0 h, 1 h, or 3 h after transcription or transcription
plus translation inhibition), and RNA levels were assessed by
RNA-seq from three independent biological replicates for all
conditions.

Results obtained using either DRB or triptolide showed that
translation inhibition, whether through cycloheximide or har-
ringtonine, led to a global stabilization of mRNAs at both the 1-
h and 3-h time points (Fig. 1B). Furthermore, stabilization was ob-
served across the entire length of transcripts (including untranslat-
ed regions [UTRs]) in both cycloheximide- and harringtonine-
treated cells (Supplemental Fig. S2D–F), with no detectable in-
crease in reads in the coding sequence observed after blocking
translation. This indicates that the observed stabilization does
not result from the physical presence of ribosomes in the coding
sequence that could block the progression of exonucleases and
lead to a bias toward reads in the coding sequence.

To quantify the extent to which overall mRNA decay is
dependent on ongoing translation, we calculated a translation-
dependent RNA decay index for each time point (TDDindex)
(Fig. 1C). This index corresponds to the difference in absolute tran-
script abundance between the blockade of both transcription and
translation and the blockade of transcription only, normalized by
the initial transcript abundance before transcription inhibition
(for TDDindex formula, see Fig. 1C). Similarly, we calculated a
translation-independent RNA decay index (TIDindex), which
measures the difference between transcript abundance at the ini-
tial time and after blocking of transcription and translation, nor-
malized by the initial transcript abundance (Fig. 1C, see
TIDindex formula). For any given transcript, the sum of the
TDDindex and TIDindex corresponds to the fraction of mRNAs
that have been degraded at any given time after blocking transcrip-
tion (Fig. 1C). Transcripts whose decay is largely translation inde-
pendent have TDDindex values close to zero and TIDindex values
greater than zero, whereas transcripts whose decay is mainly trans-
lation dependent have a TDDindex greater than zero and
TIDindex close to zero. Because mRNA degradation generally fol-
lows exponential decay kinetics (although it is not the case for
all mRNAs, particularly in mammalian cells, which have complex
multistep degradation pathways), the TDD and TID indexes
should only provide semiquantitative information regarding the
extent of TDD and TID. To validate that TDD and TID indexes
provide semiquantitative information regarding the extent of
TDD and TID on mRNA half-lives, we monitored mRNA half-lives
for five different transcripts during a 6-h time course in the pres-
ence of triptolide or triptolide + cycloheximide (Fig. 1D).We chose
one transcript mainly degraded through TID (Cnot6), one relative-
ly stable transcriptmainly degraded through TID (Rpl13), one tran-
script degraded both through TDD and TID (Nod2), and two
transcripts mainly degraded through TDD (Snx6 and Bin2).
Observed mRNA half-lives are in agreement with calculated TDD
and TIDindex (Fig. 1D), indicating that TDD and TID indexes
can be used as a proxy to monitor each degradation pathway.

TDDindexes obtained from the different combinations of
transcription and translation inhibitors yielded very similar val-
ues, with Pearson correlation coefficients ranging from 0.67 to
0.82 (Supplemental Fig. S3A,B), indicating a robust measure of
TDD independently of the transcription or translation inhibitors
that are used. We nevertheless observe a general skewing of the
population toward higher TDD index values for the cycloheximide
conditions compared with the harringtonine-treated cells. This
difference could be because harringtonine allows elongating ribo-
somes to run-off during several minutes after drug addition, possi-
bly further destabilizing the mRNA in a translation-dependent
manner during that time. Finally, to rule out any technical bias in-
troduced by the use of transcription inhibitors, we performed
RNA-seq measurements in cells incubated for 3 h in the presence,
or not, of either cycloheximide or harringtonine alone (in the ab-
sence of transcription inhibitors). From these data sets, we calcu-
lated the fold-change in transcript abundance upon blocking
translation and used it as a proxy for the TDDindex. As shown
(Supplemental Fig. S3C,D), TDDindexes calculated using tran-
scription and translation inhibitors correlate with the fold-change
in transcript abundance obtained upon translation inhibition for
both cycloheximide and harringtonine, although to a lesser extent
than the correlations observed when comparing TDDindexes ob-
tained with different combinations of transcription and transla-
tion inhibitors. These differences can be explained by possible
feedback regulatory loops that could modulate transcription in re-
sponse to changes in mRNA translation and degradation rates as
these processes can be coupled within cells (Timmers and Tora
2018; Slobodin and Dikstein 2020).

To validate our experimental strategy tomonitor TDD, we ex-
amined the extent of translation-dependent RNA decay of long
intergenic noncoding RNAs (lincRNAs). lincRNAs are transcribed
by RNA polymerase II and share many features with protein-
coding mRNAs, including a 5′ cap structure, excision of introns
by the spliceosome, and a 3′ poly(A) tail (Zhang et al. 2016).
However, they are mostly not engaged with the translational
machinery and therefore should not be decayed in a translation-
dependent manner. Consistent with this, the TDDindex of
lincRNAs is centered around zero (Fig. 1E, left), whereas their
TIDindex is close to 0.75, a value significantly higher than that
of protein-coding mRNAs (Fig. 1E, right). Therefore, as expected,
lincRNAs are mainly degraded through a translation-independent
pathway. Conversely, the median TDDindex of transcripts previ-
ously identified in mouse thymocytes as regulated by UPF2
through NMD, a TDD pathway (Weischenfeldt et al. 2008), is sig-
nificantly higher than themedian TDDindex of all protein-coding
mRNAs (Fig. 1E, left), whereas their TIDindex is significantly lower
(Fig. 1E, right). These results show that our calculated TDDandTID
indexes behave as expected for transcripts whose decay should be
either independent (lincRNAs) or dependent (NMD targets) on
translation.

Distribution of the TDDindex calculated at 3 h upon blocking
transcription (Fig. 1F, left) shows a median value of 0.27 (i.e., half
of all the expressed transcript species display a decrease in initial
abundance of at least 27% that is dependent on translation),
thus confirming our previous observation that a large fraction of
the transcripts are degraded, at least partially, in a translation-de-
pendent manner. A small fraction of transcripts displayed high
TDDindex values (close to one), corresponding to highly unstable
mRNAs relying almost entirely on translation for their decay (Fig.
1F, left). Transcripts with a high TDDindex are enriched in Gene
Ontology (GO) categories related to core gene expression
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functions such as ribosome biogenesis, mRNA splicing, tRNA pro-
cessing, RNA helicase activity, and the proteasome complex
(Supplemental Fig. S4A). GO categories such asDNA repair andmi-
tochondrial inner membrane were also enriched in transcripts
with a high TDDindex. A larger fraction of transcripts displayed
TDDindex values close to zero, indicating that their degradation
is not dependent on translation (Fig. 1F, left). These transcripts
are enriched in GO categories related to RNA pol II transcription
factors, proteins associated to the plasma membrane, signal
transduction, protein kinase activity, and ribosomal proteins
(Supplemental Fig. S4A).

Distribution of the TIDindex is overall broader than that of
the TDDindex (Fig. 1F, right) and displays a higher median value
of 0.43 (i.e., half of all the expressed transcript species display a
decrease in initial abundance of at least 43% that is independent
of translation). Overall, TID is preponderant over TDD in defining
the extent ofmRNAdecay in T cells (Supplemental Fig. S2G). Some
functional categories enriched in low and high TID transcripts
showed a mirror image of those observed for TDD (Supplemental
Fig. S4A,B). For example, transcripts coding for RNA pol II tran-
scription factors are enriched among high TIDindex and low
TDDindex groups. In contrast, transcripts coding for DNA repair
and mitochondrial membrane proteins are enriched among low
TIDindex and high TDDindex groups. Transcripts encoding RNA
splicing factors appear strongly regulated by both TDD and TID.
Conversely, other categories such as mRNAs coding for ribosomal
proteins, synapses, or protein serine/threonine kinases are en-
riched in both low TDD and TID transcript groups, therefore indi-
cating that they correspond to stable transcripts. Finally, GO
categories related to the immune response (such as innate immune
response, cellular response to lipopolysaccharide, and immune
system process) appear to be mostly regulated through a TID
pathway.

In conclusion, our data indicate that TDD is involved in the
degradation of a significant fraction of cellular mRNA species, al-
though to a lesser extent than TID, which is the main pathway
of mRNA degradation in T cells.

mRNA features defining the extent of TDD in T CD4+

lymphocytes

Having uncovered a global impact of mRNA translation on mRNA
decay in T cells, we next investigated which mRNA features could
explain the extent of TDD. To this aim, we built a random forest
model (Supplemental Code S1) to predict the observed
TDDindex based on transcript-related information such as total
transcript length, length of the 5′ UTR, coding sequence and 3′

UTR length (obtained from our PAS-seq data performed in resting
and activated T CD4+ cells), ribosome density at the coding se-
quence (obtained from our ribosome profiling data performed in
resting and activated T CD4+ cells), density of m6A sites (experi-
mentally obtained from T CD4+ mouse cells) (Li et al. 2017), or
the number of upstreamopen reading frames (uORFs), among oth-
ers. The model was trained with 80% of our data set, whereas the
remaining 20% was used as a test set. In the test set, the trained
model was able to capture 32% of the observed variance (to visual-
ize predicted versus observed TDDindexes in the training and val-
idation data sets, see Supplemental Fig. S5A). This result suggests
that additional transcript features, such as information regarding
RNA binding proteins or microRNA binding sites, which were
not included in our data set, could participate in mediating TDD
in addition to those tested in our study. To interpret themodel pre-

dictions and visualize the quantitative contribution of each feature
to the model’s prediction, we used shapley additive explanation
(SHAP) values (Fig. 2A; Rodríguez-Pérez and Bajorath 2020).

Analysis of the SHAP values from the random forestmodel led
to the identification of 3′ UTR length, ribosome density, and 5′

UTR length among the main features predicting the observed
TDDindex (Fig. 2A). These results are consistent with a direct
role of ribosomes in mediating decay of the mRNA they translate.
SHAP value plots of 5′ UTR and 3′ UTR length showa clear negative
correlation between these two transcripts features and their corre-
sponding SHAP values (Fig. 2A, right), indicating that transcripts
with short 3′ UTR or short 5′ UTR are more prone to TDD than
thosewith long UTRs (Fig. 2B). To validate this observation, the re-
lationship between these factors (5′ UTR and 3′ UTR length) and
the observed TDDindex was plotted using binned data (Fig. 2B).
For this, transcripts were ordered based on the variable of interest
(5′ UTR length or 3′ UTR length), and bins of transcripts (each bin
containing 20 transcripts with consecutive values for the variable
of interest) were made. Then, the mean TDDindex and variable of
interest values are plotted for each bin. This binning strategy al-
lows better visualization of the relationship between the variable
of interest and the TDDindex by smoothing the contribution of
the other variables that affect TDD.

Ribosome density shows a monotonic with saturation rela-
tionship with the TDDindex, displaying a strong positive correla-
tion for low-to-medium ribosome density values that reaches a
plateau for high ribosome densities (Fig. 2B). This is confirmed
by the SHAP (Fig. 2A, right). Transcripts bearing low ribosome den-
sities are therefore less prone to TDD than are transcripts with me-
dian-to-high ribosome densities. Importantly, similar results are
obtained whether cycloheximide (which blocks ribosomes on
the coding sequence) or harringtonine (which allows 80S ribo-
some run-off from the coding sequence) is used to inhibit transla-
tion (Fig. 2B; Supplemental Fig. S5B). This indicates that the
observed relationship between ribosome density and TDD does
not result from the physical protection of the coding region by ri-
bosomes stalled by the cycloheximide treatment. Moreover, simi-
lar results were obtained when using the fold-change in transcript
abundance upon blocking translation with cycloheximide or har-
ringtonine alone (in the absence of transcription inhibitors) as a
proxy for the TDDindex, thus confirming that our observations
do not result from a technical bias introduced by the use of tran-
scription inhibitors (Supplemental Fig. S6A–D).

Exon count also appears as an important transcript feature
that is positively associated with TDD (Fig. 2A,B). This link does
not appear to be driven by transcript length (Fig. 2B), therefore
suggesting a specific role of exon–exon junctions in regulating
TDD. Contrary to exon count, the occurrence of the AU-rich
core pentamer motif (AUUUA) in the 3′ UTR of cellular transcripts
is negatively correlated with the TDDindex (Fig. 2A,B). AU-rich el-
ements are able to recruit specific RNA-binding proteins involved
in modulating mRNA stability (Chyi-Ying and Ann-Bin 1995).
When looking at the extended AU-rich motif (WWWAAUUUAA
WWW), which is the functional unit required to inducemRNAde-
cay, we observe that transcripts bearing this extendedmotif have a
significantly smaller TDDindex (Wilcoxon P<2.2 ×10−16 and
Cohen’s d= 0.53) than the overall transcript population (Supple-
mental Fig. S5C). Our results therefore indicate that AU-rich medi-
atedmRNA decay does not occur through a translation-dependent
mechanism.

Our results also indicate a global anticorrelation between the
secondary structure in the coding region and the TDDindex (Fig.

Translation-dependent mRNA decay in T lymphocytes
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2B). Transcripts with highly structured CDS are more prone to
TDD than are transcripts with less-structured CDS (Fig. 2B). This
is in agreement with a previous report indicating a role for second-
ary structure in the coding region in modulating TDD (Mauger
et al. 2019).

Finally, m6Amodifications have been linked to the regulation
of mRNA translation and stability (Meyer 2019; Lee et al. 2020), al-

though this feature did not appear as a major factor connected to
the extent of TDD. However, this could be because of a bias intro-
duced by the fact that a large fraction of mRNAs do not contain
detectablem6A sites.We therefore decided to compare the distribu-
tion of TDDindexes among transcripts containing or not detectable
m6A sites in different transcript regions (i.e., 5′ UTR, around the
start and stop codons, in the CDS and 3′ UTR). As shown

A

B

Figure 2. Characterization of cis- and trans-acting features linked to TDD. (A) Random forest decision tree analysis of transcript features to explain the
observed TDDindex values in resting CD4+ T lymphocytes coupled with SHAP value analysis for interpreting the output of the random forest model. (Left)
Features are sorted from top to bottom with respect to their importance in predicting the TDDindex and SHAP values displayed to show how much each
feature has influenced the model. (Right) Plots showing the impact of SHAP values on the model for the main identified features. (B) Binning plots of the
TDDindex against selected features. Transcripts are first orderedwith respect to the feature to be comparedwith the TDDindex and groups of 20 transcripts
made along the selected feature. The mean TDDindex and feature values are plotted for each group.
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(Supplemental Fig. S5D), the presence of m6A sites in the 5′ UTR is
associated with a mild but significant decrease in TDD (Wilcoxon P
=4.4×10−6, Cohen’s d=0.19).m6A sites in other regions do not ap-
pear tomodulate the extent of TDDor suffer from small effect size as
is the case for m6A sites in the CDS (Wilcoxon P=1.1×10−5,
Cohen’s d=0.08).

Taken together, our results suggest
that TDD is a complex process that is
modulated bymultiple cis- and trans-act-
ing features. Among these, the length of
UTRs and the density of ribosomes
across the coding sequence appear asma-
jor factors in mediating or modulating
the extent of TDD, together with other
factors such as the extent of secondary
structure in the coding sequence and
the number of exons.

mRNA features defining the extent

of TID in T CD4+ lymphocytes

When applied to the TIDindex, random
forest analysis (Supplemental Code S1)
was able to explain 40% of the observed
variance (for plots of predicted vs. ob-
served TIDindex, see Supplemental Fig.
S7A). In this case, the number of exons
per transcript and the total transcript
length were the two most important fac-
tors able to predict the extent of TID in
resting T cells (Fig. 3A). Again, similar
results were obtained when using har-
ringtonine to inhibit translation (Supple-
mental Fig. S7B). The TIDindex shows a
strong anticorrelation with the number
of exons per transcript (Fig. 3B). Consis-
tent with this observation, long tran-
scripts (which usually have a large
number of exons) tend to be less depen-
dent on TID for their decay (Fig. 3B).
However, among shorter transcripts,
there is no clear trend and rather a small
positive correlation between transcript
length and the extent of TID (Fig. 3B).
This, together with the fact that the
length of the CDS could be positively cor-
related to the TIDindex, as shown in the
SHAP value plot (Fig. 3A, right), suggests
that the effect of exon number on TID is
independent from the total length, con-
sistent with previously published data in-
dicating a correlation between exon
junction density and mRNA stability
that could be driven by masking of m6A
sites by the exon–junction complex
upon splicing (Spies et al. 2013; Agarwal
and Kelley 2022; He et al. 2023; Uzonyi
et al. 2023).

The length of UTRs appears to be
linked to the extent of TID. Indeed, tran-
scripts bearing long 3′ UTRs and 5′ UTRs
are more prone to TID than those with

short UTRs (Fig. 3B). Furthermore, there is a relationship between
the degree of secondary structures in the CDS and the extent of
TID. Transcripts with highly structured coding sequences tend to
be less degraded in a translation-independent manner than those
with low CDS secondary structure (Fig. 3A,B).

A

B

Figure 3. Characterization of cis- and trans-acting features linked to TID. (A) Random forest decision
tree analysis of transcript features to explain the observed TIDindex values in resting CD4+ T lymphocytes
coupled with SHAP value analysis for interpreting the output of the random forest model. (Left) Features
are sorted from top to bottomwith respect to their importance in predicting the TDDindex and SHAP val-
ues displayed to showhowmuch each feature has influenced themodel. (Right) Plots showing the impact
of SHAP values on the model for the main identified features. (B) Binning plots of the TIDindex against
selected features. Transcripts are first ordered with respect to the feature to be compared with the
TIDindex and groups of 20 transcripts made along the selected feature. The mean TIDindex and feature
values are plotted for each group.
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AU-rich elements in the 3′ UTR are
positively correlated with the TIDindex
(Fig. 3B; Supplemental Fig. S7C), further
corroborating that this active mRNA de-
cay pathway, mediated by specific RNA-
binding proteins, mainly occurs in a
translation-independent manner.

Finally, although ribosome density
is ranked among the important predic-
tors of TID by the random forest model,
we do not observe a clear relationship be-
tween ribosome density and the extent
of TID in the binning plot (Fig. 3B).
However, the SHAP value plot corre-
sponding to ribosome density does
show a clear negative correlation with
the TDDindex (Fig. 3A). This suggests
that the effect of ribosome density on
the observed TID among the transcrip-
tome could be masked in the binning
plot by other important features respon-
sible for modulating TID (such as exon
count, UTR length, etc.).

Taken together, our results indicates
that TID strongly regulates transcripts
with few exons, long UTRs, and AU-rich
elements in their 3′ UTR and with possi-
bly low ribosome occupancy.

Activation of primary mouse CD4+ T

cells induces profound transcriptome

and translatome remodeling with

concomitant changes in mRNA stability

Having characterized the features favor-
ing TDD and TID in resting T cells, we
tested whether T cell activation could in-
duce changes in these relationships.
Indeed, upon activation, T cells undergo
an extensive change in their gene expres-
sion program and metabolism to exit
quiescence and enter into a proliferative
state.

PrimarymouseCD4+ T cells were ac-
tivated with anti-CD3/anti-CD28 anti-
body-coated beads, mimicking antigen-
presenting cells (Fig. 4A). Activation was
confirmed by strong cell surface expres-
sion of activation markers, as well as cel-
lular proliferation (Supplemental Fig.
S8A). As with resting T cells, we prepared
whole-cell RNA-seq and ribosome foot-
printing libraries from three independent biological replicates of
T cells after 3 h of activation (activated). As expected, anti-CD3/
CD28 stimulation significantly altered the T cell transcriptome
(Fig. 4B; Supplemental Table S1). Overall, 822 transcripts showed
a significant increase in expression upon activation, and 694 tran-
scripts exhibited decreased expression (Fig. 4B, left). GO analysis
indicates that differentially up-regulated transcripts at 3 h after ac-
tivation include pathways related to gene expression regulation
such as ribosome biogenesis, translation initiation, tRNA process-
ing, mRNA processing, and regulation of RNA polII transcription,

as well as pathways related to immune system and response to cy-
tokine (Supplemental Fig. S8B; Supplemental Table S1). Signifi-
cantly down-regulated transcripts are enriched for ribosomal
proteins, protein ubiquitination factors, and factors involved in
the cell cycle, T cell differentiation, and RNA splicing among oth-
ers (Supplemental Fig. S8C; Supplemental Table S1).

Similarly, anti-CD3/CD28 stimulation altered the transla-
tome of T cells (Fig. 4B, right). Ribosome profiling revealed hun-
dreds of transcripts displaying significant changes in ribosome
density in their coding sequence upon T cell activation (Fig. 4B,
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Figure 4. Changes in RNA abundance, ribosome density, and mRNA decay rates induced by T cell ac-
tivation. (A) Schematic representation of the procedure for activation of primary CD4+ T lymphocytes. (B)
Differential gene expression analysis of transcript abundance asmeasured by RNA-seq (left) and ribosome
density asmeasured by ribosome profiling (right) in resting and activated cells. (C) Fraction ofmRNA deg-
radation in resting and activated T cells 1 and 3 h after transcription inhibition with triptolide. (D)
Comparison of the distribution of the TDDindex (left) and TIDindex (right) in resting and activated T cells.
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right). Those displaying a significant increase in ribosome density
are enriched for ribosomal proteins (78 out of the 80 core ribosom-
al proteins), ribosome biogenesis factors, RNA splicing factors, and
factors involved in the cellular response to interleukin 4
(Supplemental Fig. S8D; Supplemental Table S1). Conversely, tran-
scripts displaying a significant decrease in ribosome density main-
ly code for kinases, signal transduction factors, and transcription
factors (Supplemental Fig. S8E; Supplemental Table S1).

Comparison of the fraction of observed mRNA degradation
(Observed mRNA degradation = Initial transcript abundance− Transcript abundance upon triptolide treatment

Initial transcript abundance
)

at 1 h and 3 h upon triptolide addition in both resting and activated

T cells (Fig. 4C) indicates that mRNA de-
cay is globally more efficient in resting
cells compared with activated cells. This
result is consistent with a recent report
describing a global stabilization of
mRNAs upon CD4+ T cell activation in
mice (Hwang et al. 2020).Whenbreaking
apart mRNA degradation into TDD and
TID, it appears that T cell activation trig-
gers a decrease in TDD levels, whereas
overall TID is slightly increased (Fig. 4D).

T cell activation inverts the relationship

between GC3 content and TDD/TID

Random forest analysis performed with
the TDDindex and TIDindex in activated
cells yielded similar results to those in
resting cells, except that AU-rich ele-
ments in the 3′ UTR became a less impor-
tant predictor of both TDD and TID in
activated cells (Fig. 5A,B). Conversely,
the percentage of GC in the coding re-
gion and GC3 content (GC content at
the third position of codons) became a
better predictor of both TDD and TID
in activated cells (Fig. 5A,B).

Binning plots of 3′ UTR length,
5′ UTR length, and ribosome density
against the TDDindex revealed similar
relationships in activated T cells than
those observed in resting cells (Fig. 5C,
D). The relationship between secondary
structure in the coding sequence and
the TDDindex was lost upon T cell acti-
vation (Fig. 5C,D). Moreover, GC con-
tent in the coding region, which is
positively correlated to the TDDindex
in resting T cells (Fig. 2B), displays the
opposite trend upon T cell activation
(see Fig. 5C,D).

Because our data sets allow discrim-
ination of mRNA degradation into TDD
and TID, we tested the relationship be-
tween codon usage and the two mRNA
decay pathways. Codon usage and tran-
script stability have been recently stud-
ied using a specific metric known as the
codon occurrence to mRNA stability cor-
relation coefficient (CSC) (Presnyak et al.
2015). The CSC is defined as the

Pearson’s correlation between the frequency of each codon in
mRNAs and the half-lives of the mRNAs. Here, rather than calcu-
lating a correlation with mRNA half-lives, we implemented the
TDD-CSC and TID-CSCmetrics by calculating the Pearson’s corre-
lation between codon frequency and the TDDor TID indexes, both
in resting and activated T cells. TDD-CSC and TID-CSC values are
within similar ranges (between −0.2 and 0.2) (see Fig. 6A,B) to
those obtained from the literature using mRNA half-lives as input
(Presnyak et al. 2015; Wu et al. 2019; Forrest et al. 2020; Gillen
et al. 2021). Consistent with the random forest analysis, in resting
T cells, we could clearly see a nucleotide bias within codons

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

� �
�

� �

��

�

�

�
��

�

�

�

�
�

�

�

�

�

��

�

�

�

�

�
�

�

�

��

�

�

�

�

�
�

�

�

�

�

�

�
�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

� �

��

�
�
�

�

�
�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

� �

�

�
�

�
�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.2

0.3

0 200 400 600

0.1

5'UTR length (nt)

T
D

D
in

de
x

(C
hx

)

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�
�

� �

�

� �

��

�

�

�

��

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

� �

�

�

�

�

��

�
�

�

�

�
�

�

�

�

��

�

�

�

�

�

�

�

��

�

�

�

�

�
�

��

��

�

�

� �

�
�

�

�

�

�

�

�

�
�

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

� �
�

�

�

�

�

�

�

�

�

�

�

�

� �

�

0.0

0.1

0.2

0.3

0.4

0 1000 2000 3000 4000
3'UTR length (nt)

T
D

D
in

de
x

(C
hx

)

�
�

�

�

�

�

�

�

�

�

�
�

� �

�

�
�

�

�

��

�

�

� �

��
�

�

�

�

� ��

� �

�

�

�

�

� � �

�

�

� �

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

� �

�

��

�

�

��

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�
�

�

�

�

��

�

�

��
�

�

�

�

�

�
�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

0.1

0.2

0.3

0.4

0 1 2 3 4
Ribosome density (Activated T cells)

T
D

D
in

de
x

(C
hx

)

�

�

�

�

� �
�

�
�

��

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

��

��
�

���

�

�

�

�

�

��

�

�
�

��

�

��

�

�

�

�

��

�

�

�

�
�

�
�

�

��

�

��

�
�
�

�
�

�

�

�

�

�

�

�
�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
��
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.10

0.15

0.20

0.25

0.30

0.35

0 10 20 30
Exon count

T
D

D
in

de
x

(C
hx

)

0.10

0.15

0.20

0.25

0.30

0.35

−15 −10 −5 0 5 10

n4G CDS

n4G 5'UTR

AU-rich
elements 5'UTR

n4G 3'UTR

AU-rich
elements CDS

3'UTR GC%

m6A sites

uORF count

CDS length

AU-rich
elements 3'UTR

5'UTR GC%

GC3%

Secondary structure
flanking the AUG codon

Secondary
structure CDS

Transcript length

Exon count
CDS GC%

5'UTR length

Ribosome density

3'UTR length

−0.2 −0.1 0.0 0.1 0.2
SHAP value (impact on model output)

Low HighFeature value

A Random forest model to explain TIDindex
distribution in Activated CD4+ T Cells

�

�

�

�

��

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

���

�

�

�

�

�

�

�

�

�

��

�

�

�

�
�

�

�

�
�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

� � �

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

� �

�

�

�
�

�

�

�
�

�

�

�

�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

� �

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�
�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

0.3

0.4

0.5

0.6

0 200 400 600
5'UTR length (nt)

T
ID

in
de

x
(C

hx
)

�

�

�

��

�

�

�

�

�

���

�

�

�

�

�

�

��

�
�

�

�

�
�

�
�

�

�

�
�

�

�

��

�

�

�

��

�

�

�

�

��

��

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�
� �

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

� �

�

�

�

�

�

� �

�

�

�

�
�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

� �

�

�

�

�

�

�

0.3

0.4

0.5

0.6

0 1000 2000 3000 4000
3'UTR length (nt)

T
ID

in
de

x
(C

hx
)

�

�

� �

�

�

�

�

�

�

�

� �
�

��

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

��

� �

� �
� �

�

�

�
�

�

�

�

� �

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

��

�

�
�

�

��

�

�

� �

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

0.3

0.4

0.5

0 1 2 3 4
Ribosome density (Activated T cells)

T
ID

in
de

x
(C

hx
)

�

�

�

�

�

��

�

�
�

�

�

���

�

�

�

�

�
�

�

�

�

�

�

�

�
�

��

�

�

�

�

�

�

�

��

��

�

��

�

�
�

�
�

�

�

�

�

�

�

��

��

�
��

�

�

�

�

�

�

�

�

�

��

�

�

��
�

�

�

�

�
��

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�
��

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�

�

�

�

�

�
�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0.3

0.4

0.5

0.6

0 10 20 30
Exon count

T
ID

in
de

x
(C

hx
)

�

�

� �

�

�

�

�

�

�
�

�

�

�

�

�

� �
�

�

�
�

�

�

�

�

��

�

��

��

�

�

�

�

�

�

�
�

�

�
��

�

��

�

�

�
�

�

�
�

�

�

�

��

�
��

�

�

�
�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

��

��

�

�

�
�

�

��

�

�

�

�

�

�

��

��

�
�

�

�

�

�

�

�
�

�

�

�

�

�

��

�

�
�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

��
�
�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�
�

�
��

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

0.3

0.4

0.5

0.6

40 50 60 70
GC% coding region

T
ID

in
de

x
(C

hx
)

0.3

0.4

0.5

0.6

−15 −10 −5 0 5 10
CDS secondary structure

T
ID

in
de

x
(C

hx
)

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

��

�
�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�

�

�

�
�

�

��

�

�

�

�

�

�

�
�
�

�

�

�

�

�

��

�

�

�

� �

�

�

�
�

��

�

�

��

�

�

�
�

�
�

�

�

�
��

�

�
�

�

�

�

�

�

�

�

�

�

�

��

�

�

�
�

�

�

�

��

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

�

�
�

�

�

�

�
�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

��

�

�

�

�

�

�

�

�

�

�

�

0.1

0.2

0.3

40 50 60 70
GC% coding region

T
D

D
in

de
x

(C
hx

)

C

BRandom forest model to explain TDDindex
distribution in Activated CD4+ T Cells

n4G CDS

AU-rich
elements 5'UTR

n4G 5'UTR

n4G 3'UTR

AU-rich
elements CDS

UTR3 GC%

m6A sites

uORF count

Secondary structure
flanking the AUG codon

Ribosome density

AU-rich
elements 3'UTR

5'UTR GC%

3'UTR length

GC3%

CDS GC%

Secondary
structure CDS

5'UTR length

CDS length

Exon count

Transcript length

−0.2 0.0 0.2
SHAP value (impact on model output)

Low HighFeature value

CDS secondary structure

T
D

D
in

de
x

(C
hx

)

D
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bearing positive or negative TDD-CSC and TID-CSCs (Fig. 6A,B,
left panels). Regarding TDD, GC-rich codons are mostly associated
with positive TDD-CSCs in resting cells (i.e., GC-rich codons are
more frequent within transcripts highly degraded by TDD), where-
as AU-rich codons are mainly associated with negative TDD-CSCs
(i.e., AU-rich codons are more frequent within transcripts poorly
degraded by TDD) (Fig. 6A, left). GC-rich codons are most fre-
quently associated with negative TID-CSCs (i.e., GC-rich codons
are more frequent within transcripts poorly degraded by TID),
whereas AU-rich codons typically display positive TID-CSCs
(i.e., AU-rich codons are more frequent within transcripts highly
degraded by TID) (Fig. 6B, left). This observation was even more
pronounced when looking at the GC content of the third position
of codons (GC3) (Fig. 6A,B, left; Supplemental Fig. S9A,C).
Notably, for TDD, 21 out of 24 codons with a positive TDD-
CSC value ended with a G or C (Fig. 6A,B, see blue codons;
Supplemental Fig. S9A, left), whereas only 10 out of 37 codons
with a negative TDD-CSC value ended with a G or C
(Supplemental Fig. S9A). This distribution is significantly biased
from a random distribution among codons with positive and neg-
ative CSC(TDD) values (P-value=1.34×10−5, chi-squared test)
(Supplemental Fig. S9A, left). For TID, only six out of 33 codons
with a positive TID-CSC ended with a G or C, whereas 25 out of
28 codons with a negative TID-CSC ended with a G or C (P-value
=1.30×10−7, chi-squared test) (Supplemental Fig. S9C, left).
Upon T cell activation, the relationship between codon GC con-
tent, TDD, and TID is flipped, leading to the GC3-rich codon
being mainly associated with negative TDD-CSCs (P-value =
0.0012, chi-squared test) (Supplemental Fig. S9A) and positive
TID-CSCs (P-value =0.0002, chi-squared test) (Supplemental Fig.
S9C, right), whereas AU-rich codons (Fig. 6A,B, see red codons)
are mainly associated with transcripts degraded by TDD,
bearing positive TDD-CSCs and negative TID-CSCs (Fig. 6A,B;
Supplemental Fig. S9B,D).

Our results therefore suggest that GC content in the coding
sequence and particularly at the third position of codons (GC3)
is an important determinant for translation dependence.

Moreover, the differences observed be-
tween resting and activated T cells fur-
ther suggest a dynamic relationship
between GC content in the coding se-
quence and mRNA decay.

TDD and TID are competing pathways

defined by changes in ribosome

density during T cell activation

Our results suggest that ribosomes them-
selves could act as triggers of TDD (Fig.
2B), the extent of which is modulated
by transcript features such as 3′ UTR
length, GC content in the coding region,
or exon number. As a consequence, any
change in ribosome density should lead
to a corresponding change in the ob-
served TDDindex. To test this, we plotted
for each transcript the change in TDD in-
dex between activated and resting T cells
against the corresponding fold-change in
ribosome density (Fig. 7A). We observed
a moderate but significant positive corre-
lation (r=0.244) between changes in ri-

bosome density and changes in the TDDindex for the entire
transcriptome. The same observationwasmadewhether cyclohex-
imide or harringtoninewas used to block translation in resting and
activated T cells (cf. Fig. 7A and Supplemental Fig. S10A).
Transcripts displaying an increase in their ribosome density
upon T cell activation tend to display a concomitant increase in
their TDDindex, whereas transcripts displaying a decrease in their
ribosome density tend to display a decrease in their TDDindex. To
test whether changes in TDDindex could also be driven by other
transcript features, we applied random forest analysis to rank the
features that could explain the extent of changes in both indexes
upon T cell activation (for model prediction and feature impor-
tance, see Supplemental Fig. S10D,E). As expected, changes in ribo-
some density ranked among the best variables explaining changes
in the TDDindex, together with GC content in the coding se-
quence (Supplemental Fig. S10D). The fact that the GC content
in the coding sequence impacts differently the TDDindex upon
T cell activation agrees with our previous observation of an inver-
sion in the relationship between TDDindex and GC3 content
upon T cell activation (see Fig. 6). Indeed, transcripts with high
GC3 content in their CDS display a decrease in their TDDindex,
and transcripts with low GC3 content in their CDS display an in-
crease in their TDDindex upon T cell activation (Fig. 7E).

Having identified changes in ribosome density as well as GC3
content in the CDS as important factors driving observed changes
in the TDDindex upon T cell activation, we performed a similar
analysis to identify factors driving changes in the observed
TIDindex (Supplemental Fig. S10E, right). Changes in ribosome
density were also among the main factors explaining the observed
changes in the TIDindex upon T cell activation, together with the
CDS GC and GC3 content (Fig. 7F; Supplemental Fig. S10E, right).
In this case, changes in ribosome density display a negative corre-
lation against changes in TIDindex (r =−0.429) (see Fig. 7B).When
compared together, changes in TDD and TID upon T cell activa-
tion are anticorrelated and appear to be linked to changes to ribo-
some density (Fig. 7C). Finally, as previously observed, the overall
contribution of TID in total mRNA decay is preponderant over
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that of TDD. As a consequence, total mRNA degradation is
negatively correlated to changes in ribosome density upon T cell
activation (Fig. 7D). mRNAs with increased ribosome density
upon T cell activation are stabilized, whereas those that display a
reduction in ribosome density upon T cell activation are destabi-
lized (Fig. 7D).

Taken together, our results suggest that TDD and TID occur
through mutually exclusive pathways that compete for the same
substrate and are defined by ribosome density as well as transcript
cis-acting features that participate in modulating the efficiency of
each pathway.

Discussion

TDD has emerged as an important determinant of mRNA stability
among eukaryotes. However, its precise contribution to overall
mRNA decay and the features that modulate its efficiency are still
poorly characterized. Using a combination of transcription and
translation inhibitors, we were able to deconvolute mRNA decay
into translation dependent and translation independent (Fig. 1).
Our results uncover a global effect of mRNA translation in induc-
ingmRNAdecay (Fig. 1B). Furthermore, the extent of TDD appears
to be a transcript-specific feature, with most cellular transcripts
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displaying moderate TDD (median of 27% of observed mRNA de-
cay at 3 h being explained by a translation-dependent mecha-
nism), whereas others are either entirely degraded through TDD
or completely insensitive to it (Fig. 1F). As expected, known
TDD targets such as UPF2-regulated transcripts are highly depen-
dent on translation for their decay, whereas lincRNAs are not
(Fig. 1E). Random forest analysis of transcript cis- and trans-acting
features allowed the identification of different features involved in
mediating or modulating TDD and TID in resting and activated T
cells (for a global overview, see Supplemental Fig. S11). However, it
is important to notice that the list presented here is not exhaustive
and that other potential regulators of TDD and TID such as RNA-
binding proteins and microRNAs were not taken into account in
this study.

Our results revealed that ribosome density is an important
determinant of TDD both in resting and activated T cells (Figs. 2,
5, left panels). The relationship between TDD and ribosome densi-
ty is monotonic followed by saturation, with a positive linear cor-
relation between TDD and ribosome density for low-to-medium
ribosome density values, which reaches a plateau for higher ribo-
some density values (Fig. 2B). These results are in agreement
with a progressive mRNA decay model recently proposed by
Dave et al. (2023), using single-molecule analysis of TDD. This
model suggests that ribosome flux, which depends on the transla-
tion-initiation frequency, is responsible for mRNA destabilization
rather than the total number of ribosomes on a given mRNA.
Moreover, the model predicts a nonlinear relationship between
mRNA degradation and translation-initiation rates, showing a pla-
teau at fast initiation rates similar to what we observe with the
TDDindex for mRNAs with high ribosome density (Fig. 2B).
Altogether, it is tempting to speculate that ribosomes themselves
could be themain factor responsible for inducing TDD,most likely
via recruitment of specific decay factors. This hypothesis is sup-
ported by evidence showing that ribosomes are hubs for the assem-
bly of factors involved inmRNA surveillance andhave been shown
to directly interact with differentmRNAdecay factors (Simsek et al.
2017; Tesina et al. 2019; Buschauer et al. 2020; Lin et al. 2020; Tuck
et al. 2020). Furthermore, the frequency of “benign” ribosome col-
lisions has been recently reported to be positively correlated to ri-
bosome density in a transcriptome-wide manner (Arpat et al.
2020) and, in some instances, to recruiting of the RNA decay factor
SKIV2L (Tuck et al. 2020). This suggests that ribosome collisions
could be responsible for the correlation between ribosome density
and TDD that we observe in our data sets.

Our random forest analysis also pointed to transcript 3′ UTR
length and, to a lesser extent, to 5′ UTR length among important
factors explaining TDD (Fig. 2A). Further analysis confirmed a
global anticorrelation between UTR length and TDD susceptibility
(Fig. 2B). This result was surprising because long 3′ UTRs had been
linked to UPF1-dependent mRNA decay (Hogg and Goff 2010;
Kurosaki and Maquat 2013). However, there is evidence that the
role of UPF1 in the decay of long 3′ UTRs could occur through a ri-
bosome-independent pathway involving the microRNA pathway
and the CCR4-NOT deadenylase complex (Park et al. 2019), as
well as independently from NMD within chromatoid bodies
through TDRD6 (Fanourgakis et al. 2016). More recently, nano-
pore sequencing of cellular transcripts from cells in which NMD
has been inhibited did not find any correlation between 3′ UTR
length and NMD susceptibility (Karousis et al. 2021).
Furthermore, in zebrafish, 3′ UTR length has been shown to play
a buffer role against deadenylation and decay of maternal
mRNAs mediated by codon usage (Mishima and Tomari 2016).

In this pathway, long 3′ UTRs were shown to decrease accessibility
of mRNA decay factors recruited by nonoptimal codons to the 3′

poly(A) tail (distance model of codon-dependent mRNA decay).
These recent studies are consistent with our findings.

Studies performed in budding yeast (Saccharomyces cerevisiae)
have pointed to codon usage coupled to ribosome residency time
as features conditioning recruitment of mRNA decay factors to
ribosomes, thus leading to TDD (Presnyak et al. 2015;
Radhakrishnan et al. 2016). Similar results have been found in
higher eukaryotes, in which enrichment in specific codons was
shown to lead to higher mRNA decay rates (Narula et al. 2019;
Wu et al. 2019; Forrest et al. 2020). GC and GC3 content along
the coding sequence have also been described to drive TDD in hu-
man cells (Hia et al. 2019) in a context in which GC3-rich codons
tend to destabilize mRNAs whereas AU3-rich codons stabilize
them. Such a GC3 bias can also be observed in the codons associ-
ated with stable and unstable mRNAs from previous studies
(Narula et al. 2019; Wu et al. 2019; Shu et al. 2020), although
this observation was not directly highlighted by the investigators.
In resting T cells, our results show that TDD is mainly associated
withGC3-rich codons,whereas TID is associatedwithAU3-rich co-
dons (Fig. 6A,B). Because TID accounts for a larger fraction of
mRNA decay than does TDD, its effects predominate when assess-
ing mRNA degradation rates and codon usage. Therefore, it intro-
duces a bias when mRNA stability is used as a proxy to study TDD
pathways. Finally, as we observed a global inversion of the ob-
served relationship between GC content in the CDS, TDD, and
TID upon T cell activation (Fig. 6), our results further suggest
that this relationship can be dynamically regulated, possibly
through the modulation of trans-acting factors. Loss of FMRP in
mouse neurons leads to reshuffling of the link between codon us-
age and mRNA stability (Shu et al. 2020) similar to the one we ob-
serve upon T cell activation. It suggests that T cell activationmight
be accompanied by changes in the relative levels or activity of spe-
cific RNA-binding proteins involved in the recognition of specific
codons or GC content in the CDS. Consistently, it has been recent-
ly shown that codon usage, tRNA abundance, and editing are
dynamically regulated in mouse CD4+ T cells (Rak et al. 2021;
Liu et al. 2022). In this particular context, expression ofmRNAs en-
riched in “proliferation codons” bearing a strong AU3 bias tends to
be up-regulated 20 h upon CD4+ T cell activation, whereas expres-
sion of mRNAs enriched in “differentiation codons” bearing a
strong GC3 bias tends to be down-regulated. These changes are ac-
companied by corresponding changes in tRNA abundance that
could compensate for the imbalance in codon usage (Rak et al.
2021). This observation could explain the switch that we observe
with TDD and TID with respect to the GC3 bias in codon usage,
as well as the increase in ribosome density for transcripts bearing
AU3-rich coding regions (Fig. 7F).

Finally, in resting and activated T cells, TDD mainly targets
transcripts coding for proteins with basic functions related to the
process of gene expression, which are generally abundant in the
cell. These include ribosome biogenesis factors, factors implicated
in tRNA metabolism, mRNA splicing, and the proteasome. For
those transcripts, TDD could participate in limiting the protein
output per mRNA unit and introduce a negative feedback loop to
avoid protein overexpression. Such a feedback loop would be par-
ticularly useful under conditions in which expression is up-regu-
lated, as observed for several of these GO categories upon T cell
activation (Supplemental Fig. S8), when cell volume increases rap-
idly, which requires an increase in protein levels to prepare for
clonal expansion. TDD could thus represent an additional level
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of regulation for types of proteins in which overexpression could
be detrimental for T cells. This could be useful for key component
of the TCR signaling (such as transcripts encoding CD3 chains and
ZAP that specifically rely on TDD for their decay), because any dys-
regulation in those pathways can lead to abnormal immune
responses.

Conversely, TID predominantly targets functional categories
of transcripts that are related to the fine-tuning of gene expression
(transcription factors) or specific cellular pathways such as cell cy-
cle and the immune response. These pathways require a dynamic
and reversible control of gene expression andmostly rely on specif-
ic trans-acting factors (such as AU-rich bindingproteins) to actively
regulate their expression both temporally and in their amplitude.
Transcripts highly regulated by TID display long 3′ UTRs (Fig.
3B), therefore providing a larger platform to recruit RBPs involved
in the post-transcriptional regulation of gene expression
(Sandberg et al. 2008; Gruber et al. 2014).

Methods

Primary cell purification and culture

Primary CD4+ T cells were obtained from 6-wk-old C57BL/6J fe-
male mice. Briefly, the spleen as well as the inguinal, axillary, bra-
chial, cervical, and mesenteric lymph nodes were collected,
followed by Ficoll separation to remove red blood cells from sple-
nocytes. CD4+ T cells were then purified by negative selection us-
ing the CD4+ T cell isolation kit (Miltenyi Biotec 130-104-454)
following the manufacturer’s protocol. Isolated cells were grown
in RPMI medium supplemented with 10% fetal calf serum (FCS)
and 50 µM β-mercaptoethanol. CD4+ T cell activation was per-
formed using magnetic beads coupled with CD3/CD28 antibodies
(Thermo Fisher Scientific 11452D) following the manufacturer’s
protocol.

Cell viability, proliferation, and cell surface marker detection by

flow cytometry analysis

Before culture, CD4+ T cells were stained with carboxyfluorescein
succinimidyl ester (CFSE; Molecular Probes). After 24, 48, or 72 h
of culture, cell numbers were measured by flow cytometry using
Calibrite beads (BD Pharmingen) as standards as previously de-
scribed (Cottalorda et al. 2006). Expression of cell surface markers
in resting and CD3/CD28-activated cells wasmade by flow cytom-
etry using fluorescent-coupled antibodies against CD4 (Biolegend
100434), CD3 (Biolegend 100308), CD69 (Biolegend 104507), and
CD25 (Biolegend 102021).

RNA stability measurements

Tomonitor mRNA stability, 3 million CD4+ T cells were incubated
in the presence of DRB (Sigma-AldrichD1916) at a final concentra-
tion of 65µMor triptolide (Sigma-Aldrich T3652) at a final concen-
tration of 25 µM for 15 min, 1 h, or 3 h. At each time point (0, 15
min, 1 h, and 3 h), cells were collected and counted, and total RNA
was extracted from the same number of cells (3 million) at each
time point using TRIzol in the presence of 1 µL of a 1/10 dilution
of ERCC spike-in RNA (Thermo Fisher Scientific 4456740). To
monitormRNA stability in conditions in whichmRNA translation
is impaired, cells were incubated in the presence of either DRB or
triptolide and cycloheximide (final concentration of 100 µg/mL;
Sigma-Aldrich 01810) or harringtonine (final concentration of 2
µg/mL; Interchim H0169) for 1 or 3 h and total RNA extracted as
described above. Total RNA was depleted from ribosomal RNA us-
ing the Ribo-Zero rRNA removal kit (human/mouse/rat, Illumina)

followed by cDNA library preparation as described below. All ex-
periments were performed in three independent biological repli-
cates obtained from mouse primary CD4+ T cells purified from
independent groups of 6-wk-old C57BL/6J female mice on differ-
ent days.

For 4-thiouridine labeling experiments, cells were incubated
for 24 h in the presence of the indicated concentration of 4-thiour-
idine in RPMI medium supplemented with 10% FCS and 50 µM β-
mercaptoethanol. Themediumwas changed every 3 h tomaintain
4-thiouridine levels at the indicated concentration. After 24 h,
cells were labeled with eBioscience Fixable Viability Dye eFluor
780 (Thermo Fisher Scientific 65-0865-18) according to themanu-
facturer’s recommendations, fixed with PSB-PFA 4%, and analyzed
by flow cytometry on a BD LSRII instrument.

RNA-seq cDNA library preparation

High-throughput sequencing libraries were prepared as previously
described (Heyer et al. 2015). More information can be found in
the Supplemental Methods.

Ribosome profiling

Ribosome profiling libraries were prepared as previously described
(Ricci et al. 2014). More information can be found in the
Supplemental Methods.

Poly(A)-site sequencing

Poly(A)-site sequencing libraries were prepared as previously de-
scribed (Ashar-Patel et al. 2017). More information can be found
in the Supplemental Methods.

Analysis of high-throughput sequencing reads

All the scripts used for this analysis are available at the following
repository: https://gitbio.ens-lyon.fr/LBMC/RMI2/tdd_project.

Sequencing readswere split with respect to their 5′ in-line bar-
code sequence. After this, 5′-barcode and 3′-adaptor sequences
were removed from reads using FASTX-toolkit (http://hannonlab
.cshl.edu/fastx_toolkit/index.html). Reads were mapped to a cus-
tom set of sequences corresponding to the mouse 18S, 28S, 45S,
5S, and 5.8S rRNA; tRNAs; and the ERCC spike-in sequences (avail-
able in Supplemental Table S2) to filter them out, using Bowtie 2
(version 2.2.4) (Langmead and Salzberg 2012) with the following
parameters “Bowtie 2 -t ‐‐fast”.

For RNA sequencing and ribosome profiling samples, reads
that failed to map to this custom set of sequences were next
aligned to themousemm10 assembly and the GENCODE vM7 an-
notation using TopHat2 (v2.0.13) (Kim et al. 2013) with the
following parameters: “Tophat2 ‐‐Bowtie (Bowtie version 1.1.1.0)
‐‐library-type fr-secondstrand ‐‐b2-sensitive -i 30 -m 1 -g 10
‐‐max-coverage-intron 1000000”. Read counts on all transcripts
of interest were obtained using the HTSeq count package (Anders
et al. 2015) with the following parameters “htseq-count -f sam -r
pos -s yes -a 10 -m intersection-nonempty”.

Transcript database creation

The script to generate the transcript database and its documenta-
tion can be found in Supplemental Code S2 and https://gitbio
.ens-lyon.fr/LBMC/RMI2/rmi2_gff_fasta_compilation. The data-
base can be found in Supplemental Table S3. The rationale to build
the database was to eventually select a single transcript isoform to
quantify expression and ribosome density for further analyses and
obtain transcript information such as the length of UTRs, coding
sequence, codon usage, and other features used to build the
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random forest model. Additional information regarding how the
transcript database was built can be found in the Supplemental
Methods section.

Differential gene expression analysis with DESeq2

Differential expressed genes and translated genes upon cell activa-
tionwere obtained usingDESeq2 (version 1.24.0) (Love et al. 2014)
in R (version 4.3.2) (R Core Team 2023) using, respectively, RNA-
seq and ribosome profiling read counts of activated T cells versus
resting T cells with a classical model design ∼ condition+

replicate.

To obtain genes that differ in ribosome density, a DESeq2
model was constructed using both RNA-seq and ribosome profil-
ing read counts with the following model:

∼condition:sequencing+condition+replicate:

sequencing,

where condition refers to the resting/activated state of the cells and
sequencing to RNA-seq/RiboSeq libraries. Specifically changes in
ribosome density were recovered using the contrast

list (“conditionactivated.sequencingRiboSeq”,

“conditionresting.sequencingRiboSeq”) of the results

command.

Read count normalization by DESeq with endogenous stable

genes

To define endogenous stable genes, read counts normalized using
the exogenous spike-in reads were plotted to visually identify sta-
ble transcripts. Based on this information, the 0-h triptolide versus
3-h triptolide in read per million (RPM) was plotted to check that
the selected transcripts were indeed relatively enriched in the 3-h
triptolide condition compared with the control condition for all
biological replicates.

Stable genes were then used by DESeq2 (1.24.0) (Love et al.
2014) to estimate the size factor of all libraries, and then normal-
ized read counts were recovered in a matrix for downstream anal-
ysis and calculation.

Functional enrichment analysis of transcripts differentially

expressed and translated upon cell activation

Functional enrichment analysis was performed with DAVID (ver-
sion 6.8) (Da Huang et al. 2009a,b; https://david.ncifcrf.gov/
summary.jsp), selecting genes with an adjusted P-value<0.05 in
the differential gene expression and differential translation analy-
sis. Plots were generated with Revigo (Supek et al. 2011; http
://revigo.irb.hr/) using as inputs GO terms with an adjusted P-val-
ue < 0.01 as calculated by the DAVID software.

Random forest models

Scripts to perform random forest models can be found in
Supplemental Code S1. First, the gene set of interest was reduced
to the expressed genes based on the gene normalized read counts
of 3-h triptolide libraries (about 5000 genes in resting and about
6000 genes in activated T cells). Of these, only geneswith complet-
ed observations in all biological replicates (including ribosome
profiling libraries) and for all transcript features used to build the
model were kept. The data set was then divided in a train and val-
idation data set composed of, respectively, 80% and 20% genes
randomly chosen. For model development, XGBoost, was used
in R (version R 4.3.2). The train function from the caret (v6.0-94)
package was used. The train function iteratively refits the model
over bootstrap samples and explores various options for the num-
ber of randomly selected predictors at each split in the tree (con-

trolled by the colsample_bytree parameter). To evaluate the
model’s performance, predictions were made on the validation
data set. The Spearman’s correlation coefficient was then calculat-
ed to assess the concordance between the predicted and observed
values. Following model training, SHAP values were computed in
order to identify feature importance using the SHAPforxgboost
(v 0.1.3; https://github.com/liuyanguu/SHAPforxgboost) package.

The accuracy of the final model obtained by the train func-
tion was then verified by predicting the parameters of interest
(TDDindex or TIDindex) of the validation data set with the ran-
dom forest model and calculating the Spearman’s correlation be-
tween the predicted versus the real value.

G-quadruplex prediction

G-quadruplex structureswithin transcripts were predicted as previ-
ously described (Beaudoin et al. 2014) using a dedicated Microsoft
Excel macro available in Supplemental Code S3.

RNA secondary structure modeling

RNA secondary structure modeling in the 5′ UTR, CDS, and 3′ UTR
was performed using the ViennaRNA package (version 2.5.1)
(Lorenz et al. 2011). A normalized minimum free energy score
(MFE) for each sequence was then calculated (i.e., MFEden) as pre-
viously described (Trotta 2014).

CSC correlation–permutation sequence

CSC scores were calculated as inspired by Presnyak et al. (2015).
Briefly, the CSC score is the Pearson’s correlation between the fre-
quency of occurrence of each codon and the TDDindex of the cor-
responding transcript. Statistical significance was determined by
permutating 10,000 times the sequence of each coding sequence.
This allow us to generate 10,000 transcriptomes with random co-
dons from transcripts that share same features as the original
sequence (GC content, CDS length). For each random transcrip-
tome, the CSC score for each codon was computed, allowing us
to calculate aCSC score distributionobtained randomly. The P-val-
ue corresponds to the probability of obtaining the observed CSC
score from the randomized transcriptome. False-discovery rates
(FDRs) were calculated with the Benjamini and Yekutieli method
(Benjamini and Yekutieli 2001) to adjust the P-value for multiple
comparison tests.

GO analysis using TDDindex and TIDindex values

Transcripts were associated toGO terms using themgi.gaf file (http
://current.geneontology.org/annotations/mgi.gaf.gz; downloaded
September 17, 2019); the GO terms to GO phrase association, as
well as the GO tree, were obtained from the go-basic.obo file
(http://purl.obolibrary.org/obo/go/go-basic.obo; downloaded
September 17, 2019). The distributions of TDDindex and
TIDindex values were generated for each GO and compared with
the distribution obtained for the global transcript population.
The statistical significance of the difference in the mean
TDDindex or TIDindex value between the transcripts fromany giv-
en GO and the global population was determined by a bootstrap-
ping test (50,000 random ensembles of same dimension of the
GOs). The obtained P-values were then submitted to a hierarchical
FDR-controllingmethodology (Benjamini and Yekutieli 2001), us-
ing the structure of the GO tree.

Quantitative PCR analysis of mRNA half-lives

To monitor mRNA half-lives, 3 million CD4+ T cells were incubat-
ed in the presence of triptolide (Sigma-Aldrich T3652) at a final
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concentration of 25 µM for 1 h, 2 h, 3 h, 4 h, 5 h, or 6 h. At each
time point, cells were collected and counted, and total RNAwas ex-
tracted from the same number of cells (3 million) at each time
point using TRIzol in the presence of 0.5 ng of an in vitro tran-
scribed cap and polyadenylated Renilla luciferase mRNA. To mon-
itor mRNA stability in conditions in which mRNA translation is
impaired, cells were incubated in the presence of triptolide and cy-
cloheximide (final concentration of 100 µg/mL; Sigma-Aldrich
01810) and total RNA extracted at each time point as described
above.

cDNA was generated using the high-capacity cDNA reverse
transcription kit (Applied Biosystems) with 200 ng of total RNA,
according to the manufacturer’s instructions.

qPCRs were performed with SensiFAST SYBR no-rox kit
(Bioline) using the CFX connect real-time PCR detection system.

Thermal cycling parameters included a 2-min preincubation
at 95°C and 40 amplification cycles for 10 sec at 95°C and for 30
sec at 60°C. All sequences of primers are described in
Supplemental Table S4.

Data access

All raw and processed sequencing data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE159301. All the scripts used for the analyses presented in the
paper are available as Supplemental Code and at the following re-
positories: https://gitbio.ens-lyon.fr/LBMC/RMI2/tdd_project and
https://gitbio.ens-lyon.fr/LBMC/RMI2/
rmi2_gff_fasta_compilation.
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